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GENUS ONE CURVES AND BRAUER-SEVERI VARIETIES

AISE JOHAN DE JoNG AND WEI Ho

1. Introduction

Let K be a field. Let A be a central simple algebra over K and let X be the associated
Brauer—Severi variety over K. An interesting question that has recently been asked
[2, 7] is whether there exists a genus one curve C over K such that K(C) splits A. In
other words, is there a genus one curve C' over K with a morphism C' — X7

In this short note, we explicitly construct such a genus one curve in case X has
dimension <4 (equivalently, when A has degree d < 5). The methods we use do not
seem to generalize to higher-dimensional X. One obstacle is that we rely upon certain
explicit descriptions of the moduli spaces of genus one curves with degree d divisor
classes, which are not known for higher d. In fact, we expect the question has a
negative answer in general.

We would like to point the reader to related work [4, 1] regarding which Brauer
classes are split by a given (genus 1) curve over K. Also, note that if K is a finite
field, then the question is trivial because the Brauer group is, so in the rest of this
note we assume K is infinite.

2. Index 2 and Index 3

These cases are covered by previous work (e.g., [8]). We briefly describe constructions
for these two cases, since the higher cases below are similar in spirit.

Let A be a quaternion algebra over K, and let X be a genus zero curve representing
the same Brauer class. Let L be a degree 2 line bundle on X, so a section of L®? cuts
out a degree 4 subscheme D of X. Then there exists a double cover C' of X ramified
exactly at D by the cyclic covering trick [5, Proposition 4.1.3]. The genus of C'is 1.
For a general section, when the characteristic of K is different from 2, the curve C
will be a smooth irreducible genus one curve.

Now let A be a central simple algebra over K of degree 3, with X the corresponding
Brauer—Severi variety. Then the inverse of the canonical bundle of X is a line bundle
whose general sections cut out genus one curves.

3. Index 4

Let A be a central simple algebra over K of degree 4 and let X be the corresponding
Brauer—Severi variety. Let o € Br(K) be the class of A, so « is a nontrivial element
of index 4 in Br(K) and has period 2 or 4. By [6, Corollary 15.2.a], the class of 2«
has index 2 or 1. Let Y be a Brauer—Severi variety of dimension 1 whose Brauer class
is 2a.
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It is well known that the intersection of two general sections of Ops(2) is a smooth
irreducible genus one curve. Another way to describe this curve is as the zero locus
of a general section of the pushforward m,Opsyp1(2,1), where 7 : P2 x P! — P3 is
the first projection. To generalize this construction for our situation, we descend this
vector bundle to X x Y.

We claim that the line bundle Ox . (2) X Oy, (1) on Xz x Y descends to a line
bundle £ on X x Y. In other words, we want to show that Ox . (2) X Oy, (1) is in the
image of the map

Pic(X xY) — Pic(Xz x Yi),
and more precisely, in the image of the map
Pic(X xY) — Pic(X g x Y )GalK/K)

The next term in the low degree exact sequence coming from the Leray spectral
sequence for the map Xz — X with coefficients in G, is the Brauer group Br(K).
Similarly, there is an exact sequence

Pic(X) — Pic(X ) K/K) _, Br(K).

The obstruction to the line bundle Ox . (1) coming from a line bundle on X is exactly
the class « in Br(K), so because the differential is a homomorphism, the obstruction
for Ox . (2) is 2cv. Similarly, the obstruction for Oy, (1) is 2. By the Kiinneth formula,
the obstruction for Ox . (2) M Oy, (1) is 2a 4 2« = 0.

Therefore, there exists a line bundle £ on X x Y as above, and the pushforward
7L via the projection 7 : X x Y — X is a rank 2 vector bundle on X. By base
change, the bundle m,L on X has many sections, and a general section cuts out a
genus one curve on X.

4. Index 5

Let A be central simple algebra A over K of degree 5. Let o € Br(K) be the class of
A, so « is a nontrivial element in Br(K)[5]. Let X and Y be Brauer-Severi varieties
representing the classes a and 2, respectively. We construct a genus one curve in X
by finding a general section of a vector bundle over X x Y.

The following observation may be found in [3] and was explained to us by Laurent
Gruson (private communication). The sheaf Ox (1) X Qlyk(2) is a rank 4 vector
bundle on Xz x Y. The zero locus of a general section is a closed smooth subvariety
of Xz x Yz whose projection to Xz is a smooth irreducible genus one curve.

We claim that the vector bundle Ox . (1) X Q%,K(2) on Xg x Yi descends to a

vector bundle € over K. Because Ox . X Q%,K certainly descends, we want to show
that the line bundle Ox . xy, (1,2) is in the image of the map

Pic(X x Y) — Pic(X g x Y )GolUE/K),

As in the index 4 case, the obstruction lies in Br(K), and an almost identical compu-
tation shows that it is @ + 2(2a) = 5a = 0 in Br(K).

By base change, the vector bundle € on X x Y has many sections, so we may take
a general section as above. The projection to X of the zero locus of this section is a
genus one curve, as desired.
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