GENUS ONE CURVES AND BRAUER-SEVERI VARIETIES

Aise Johan de Jong and Wei Ho

1. Introduction

Let K be a field. Let A be a central simple algebra over K and let X be the associated Brauer–Severi variety over K. An interesting question that has recently been asked [2, 7] is whether there exists a genus one curve C over K such that K(C) splits A. In other words, is there a genus one curve C over K with a morphism $C \to X$?

In this short note, we explicitly construct such a genus one curve in case X has dimension ≤ 4 (equivalently, when A has degree $d \leq 5$). The methods we use do not seem to generalize to higher-dimensional X. One obstacle is that we rely upon certain explicit descriptions of the moduli spaces of genus one curves with degree d divisor classes, which are not known for higher d. In fact, we expect the question has a negative answer in general.

We would like to point the reader to related work [4, 1] regarding which Brauer classes are split by a given (genus 1) curve over K. Also, note that if K is a finite field, then the question is trivial because the Brauer group is, so in the rest of this note we assume K is infinite.

2. Index 2 and Index 3

These cases are covered by previous work (e.g., [8]). We briefly describe constructions for these two cases, since the higher cases below are similar in spirit.

Let A be a quaternion algebra over K, and let X be a genus zero curve representing the same Brauer class. Let L be a degree 2 line bundle on X, so a section of $L^{\otimes 2}$ cuts out a degree 4 subscheme D of X. Then there exists a double cover C of X ramified exactly at D by the cyclic covering trick [5, Proposition 4.1.3]. The genus of C is 1. For a general section, when the characteristic of K is different from 2, the curve C will be a smooth irreducible genus one curve.

Now let A be a central simple algebra over K of degree 3, with X the corresponding Brauer–Severi variety. Then the inverse of the canonical bundle of X is a line bundle whose general sections cut out genus one curves.

3. Index 4

Let A be a central simple algebra over K of degree 4 and let X be the corresponding Brauer–Severi variety. Let $\alpha \in \operatorname{Br}(K)$ be the class of A, so α is a nontrivial element of index 4 in $\operatorname{Br}(K)$ and has period 2 or 4. By [6, Corollary 15.2.a], the class of 2α has index 2 or 1. Let Y be a Brauer–Severi variety of dimension 1 whose Brauer class is 2α .

It is well known that the intersection of two general sections of $\mathcal{O}_{\mathbb{P}^3}(2)$ is a smooth irreducible genus one curve. Another way to describe this curve is as the zero locus of a general section of the pushforward $\pi_*\mathcal{O}_{\mathbb{P}^3\times\mathbb{P}^1}(2,1)$, where $\pi:\mathbb{P}^3\times\mathbb{P}^1\to\mathbb{P}^3$ is the first projection. To generalize this construction for our situation, we descend this vector bundle to $X\times Y$.

We claim that the line bundle $\mathcal{O}_{X_{\bar{K}}}(2) \boxtimes \mathcal{O}_{Y_{\bar{K}}}(1)$ on $X_{\bar{K}} \times Y_{\bar{K}}$ descends to a line bundle \mathcal{L} on $X \times Y$. In other words, we want to show that $\mathcal{O}_{X_{\bar{K}}}(2) \boxtimes \mathcal{O}_{Y_{\bar{K}}}(1)$ is in the image of the map

$$\operatorname{Pic}(X \times Y) \to \operatorname{Pic}(X_{\bar{K}} \times Y_{\bar{K}}),$$

and more precisely, in the image of the map

$$\operatorname{Pic}(X \times Y) \to \operatorname{Pic}(X_{\bar{K}} \times Y_{\bar{K}})^{\operatorname{Gal}(\bar{K}/K)}.$$

The next term in the low degree exact sequence coming from the Leray spectral sequence for the map $X_{\bar{K}} \to X$ with coefficients in \mathbb{G}_m is the Brauer group Br(K). Similarly, there is an exact sequence

$$\operatorname{Pic}(X) \to \operatorname{Pic}(X_{\bar{K}})^{\operatorname{Gal}(\bar{K}/K)} \to \operatorname{Br}(K).$$

The obstruction to the line bundle $\mathcal{O}_{X_{\bar{K}}}(1)$ coming from a line bundle on X is exactly the class α in Br(K), so because the differential is a homomorphism, the obstruction for $\mathcal{O}_{X_{\bar{K}}}(2)$ is 2α . Similarly, the obstruction for $\mathcal{O}_{Y_{\bar{K}}}(1)$ is 2α . By the Künneth formula, the obstruction for $\mathcal{O}_{X_{\bar{K}}}(2) \boxtimes \mathcal{O}_{Y_{\bar{K}}}(1)$ is $2\alpha + 2\alpha = 0$.

Therefore, there exists a line bundle \mathcal{L} on $X \times Y$ as above, and the pushforward $\pi_*\mathcal{L}$ via the projection $\pi: X \times Y \to X$ is a rank 2 vector bundle on X. By base change, the bundle $\pi_*\mathcal{L}$ on X has many sections, and a general section cuts out a genus one curve on X.

4. Index 5

Let A be central simple algebra A over K of degree 5. Let $\alpha \in Br(K)$ be the class of A, so α is a nontrivial element in Br(K)[5]. Let X and Y be Brauer–Severi varieties representing the classes α and 2α , respectively. We construct a genus one curve in X by finding a general section of a vector bundle over $X \times Y$.

The following observation may be found in [3] and was explained to us by Laurent Gruson (private communication). The sheaf $\mathcal{O}_{X_{\bar{K}}}(1) \boxtimes \Omega^1_{Y_{\bar{K}}}(2)$ is a rank 4 vector bundle on $X_{\bar{K}} \times Y_{\bar{K}}$. The zero locus of a general section is a closed smooth subvariety of $X_{\bar{K}} \times Y_{\bar{K}}$ whose projection to $X_{\bar{K}}$ is a smooth irreducible genus one curve.

We claim that the vector bundle $\mathcal{O}_{X_{\bar{K}}}(1) \boxtimes \Omega^1_{Y_{\bar{K}}}(2)$ on $X_{\bar{K}} \times Y_{\bar{K}}$ descends to a vector bundle \mathcal{E} over K. Because $\mathcal{O}_{X_{\bar{K}}} \boxtimes \Omega^1_{Y_{\bar{K}}}$ certainly descends, we want to show that the line bundle $\mathcal{O}_{X_{\bar{K}} \times Y_{\bar{K}}}(1,2)$ is in the image of the map

$$\operatorname{Pic}(X\times Y)\to\operatorname{Pic}(X_{\bar{K}}\times Y_{\bar{K}})^{\operatorname{Gal}(\bar{K}/K)}.$$

As in the index 4 case, the obstruction lies in Br(K), and an almost identical computation shows that it is $\alpha + 2(2\alpha) = 5\alpha = 0$ in Br(K).

By base change, the vector bundle \mathcal{E} on $X \times Y$ has many sections, so we may take a general section as above. The projection to X of the zero locus of this section is a genus one curve, as desired.

Acknowledgments

We would like to thank Bjorn Poonen and the referee for their comments on an earlier draft. The first author was partially supported by the NSF grant DMS-0970108, and the second author was partially supported by the NSF grants DMS-0902853 and DMS-0739400.

References

- [1] M. Ciperiani and D. Krashen, Relative Brauer groups of genus 1 curves, http://arxiv.org/abs/math/0701614v4, 2011.
- [2] P. Clark, Some open problems, http://www.math.uga.edu/~pete/openquestions.html, 2008.
- [3] J. d'Almeida, Courbes de l'espace projectif: séries linéaires incomplètes et multisécantes, J. Reine Angew. Math. **370** (1986), 30–51.
- [4] D. Krashen and M. Lieblich, Index reduction for Brauer classes via stable sheaves, Int. Math. Res. Not. IMRN (2008), no. 8, Art. ID rnn010, 31.
- [5] R. Lazarsfeld, Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Vol. 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Springer-Verlag, Berlin, 2004, ISBN 3-540-22533-1.
- [6] R.S. Pierce, Associative algebras, Graduate Texts in Mathematics, Studies in the History of Modern Science, 88 Springer-Verlag, New York, 1982, ISBN 0-387-90693-2.9.
- [7] A. Ruozzi and U. Vishne, Open problem session from the conference "Ramification in algebra and geometry", http://www.mathcs.emory.edu/RAGE-open-problems.pdf, 2011.
- [8] P.K. Swets, Global sections of higher powers of the twisting sheaf on a Brauer-Severi variety, ProQuest LLC, Ann Arbor, MI, PhD thesis, The University of Texas at Austin, 1995.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NY 10027, USA E-mail address: dejong@math.columbia.edu

Department of Mathematics, Columbia University, New York, NY 10027, USA $E\text{-}mail\ address$: who@math.columbia.edu

