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L∞-VARIATIONAL PROBLEM ASSOCIATED TO DIRICHLET
FORMS

Pekka Koskela, Nageswari Shanmugalingam and Yuan Zhou∗

Abstract. We study the L∞-variational problem associated to a general regular,

strongly local Dirichlet form. We show that the intrinsic distance determines the absolute
minimizer (infinite harmonic function) of the corresponding L∞-functional. This leads
to the existence and uniqueness of the absolute minimizer on a bounded domain, given
a continuous boundary data. Applying this, we also obtain that an infinity harmonic

function on R
n may be the minimizer for several different variational problems. Finally,

we apply our results to Carnot–Carathéodory spaces.

1. Introduction

The classical L∞-variational problem is to consider the local minimizers of the L∞-
functional

F (u, Ω) = esssup
x∈Ω

|∇u(x)|2

over the class of functions u ∈ C(Ω) ∩ Lip loc (Ω) on an open subset Ω ⊂ R
n with a

given boundary data. This study was initiated by Aronsson [2–5], who introduced the
idea of absolute minimizer. A function u ∈ C(Ω)∩ Lip loc (Ω) is said to be an absolute
minimizer if for every open set U � Ω and each function v ∈ C(U)∩ Lip loc (U) with
u|∂U = v|∂U , we have F (u, U) ≤ F (v, U). An absolute minimizer is also called an
infinity harmonic function since it is a viscosity solution of the ∞-Laplace equation

(1.1)
n∑

i, j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0,

which is a highly degenerate second-order partial differential equation; see for example
[17]. The study of the absolute minimizers of the L∞-variational problem has attracted
considerable attention; see [6, 8–13,17–19,21,22,24,29] and references therein.

Note that the above L∞-variational problem corresponds to the standard Dirichlet
energy form ERn given by

ERn(u, v) =
∫

Rn

〈∇u(x), ∇v(x)〉 dx

for u, v ∈ W 1, 2(Rn). Modeled on the above theory, for a given Dirichlet form, one
can introduce the corresponding L∞-variational problem as follows.

Let X be a locally compact, complete, connected and separable Hausdorff space
and let m be a non-negative Radon measure with support X. Assume that E is
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a regular, strongly local Dirichlet form on L2(X, m) with domain D. Denote by Γ
the corresponding energy measure. Then the Radon–Nikodym derivative d

dmΓ(u, u)
plays the role of the square of the length of the gradient of u ∈ D, and for every pair
u, v ∈ D, we always have

E (u, v) =
∫

X

dΓ(u, v).

For the details, see for example [15] and also Section 2 below. Given an open subset
Ω ⊂ X, we denote by D loc (Ω) the class of functions u for which, whenever U � Ω is
open, there exists w ∈ D with w = u on U .

Following the idea of Aronsson, we introduce the corresponding L∞-functional
and the absolute minimizers for (X, E , m). Such absolute minimizers play the role of
infinity harmonic functions in view of the case (Rn, ERn , dx).

Definition 1.1. Let Ω ⊂ X be an open set. We define the L∞-functional, FE (·, Ω),
on D(Ω) by

(1.2) FE (u, Ω) = esssup
x∈Ω

d

dm
Γ(u, u)(x).

(i) A function u is said to be an absolute minimizer (or infinity harmonic func-
tion) on Ω associated to (E , m) if u ∈ C(Ω) ∩ D loc (Ω) and for all open sets
U � Ω and all v ∈ C(U) ∩ D loc (U) with v|∂U = u|∂U , we have FE (u, U) ≤
FE (v, U). Denote by AM(Ω;E , m) the class of all absolute minimizers on Ω.

(ii) Given a boundary data f ∈ C(∂Ω), a function u is said to be an absolutely
minimizing gradient extension (or infinity harmonic extension) of f associated
to E if u ∈ C(Ω)∩AM(Ω; E , m) and u|∂Ω = f . Denote by AMf (Ω; E , m) the
class of all absolutely minimizing gradient extensions of f .

Motivated by the classical theory of infinity harmonic functions on R
n, some

natural questions arise: given a bounded open subset Ω � X and boundary data
f ∈ C(∂Ω), is AMf (Ω; E , m) non-empty? Does it have only one function in it? Does
it give the absolutely minimizing Lipschitz extension of f for some distance d̂ on X,
in the sense described below?

The main purpose of this paper is to give affirmative answers to these questions
for an arbitrary regular, strongly local Dirichlet form under the following Standard
assumption (A).

Definition 1.2 (Standard assumption (A)). The topology induced by the intrinsic
distance d of E and the original topology on X coincide. Here, the intrinsic distance
d associated to E is defined by

d(x, y) = sup{u(x) − u(y) : u ∈ C(X) ∩ D loc (X), Γ(u, u) ≤ m}
for all x, y ∈ X, where Γ(u, u) ≤ m means that Γ(u, u) is absolutely continuous
with respect to m and its Radon–Nikodym derivative satisfies d

dmΓ(u, u) ≤ 1 almost
everywhere.

We always make this assumption (A) throughout the whole paper. Recall that
under it, (X, d) is a length space; see [26,28].
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For any K ⊂ X, Lip d(K) denotes the class of functions u such that

Lip d(u, K) = sup
x, y∈K, x�=y

|u(x) − u(y)|
d(x, y)

< ∞.

Given an open set Ω, Lip d, loc (Ω) denotes the class of all u, such that u ∈ Lip d(K)
for all K � Ω.

Definition 1.3. Let Ω ⊂ X be an open set.
(i) Denote by AML(Ω; d) the class of functions u ∈ C(Ω) ∩ Lip d, loc (Ω), such

that for each open set U � Ω, Lip d(u, U) = Lip d(u, ∂U).
(ii) For any given f ∈ C(∂Ω), AMLf (Ω; d) is the class of all functions u ∈

AML(Ω; d) ∩ C(Ω) with u|∂Ω = f . Usually, a function u ∈ AMLf (Ω; d) is
called an absolutely minimizing Lipschitz extension of f .

The main result of this paper reads as follows.

Theorem 1.4. Let E be a regular, strongly local Dirichlet form on L2(X, m) that
satisfies Standard assumption (A). Let Ω ⊂ X be a bounded open set. Then u ∈
AM(Ω; E , m) if and only if u ∈ AML(Ω; d). Moreover, for each f ∈ C(∂U), the set
AMf (Ω, E , m) has exactly one element.

Theorem 1.4 follows from Theorem 3.3 below. The proof of Theorem 3.3 relies
on the key lemma, Lemma 2.5. In Lemma 2.5, we establish a weak coincidence of
the intrinsic distance and gradient structures induced by E : supx∈V ( Lip du(x))2 =
FE (u, V ) for each open set V . Note that usually one cannot expect that ( Lip du)2 =

d
dmΓ(u, u) holds almost everywhere even for u ∈ Lip d(X), as observed by Sturm [26];
also see [20,21]. See Sections 2 and 4 for more details.

As a consequence of Theorem 1.4 and Corollary 3.4, we will see that the local
behavior of the intrinsic distance totally determines the absolute minimizer (see
Corollary 3.4). This together with Sturm’s constructions shows that a classical in-
finity harmonic function on R

n may be an absolute minimizer for several different
functionals.

There exists a variety of Dirichlet forms that satisfy our Standard assumption (A)
(see for example [15]): in Section 5, we apply Theorem 1.4 to Carnot–Carathéodory
spaces. Note that our results extend some of the results obtained in [8–10,29] to more
general settings where we may not have a corresponding Aronsson equation.

2. Dirichlet forms and a key lemma

In this section, we first recall some basic notions and properties of Dirichlet forms,
and then establish the key Lemma 2.5, which gives a weak coincidence of the intrinsic
distance and gradient structures induced by our Dirichlet form. This lemma plays a
key role in the proof of Theorem 1.4.

Let X be a locally compact, connected and separable Hausdorff space and m be
a non-negative Radon measure with support X. A Dirichlet form E on L2(X, m) is
a closed, non-negative definite and symmetric bilinear form defined on a dense linear
subspace D of L2(X), that satisfies the Markov property: for any u ∈ D, the function
v = min{1, max{0, u}} satisfies E (v, v) ≤ E (u, u). Moreover, E is said to be strongly
local if E (u, v) = 0 whenever u, v ∈ D with u constant on a neighborhood of the
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support of v; to be regular if there exists a subset of D ∩ Cc(X) which is both dense
in Cc(X) with uniform norm and in D with the norm ‖ · ‖D defined by

‖u‖D = [‖u‖2
L2(X) + E (u, u)]1/2

for each u ∈ D.
Let M (X) denote the collection of all signed Radon measures on X with finite

mass. Beurling and Deny [7] showed that a regular, strongly local Dirichlet form E
can be written as

E (u, v) =
∫

X

dΓ(u, v)

for all u, v ∈ D, where Γ is an M (X)-valued non-negative definite and symmetric
bilinear form defined by the formula

(2.1)
∫

X

φ dΓ(u, v) ≡ 1
2

[E (u, φv) + E (v, φu) − E (uv, φ)]

for all u, v ∈ D ∩ L∞(X) and φ ∈ D ∩ C0(X). We call Γ(u, v) the Dirichlet energy
measure (squared gradient). The Radon–Nikodym derivative dΓ(u, u)

dm (z) plays the role
of the square of the length of the gradient of u ∈ D at z ∈ X. Observe that, since
E is strongly local, Γ is local and satisfies the Leibniz rule and the chain rule, see
for example [15]. Then for any open subset Ω ⊂ X, Γ(u, v) can be defined as a
measure on Ω for every pair u, v ∈ D loc (Ω), where D loc (Ω) denotes the collection of
all u ∈ L2

loc (X) satisfying that for each open subset U � Ω, there exists a function
w ∈ D such that u = w almost everywhere on U .

Recall the definition of the intrinsic distance d from the introduction. In what
follows, B(x, r) refers to the open ball with respect to d, centered at x and with
radius r > 0. We also refer to the characteristic function of a set U by 1U .

Lemma 2.1 and Corollary 2.2 tell us that Lipschitz functions are in the domain
D loc (X) of the Dirichlet form E . Lemma 2.1 can also be found in [25, Appendix],
and the proof given below is a simplification of the proof found in [25]. We provide
the simplified proof here for the reader’s convenience. Corollary 2.2 can also be found
in [14].

Lemma 2.1. Suppose that X is separable and satisfies the Standard assumption (A).
Then, given x0 ∈ X, the function u given by u(x) = d(x0, x) is in D loc (X).

Proof. By the definition of the intrinsic distance, for each x ∈ X there is a sequence
{uk}k of functions in D loc (X) ∩ C(X) such that Γ(uk, uk) ≤ m for each k and
d(x, x0) = limk→∞[uk(x)−uk(x0)]. By the Markov property of E , we can also assume
that uk(x0) = 0, 0 ≤ uk(x) ≤ d(x, x0), and for each z ∈ X we can further assume that
0 ≤ uk(z) ≤ uk(x). Observe that for each z, w ∈ X, by the definition of the intrinsic
metric, |uk(z) − uk(w)| ≤ d(z, w), that is, for each k the function uk is Lipschitz
continuous and bounded on X. By the local compactness and separability of X, by
a use of the Arzela–Ascoli theorem we can find a subsequence, also denoted {uk}k,
and a Lipschitz function ux : X → R, such that uk → ux uniformly on X. Now the
closedness property of E shows that ux ∈ D loc (X) ∩ C(X) with Γ(ux, ux) ≤ m. The
latter property follows because the square-roots of the Radon–Nikodym derivatives
of Γ(uk, uk) form a bounded sequence in L2(X), and the Hilbert space property of
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L2(X) implies that for a further subsequence of {uk}k the square-roots of the Radon–
Nikodym derivatives of the Dirichlet measures Γ(uk, uk) converge to a function whose
square gives Γ(ux, ux).

Note that ux(x0) = 0 and ux(x) = d(x0, x), and that whenever v ∈ D loc (X) ∩
C(X) with Γ(v, v) ≤ m, it must be that |v(x) − v(x0)| ≤ d(x, x0) = ux(x).

Since by assumption X is separable, we can find a countable collection of points
{xj}j in X that forms a dense subset of X. For each k we consider vk = max1≤j≤k uxj .
The Markov property of E ensures that vk ∈ D loc (X), and the locality property of
E implies that

Γ(vk, vk) =
k∑

j=1

1{vk=uxj
} Γ(uxj , uxj ) ≤ m.

Furthermore, for j = 1, . . . , k we have vk(xj) = uxj (xj) = d(x0, xj) and vk is Lipschitz
continuous on X with |vk(w)−vk(z)| ≤ d(w, z). Another application of the closedness
property of E and the Arzela–Ascoli theorem, together with the density of the set
{xj}j in X yields the desired claim. �
Corollary 2.2. If X is separable, satisfies the Standard assumption (A), and v :
X → R is Lipschitz continuous, that is, v ∈ Lip d(X), then v ∈ D loc (X) with Γ(v, v)
absolutely continuous with respect to m.

Proof. The result follows from a direct application of Lemma 2.1 together with the
closedness property of E upon noting that if the Lipschitz constant of v is L, then v
is also given by v(x) = sup{v(xj) − Ld(x, xj)}. �

Under the Standard assumption (A) that the topology induced by the intrinsic
distance d of E and the original topology on X coincide, it is known that d is a
distance, d(x, y) < ∞ for all x, y ∈ X, and (X, d) is a length space; see [25,27,28]. The
following relations between the intrinsic distance and the Dirichlet energy measure
was proved in [14].

Let

Lip du(x) = lim sup
x�=y→x

|u(y) − u(x)|
d(x, y)

.

Lemma 2.3. We have Lip d(X) ⊂ D loc (X). Moreover, d
dmΓ(u, u) ≤ ( Lip d(u, X))2

almost everywhere for all u ∈ Lip d(X).

Next we prove a Cauchy–Schwarz type inequality for the energy measure form Γ.

Lemma 2.4. We have the following Cauchy–Schwarz inequality for u, η ∈ D loc (U)
whenever U ⊂ X is open:

(2.2)
∣∣∣∣

d

dm
Γ(u, η)(z)

∣∣∣∣ ≤
1
2

d

dm
Γ(u, u)(z) +

1
2

d

dm
Γ(η, η)(z)

for almost all z ∈ U . Furthermore, if Γ(u, u) and Γ(η, η) are absolutely continuous
with respect to the underlying measure 1Um, then so is Γ(u, η).

Proof. The absolute continuity of Γ(u, η) with respect to 1Um follows from the def-
inition of the intrinsic metric, the fact u ± η ∈ D loc (U), Lemma 2.3, Corollary 2.2,
and that

Γ(u, η) =
1
4
{Γ(u + η, u + η) − Γ(u − η, u − η)}.
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Moreover, recall that for all f, g ∈ L∞ and w, v ∈ D, the following Cauchy–Schwarz
inequality holds:

∣∣∣∣
∫

X

fg dΓ(w, v)
∣∣∣∣ ≤

(∫

X

f2 dΓ(w, w)
)1/2 (∫

X

g2 dΓ(v, v)
)1/2

≤ 1
2

∫

X

f2 dΓ(w, w) +
1
2

∫

X

g2 dΓ(v, v).

See [14, Theorem 3.7] for a proof of this fact. Now, for any open subset V � U , taking
w ∈ D such that w = u on V and taking f = g = 1V sign( d

dmΓ(u, η)), we will see that
∫

V

∣∣∣∣
d

dm
Γ(u, η)

∣∣∣∣ dm ≤ 1
2

∫

V

(
d

dm
Γ(u, u) +

d

dm
Γ(η, η)

)
dm,

which gives (2.2) by a standard measure theory argument. �
Recall that for the Dirichlet energy form (Rn, ERn , m), we always have Lip u =

|∇u| almost everywhere when u ∈ Lip (Rn). Naturally, given a regular, strongly local
Dirichlet form E satisfying the Standard assumption (A), we would like to know
whether for each u ∈ Lip d(X),

(2.3) Lip du =

√
d

dm
Γ(u, u)

almost everywhere. However, the answer to this question is not always in the positive
as first observed by Sturm [26]; see Section 4 below, and also see [20,21] for a different
example constructed via a large Cantor set. Instead of the above point-wise equality
(2.3), we obtain the following weak coincidence of the intrinsic distance and differential
structures, which is crucial for obtaining Theorem 1.4.

Lemma 2.5. For each open set U ⊂ X and every u ∈ D loc (U), we have

(2.4) esssup
x∈U

√
d

dm
Γ(u, u)(x) = sup

x∈U
Lip du(x).

To prove this, we need some auxiliary lemmas. For every U ⊂ X, define a local
intrinsic distance dU on U by

dU (x, y) = sup{u(x) − u(y) : u ∈ C(U) ∩ D loc (U), 1UΓ(u, u) ≤ 1Um}.
Lemma 2.6. dU is locally finite on U . Furthermore, if U is connected, then dU is
finite on U and hence is a distance function on U .

Proof. It is easy to see from the definitions of d and dU that on U × U we have
d ≤ dU . It therefore suffices to prove the reverse inequality. To this end, fix x ∈ U
and 0 < r < min{1, d(x, ∂U)}/10 such that B(x, r) is compact (recall that we assume
X to be locally compact, so this is possible). We now fix y ∈ B(x, r).

Let u ∈ D loc (U) ∩ C(U) such that 1UΓ(u, u) ≤ 1Um. If we knew that u could be
extended to a function ũ in D loc (X)∩C(X), such that Γ(ũ, ũ) ≤ m, then we would be
done. Since we are not able to directly extend u in this manner, we use a truncation
argument as follows.

First, we may assume by the Markov property of E that u(x) = 0 and that 0 ≤
u(z) ≤ u(y). For z ∈ X we set

η(z) = (r − d(z, B(x, r)))+.



L∞-VARIATIONAL PROBLEM ASSOCIATED TO DIRICHLET FORMS 1269

Then Lemma 2.1 shows that η ∈ DLip (X), and Lemma 2.3 that Γ(η, η) ≤ m on X.
By the Leibniz rule,

Γ(ηu, ηu) = u2Γ(η, η) + η2Γ(u, u) + 2ηu Γ(η, u).

By (2.2), we have
∣∣∣∣

d

dm
Γ(η, u)

∣∣∣∣ ≤
1
2

[
d

dm
Γ(u, u) +

d

dm
Γ(η, η)

]
≤ 1,

and from the argument subsequent to (2.2) we also know that Γ(η, u) is absolutely
continuous with respect to the underlying measure m. It follows that on B(x, 2r) we
have

d

dm
Γ(ηu, ηu) ≤ [|u(y) − u(x)|2 + r2 + 2r|u(y) − u(x)|]

= (r + |u(y) − u(x)|)2,
and on X \ B(x, 2r) we know that Γ(ηu, ηu) = 0. So, the function ũ given by

ũ =
1

r + |u(y) − u(x)| ηu

belongs to D loc (X)∩C(X) with Γ(ũ, ũ) ≤ m. Therefore, by the definition of d(x, y),
it follows that

(2.5)
1

r + |u(y) − u(x)| [η(y)u(y) − η(x)u(x)] =
r|u(y) − u(x)|

r + |u(y) − u(x)| ≤ d(x, y) < r.

This immediately tells us that the quantity dU (y, x) is finite when y ∈ B(x, r), for we
can take the supremum over all such u and note that if |u(y) − u(x)| → ∞, then the
ratio |u(y) − u(x)|/(r + |u(y) − u(x)|) tends to 1. �

Let us continue the argument from the above proof. By (2.5) we know that

|u(y) − u(x)| ≤ r d(x, y)
r − d(x, y)

,

and so, taking the supremum over all such u we obtain

1 ≤ dU (x, y)
d(x, y)

≤ r

r − d(x, y)
.

Therefore, when y ∈ B(x, r/2) we know that d(x, y) ≤ dU (x, y) ≤ 2 d(x, y), that is,
the topology on U induced by dU coincides with the subspace topology induced by d
on U . It follows that for x ∈ U , we have that

lim
y→x

dU (x, y)
d(x, y)

= 1.

Therefore, if u ∈ D loc (U) ∩ C(U) such that 1UΓ(u, u) ≤ 1Um, then for x ∈ U we see
that

1 ≥ Lip dU
u(x) = Lip du(x).

As X is a length space with respect to the metric d (see [28]), by the definition of dU ,
when u is a candidate in computing dU , we know that u is Lipschitz continuous on
U with respect to the metric dU and hence is locally Lipschitz continuous on U with
respect to the metric d.
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Now, for z ∈ U and y ∈ B(z, r) with 0 < r < min{1, d(z, ∂U)}/10, and u ∈
D loc (U)∩C(U) with 1UΓ(u, u) ≤ 1Um, we can choose for every ε > 0 a curve γε in U
with end points z, y and �d(γε) ≤ ε + d(z, y). By the discussion above, we know that
u is locally Lipschitz continuous on U with respect to the metric d, and so Lip du is
an upper gradient of u with respect to the metric d. It follows that

|u(z) − u(y)| ≤
∫

γε

Lip du ds ≤ �d(γε) ≤ d(x, y) + ε.

Taking the supremum over all such possible u, and then letting ε → 0, we obtain that
dU (z, y) ≤ d(z, y), thus proving the following lemma, Lemma 2.7.

Lemma 2.7. Let U be an open subset of X. Then for every x ∈ U , there exists
rx ∈ (0, d(x, ∂U)) such that dU (x, y) = d(x, y), whenever y ∈ B(x, rx).

Proof of Lemma 2.5. We first show that

Λ := sup
x∈U

Lip du(x) ≤ L := esssup
x∈U

√
d

dm
Γ(u, u)(x).

Indeed, for any ε > 0, applying (L + ε)−1u and −(L + ε)−1u into the definition of dU ,
we have |u(x) − u(y)| ≤ (L + ε)dU (x, y) for all x, y ∈ U . Hence, by the arbitrariness
of ε and Lemma 2.7, we have |u(x) − u(y)| ≤ L dU (x, y) = L d(x, y), which gives
supx∈U Lip du(x) ≤ L as desired.

Now we show L ≤ Λ by using Lemma 2.3. Fix x ∈ U and r < 1
4d(x, ∂U), such that

B(z, r) is compact. Then by the result of [28], for any y, z ∈ B(x, r) we can find a
rectifiable curve γ ⊂ U joining z, y with length �d(γ) = d(z, y). So

|u(z) − u(y)| ≤
∫ 1

0

Lip du(γ(t)) dt ≤ Λd(z, y),

which means that Lip d(u, B(x, r)) ≤ Λ. Define the McShane extension

ũ(y) = inf
z∈B(x, r)

{u(z) + Λd(z, y)}.

We know that ũ ∈ Lip d(X), and hence, by Lemma 2.3, ũ ∈ D loc (X) with
d

dm
Γ(ũ, ũ)(z) ≤ Λ.

Therefore, d
dmΓ(u, u)(z) ≤ Λ for almost all z ∈ Bd(x, r). This implies that L ≤ Λ

and hence gives (2.4). �

3. Equivalent characterizations of AM(Ω; E , m)

In this section, we give characterizations for the class AM(Ω; E , m) and prove The-
orem 1.4. The following class AM(Ω; d) is equivalent to the class AM(Ω; E , m) by
Corollary 2.2 and Lemma 2.5.

Definition 3.1. Let Ω ⊂ X be an open set. Denote by AM(Ω; d) the class of functions
u ∈ Lip d, loc (Ω) satisfying that for each open set U � Ω and function v ∈ C(U) ∩
Lip d, loc (U) with v|∂U = u|∂U ,

sup
x∈U

Lip du(x) ≤ sup
x∈U

Lip dv(x).
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The comparison property with cones was first introduced by Crandall–Evans–
Gariepy [11] on R

n to study infinity harmonic functions. The following metric variant
have been studied in [6, 19].

Definition 3.2. Let Ω ⊂ X be an open set. Denote by CC(Ω; d) the class of all
functions u ∈ Lip d, loc (Ω) satisfying the comparison property with cones, that is, for
each open subset U � Ω, and for all a ≥ 0, b ∈ R and x0 ∈ X \ U , we have that

max
x∈∂U

[±u(x) − Cb,a,x0(x)] ≤ 0 implies max
x∈U

[±u(x) − Cb,a,x0(x)] ≤ 0,

where Cb,a,x0(x) = b + a d(x, x0).

The following result gives Theorem 1.4.

Theorem 3.3. Let Ω ⊂ X be a bounded open set.
(I) The following are equivalent.

(i) u ∈ AML(Ω; d);
(ii) u ∈ AM(Ω; d);
(iii) u ∈ CC(Ω; d);
(iv) u ∈ AM(Ω; E , m).

(II) For every f ∈ C(∂Ω) there is one, and only one, function in AMf (Ω; E , m).

Proof. For the proof of the equivalence of (i), (ii) and (iii), see for example [6,19]. The
existence of u ∈ AMLf (Ω; d) follows from Perron’s method; for details see [6, 18, 22].
The uniqueness u ∈ AMLf (Ω; d) is obtained in [24]; for a simple proof see [1] (and
also [21]) with the observation that the argument in [1] also works for length spaces.
With these, it suffices to show the equivalence of (ii) and (iv). However, this follows
from Lemma 2.5 together with Corollary 2.2. �

We have the following corollary.

Corollary 3.4. Let Ẽ be another regular, strongly local Dirichlet form such that
the topology induced by the intrinsic distance d̃ of Ẽ and the original topology on X
coincide. If

(3.1) lim
x�=y→x

d(x, y)

d̃(x, y)
= 1

for all x ∈ Ω, then u ∈ AM(Ω; E , m) if and only if u ∈ AM(Ω; Ẽ , m).

A special case of (3.1) is that for every x ∈ Ω, there exists rx > 0 such that
d(x, y) = d̃(x, y) for all y ∈ Bd(x, rx).

Remark 3.5. In view of Theorem 3.3 and Corollary 3.4, the local behavior of the
intrinsic distance totally determines the absolute minimizer.

4. Infinity harmonic functions on R
n

Let Ω ⊂ R
n with n ≥ 2 be a proper open subset. Let u be an infinity harmonic function

on Ω, that is, a viscosity solution of the ∞-Laplace equation (1.1). Jensen [17] proved
that u ∈ AM(Ω; ERn , dx), that is, u is an absolute minimizer on Ω associated to the
Dirichlet energy form (Rn, ERn , dx). Recall that the intrinsic distance of ERn is just
the Euclidean distance | · |.
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On the other hand, Sturm [26, Theorem 2] proved that there exist infinitely many
matrix valued maps Ã such that the intrinsic distances dÃ of the associated Dirichlet
forms EÃ are equivalent to the Euclidean distance in the sense of (3.1), and that for
all x ∈ R

n, we have
δ〈ξ, ξ〉 ≤ 〈Ã(x)ξ, ξ〉< 〈ξ, ξ〉

for all ξ ∈ R
n \ {0}, where δ ∈ (0, 1) is a constant. Note that the associated Dirichlet

form EÃ is given by: for every pair f, h ∈ W 1, 2(Rn)

EÃ(f, h) =
∫

Rn

〈Ã(x)∇f(x),∇h(x)〉 dx;

and it is a regular, strongly local Dirichlet form. Indeed, EÃ and ERn are comparable.
So by Corollary 3.4, we have the following conclusion for these Ã.

Proposition 4.1. The following are equivalent:
(i) u is an infinity harmonic function on Ω.
(ii) u ∈ AM(Ω; ERn , dx).
(iii) u ∈ AM(Ω; EÃ, dx).

Remark 4.2. The phenomenon revealed by the above proposition also holds for
viscosity solutions to a large number of Aronsson equations. Indeed, given any elliptic
matrix-valued map A, Sturm actually constructed infinitely many perturbations Ã
that generate the same intrinsic metric. For the ellipticity condition see Section 5
below. For these we still have u ∈ AM(Ω; EA, dx) if and only if u ∈ AM(Ω; EÃ, dx).
If one further assumes that A ∈ C1, then u ∈ AM(Ω; EA, dx) is a solution to the
Aronsson equation:

〈∇xH(x, ∇u(x)),∇ξH(x, ∇u(x))〉 = 0,

where H(x, ξ) = 〈A(x)ξ, ξ〉; see [12]. Moreover, if A ∈ C2, then by [30], a solution
to this equation also belongs to AM(Ω; EA, dx). So under the assumption A ∈ C2,
we have that u is a solution to the above Aronsson equation if and only if u ∈
AM(Ω; EA, dx), and if and only if u ∈ AM(Ω; EÃ, dx).

5. Absolute minimizers on Carnot–Carathéodory spaces

The infinity harmonic functions on Heisenberg groups, Carnot groups and also
Carnot–Caratheodory spaces have been studied by many authors; see for exam-
ple [8–10, 29]. Applying our Theorem 3.3, we extend some of their results to settings
in which we may not have the corresponding Aronsson equation.

Let n ≥ 2, Ω ⊂ R
n be an open set and 1 ≤ m ≤ n. Assume that X = {Xi}m

i=1 ⊂
C(Ω; Rn) is a family of smooth vector fields satisfying Hörmander’s finite rank con-
dition, that is, there is an integer r ≥ 1 such that {Xi(x)}m

i=1 and their commutators
up to order r span R

n at every point x ∈ Ω. For every x ∈ Ω, the horizontal tangent
space H (x) is given by

H (x) = span{X1(x), . . . , Xm(x)}.
The horizontal Sobolev space Ẇ 1, p

X (Ω) is the completion of the collection of all func-
tions u ∈ C∞

c (Ω) with Xu ∈ Lp(Ω; Rm), and ‖u‖Ẇ 1, p
X (Ω) = ‖|Xu|‖Lp(Ω); see [16,
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Section 11.2]. Let W 1, p
X (Ω) = Lp(Ω; Rm) ∩ Ẇ 1, p

X (Ω) with the norm ‖u‖W 1, p
X (Ω) =

(‖u‖p
Lp(Ω) + ‖u‖p

Ẇ 1, p
X (Ω)

)1/p.

Denote by A the collection of all matrix-valued measurable maps

A = (aij)1≤i, j≤m : Ω → R
m×m,

which are elliptic, that is, for each A ∈ A , there exists a continuous function λ : Ω →
[1, ∞) such that

(5.1)
1

λ(x)
|ξ|2 ≤ 〈A(x)ξ, ξ〉Rm ≤ λ(x)|ξ|2

for almost all x ∈ Ω and all ξ ∈ R
m, where

〈A(x)ξ, ξ〉Rm =
m∑

i, j=1

ξiaijξj .

An Hamiltonian associated to A is given by H(x, ξ) = 〈A(x)ξ, ξ〉Rm .
Then an absolute minimizer of A and X is defined as follows. Here L is the

n-dimensional Lebesgue measure on Ω.

Definition 5.1. Let U ⊂ Ω be an open set. A function u : U → R is said to be an
absolute minimizer of A and X (for short, u ∈ AM(U ; A, X, L )) if for any V � U

and any v ∈ W 1,∞
X (V )∩C(V ) with u|∂V = v|∂V , we have FA, X(u, V ) ≤ FA, X(v, V ),

where
FA, X(u, V ) = esssup

x∈V
H(x, Xu(x)).

Proposition 5.2. Let A ∈ A (Ω) and U � Ω be a bounded open set.
(I) The following are equivalent

(i) u ∈ AM(U ; A, X, L );
(ii) u ∈ AM(U ; dA, X);
(iii) u ∈ AML(U ; dA, X).

(II) For each f ∈ C(∂U), there exists a unique u ∈ AMf (U ; A, X, dx).

Proof. Without loss of generality, we assume that λ(x) is bounded on Ω. Otherwise,
we consider a domain Ω̃ � Ω with U � Ω̃. Now define a bilinear form on Ω associated
to A and X by: for all f, h ∈ W 1, 2

X (Ω), we have

EA,X(f, h) =
∫

Rn

〈A(x)Xf(x), Xh(x)〉Rm dL (x).

We claim that EA, X is a regular, strongly local Dirichlet form with domain D =
W 1, 2

X (Ω). Indeed, obviously, EA, X is a non-negative definite and symmetric bilinear
form. The closedness follows from the completeness of W 1, 2

X (Ω). The Markov property
also follows via an argument similar to that for the classical Dirichlet form ERn . The
strong locality is easy to see. The regularity condition follows from the fact that
C∞

c (Ω) is dense in Ẇ 1, 2
X (Ω) by a standard approximating argument.

Moreover, we also see that the topology induced by the intrinsic distance dA, X of
EA,X coincides with original topology on R

n. Here, observing

d

dx
Γ(f, h)(x) = 〈A(x)Xf(x), Xh(x)〉Rm ,
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we have

dA, X(x, y) = sup{u(x) − u(y) : u ∈ W 1,∞
X, loc (Ω) : H(x, Xu(x)) ≤ 1 a. e.}.

Indeed, this follows from the fact that, on each bounded open set Ω̃ � Ω,

dIm, X(x, y) ∼ dA, X(x, y)

and
1

C(Ω̃)
|x − y| ≤ dIm, X(x, y) ≤ C(Ω̃)|x − y|1/m

for all x, y ∈ Ω̃; see [23].
Note that u ∈ AM(U ; A, X, L ) if and only if u ∈ AM(U ; EA, X, L ). Then apply-

ing Theorem 3.3, we have Proposition 5.2. �
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