
Math. Res. Lett. 19 (2012), no. 06, 1245–1262 c© International Press 2012

ON THE ENDPOINT REGULARITY OF DISCRETE MAXIMAL
OPERATORS

Emanuel Carneiro and Kevin Hughes

Dedicated to Professor William Beckner on the occasion of his 70th birthday.

Abstract. Given a discrete function f : Z
d → R, we consider the maximal operator

Mf(�n) = sup
r≥0

1

N(r)

∑

�m∈Ωr

∣∣f(�n + �m)
∣∣,

where
{

Ωr
}

r≥0
are dilations of a convex set Ω (open, bounded and with Lipschitz

boundary) containing the origin and N(r) is the number of lattice points inside Ωr.

We prove here that the operator f �→ ∇Mf is bounded and continuous from l1(Zd)
to l1(Zd). We also prove the same result for the non-centered version of this discrete
maximal operator.

1. Introduction

1.1. Background. For a function f ∈ L1
loc(R

d) the (centered) Hardy–Littlewood
maximal operator is defined as

Mf(x) = sup
r>0

1
m(Br)

∫

Br

|f(x + y)| dy,

where Br is the ball of radius r centered at the origin and m(Br) is the d-dimensional
Lebesgue measure of this ball. A basic result in harmonic analysis is that M :
Lp(Rd) → Lp(Rd) is a bounded operator for p > 1, and that it satisfies a weak-
type estimate M : L1(Rd) → L1

weak(Rd) at the endpoint p = 1. The same holds in the
non-centered case, when we consider the supremum over balls that simply contain the
point x. In both instances we may also replace the balls by dilations of a convex set
with Lipschitz boundary (since these have bounded eccentricity).

Over the last years several works addressed the problem of understanding the
behavior of differentiability under a maximal operator. This program began with
Kinnunen [8], who investigated the action of the classical Hardy–Littlewood maximal
operator in Sobolev spaces and showed that M : W 1,p(Rd) → W 1,p(Rd) is bounded
for p > 1. This paradigm that an Lp-bound implies a W 1,p-bound was later extended
to a local version of the maximal operator [9], to a fractional version [10] and to a
multilinear version [5]. The continuity of M : W 1,p → W 1,p for p > 1 was established
by Luiro in [13] for the classical Hardy–Littlewood maximal operator and in [14] for its
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local version. Note that this is a non-trivial problem since we do not have sublinearity
for the weak derivatives of the Hardy–Littlewood maximal function.

Understanding the regularity at the endpoint case seems to be a deeper issue. In this
regard, one of the main questions was posed by Haj�lasz and Onninen in [7, Question
1]: is the operator f �→ ∇Mf bounded from W 1,1(Rd) to L1(Rd)? Observe that a
bound of the type

(1.1) ‖∇Mf‖L1(Rd) ≤ C
(‖f‖L1(Rd) + ‖∇f‖L1(Rd)

)

would imply, via a dilation invariance argument, the bound

(1.2) ‖∇Mf‖L1(Rd) ≤ C‖∇f‖L1(Rd),

and so the fundamental question would be to compare the variation of Mf with the
variation of the original function f (perhaps having the additional information that f
is integrable). In the work [18], Tanaka obtained the bound (1.2) in dimension d = 1
for the non-centered Hardy–Littlewood maximal operator with constant C = 2. This
was later improved by Aldaz and Pérez Lázaro [1], who obtained (1.2) with the sharp
C = 1 under the minimal assumption that f is of bounded variation (still, only in
dimension d = 1 and for the non-centered maximal operator). The progress in the
centered case is very recent and also only in dimension d = 1. In [11] O. Kurka showed
that if f is of bounded variation on R then

Var(Mf) ≤ C Var(f)

for some constant C > 1, where Var(f) denotes the total variation of the function
f . This result was later adapted to the one-dimensional discrete setting by Temur
[19]. It is likely that the sharp constant in Kurka’s inequality should be C = 1, but
this remains an open problem. Regularity results of similar flavour for the heat flow
maximal operator and the Poisson maximal operator were obtained in [6].

1.2. The discrete analog. We address here this problem in the discrete setting.
We shall generally denote by �n = (n1, n2, . . . , nd) a vector in Z

d and for a function
f : Z

d → R we define its lp-norm as usual:

‖f‖lp(Zd) =

⎛

⎝
∑

�n∈Zd

∣∣f(�n)
∣∣p
⎞

⎠
1/p

,

if 1 ≤ p < ∞, and
‖f‖l∞(Zd) = sup

�n∈Zd

∣∣f(�n)
∣∣.

The gradient ∇f of a discrete function f will be the vector

∇f(�n) =
(

∂f

∂x1
(�n),

∂f

∂x2
(�n), . . . ,

∂f

∂xd
(�n)
)

,

where
∂f

∂xi
(�n) := f(�n + �ei) − f(�n)

and �ei = (0, 0, . . . , 1, . . . , 0) is the canonical ith base vector.
Now let Ω ⊂ R

d be a bounded open subset that is convex with Lipschitz boundary.
Let us assume that �0 ∈ int(Ω) and normalize it so that �ed ∈ ∂Ω. We now define the
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set that will play the role of the “ball of center �x0 and radius r” in our maximal
operators. For r > 0 we write

Ωr(�x0) =
{
�x ∈ R

d; r−1(�x − �x0) ∈ Ω
}
,

and for r = 0 we put
Ω0(�x0) =

{
�x0

}
.

Whenever �x0 = �0 we shall write Ωr = Ωr

(
�0
)

for simplicity. For instance, to work
with regular lp-balls one should consider Ω =

{
�x ∈ R

d; |�x|p < 1
}

, where |�x|p =
(|x1|p + |x2|p + · · · + |xd|p)1/p for �x = (x1, x2, . . . , xd) ∈ R

d.
From now on we use the letter M to denote the centered discrete maximal operator

associated to Ω given by

(1.3) Mf(�n) = sup
r≥0

1
N(r)

∑

�m∈Ωr

∣∣f(�n + �m)
∣∣,

where N(r) is the number of lattice points in the set Ωr. We define the non-centered
discrete maximal operator M̃ associated to Ω in a similar way, by writing

(1.4) M̃f(�n) = sup
�n∈Ωr(�x0)

1
N(�x0, r)

∑

�m∈Ωr(�x0)

|f(�m)|,

where the supremum is taken over all “balls” Ωr(�x0) such that �n ∈ Ωr(�x0), and
N(�x0, r) denotes the number of lattice points in the set Ωr(�x0).

These convex Ω-balls have roughly the same behavior as the regular balls, from
the geometric and arithmetic points of view. For instance, we have the following
asymptotics [12, Chapter VI, Section 2, Theorem 2] for the number of lattice points

(1.5) N(�x0, r) = CΩ rd + O
(
rd−1

)

as r → ∞, where CΩ = m(Ω) is the d-dimensional volume of Ω, and the constant
implicit in the big O notation depends only on the dimension d and on the set Ω (e.g.,
if Ω is the l∞-ball we have the exact expression N(r) = (2
r� + 1)d).

As in the continuous case, both M and M̃ are of strong type (p, p), if p > 1, and of
weak type (1, 1) (see for instance [17, Chapter X]). It is then natural to ask how the
regularity theory transfers from the continuous to the discrete setting. By the triangle
inequality one sees that, in the discrete setting, the Sobolev norm ‖f‖lp + ‖∇f‖lp is
equivalent to the norm ‖f‖lp , and thus the question of whether M and M̃ are bounded
in discrete Sobolev spaces is trivially true for p > 1. On the other hand, the regularity
at the endpoint case p = 1 is a very interesting topic and the main objective of this
paper is to present the following result.

Theorem 1 (Endpoint regularity of discrete maximal operators). Let d ≥ 1
and consider M and M̃ as defined in (1.3) and (1.4).

(i) (Centered case) The operator f �→ ∇Mf is bounded and continuous from
l1
(
Z

d
)

to l1
(
Z

d
)
.

(ii) (Non-centered case) The operator f �→ ∇M̃f is bounded and continuous from
l1
(
Z

d
)

to l1
(
Z

d
)
.
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The boundedness part in Theorem 1 provides a positive answer to the question
of Haj�lasz and Onninen [7, Question 1] in the discrete setting, in all dimensions and
for this general family of centered or non-centered maximal operators with convex
Ω-balls. The insight for this part was originated in a joint work of the authors with
J. Bober and L. Pierce [2] where the case d = 1 was treated, and it has two main
ingredients: (i) a double counting argument to evaluate the maximal contribution of
each point mass of f to ‖∇Mf‖l1 ; (ii) a summability argument over the sequence of
local maxima and local minima of Mf . The technique is now refined to contemplate
the d-dimensional case and this general family of operators.

The continuity result is a novelty in the endpoint regularity theory. Luiro’s frame-
work [13] for the continuity of the classical Hardy–Littlewood maximal operator in
the Sobolev space W 1,p(Rd), for p > 1, is not adaptable since it relies on the Lp-
boundedness of this operator (which we do not have here), and we will only be able
to use a few ingredients of it. The heart of our proof lies instead on the two core ideas
mentioned above for the boundedness part and a useful application of the Brezis–Lieb
lemma [4].

Remark 1. One might ask if inequality (1.2) holds in the discrete case, which would
be a stronger result than our Theorem 1. This has only been proved in dimension
d = 1 for the non-centered maximal operator (see [2]) with sharp constant C = 1 (i.e.,
the non-centered maximal function does not increase the variation of a function) and,
more recently, for the centered maximal operator with C > 1 (see [19]). Note that the
dilation invariance argument to deduce (1.2) from (1.1) fails in the discrete setting.

Remark 2. If we consider for instance the one-dimensional discrete centered Hardy–
Littlewood maximal operator with regular balls applied to the delta function f(0) = 1
and f(n) = 0 for n 
= 0, we obtain Mf(n) = 1/(2|n| + 1) and thus (Mf)′(n) =
O
(|n|−2

)
. Examples like this may raise the question on whether ∇Mf belongs to

a better lp space (i.e., p < 1) when f ∈ l1. It turns out that the general answer
is negative, and Theorem 1 is sharp in this sense. To see this consider a function
f ∈ l1(Z) such that f /∈ lp(Z) for any p < 1, for example, f(n) = 1/

(
n log2(n+1)

)
for

n ≥ 1, and zero otherwise. Now choose a sequence 1 = a1 < a2 < a3 < · · · of natural
numbers such that

(i) a2 ≥ 4.
(ii) an+1 − an > an − an−1 + 2, for any n ≥ 2.

(iii) f(1) > ‖f‖1
2(a2−a1)+1 .

(iv) f(1)
3 > ‖f‖1

2(a2−a1−1)+1 .

(v) f(n) > ‖f‖1
2(an−an−1)+1 , for any n ≥ 2.

(vi) f(n)
3 > ‖f‖1

2(an−an−1+1)+1 , for any n ≥ 2.

Define the function g : Z → R given by g(an) = f(n) for n ≥ 1, and zero other-
wise. Note that ‖g‖l1 = ‖f‖l1 . Conditions (i)–(vi) above guarantee that, for the
one-dimensional discrete centered Hardy–Littlewood maximal operator M , we have
Mg(an) = f(n) and Mg(an + 1) = f(n)

3 , for n ≥ 1. Thus
∣∣(Mg)′(an)

∣∣ = 2f(n)
3 , and

thus (Mg)′ /∈ lp(Z) for any p < 1.
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Remark 3. Another interesting variant would be to consider the spherical maximal
operator [3, 16] and its discrete analog [15]. The non-endpoint regularity of the con-
tinuous operator in Sobolev spaces was proved in [7] and it would be interesting to
investigate what happens in the endpoint case, both in the continuous and in the
discrete settings. The techniques we use here do not seem to apply to the discrete
spherical maximal operator.

2. Proof of Theorem 1 — Boundedness

2.1. Centered case. We start with some arithmetic and geometric properties of the
sets Ωr. From (1.5) we can find a constant c1 depending only on the dimension d and
the set Ω such that

(2.1) N(�x0, r) ≤ CΩ

(
r + c1

)d
,

and

(2.2) N(�x0, r) ≥ max
{

CΩ

(
max{r − c1, 0})d, 1

}
=: CΩ

(
r − c1

)d
+

.

Regarding (2.2) it should be clear that if �x0 ∈ Z
d we can take r ≥ 0, and if �x0 /∈ Z

d

we shall only be taking radii r so that the corresponding ball contains at least one
lattice point to calculate the average. We define c2 > c1 as the constant such that

CΩ(c2 − c1)d = 1.

Since Ω is bounded, there exists λ > 0 (depending only on Ω) such that Ω ⊂ Bλ (note
that λ ≥ 1 since �ed ∈ Ω). This means that if �p ∈ Ωr(�x0) then

(2.3)
∣∣�p − �x0

∣∣ ≤ λr.

These constants c1, c2 and λ will be fixed throughout the rest of the paper.

2.1.1. Setup. We want to show that

(2.4)
∥∥∇Mf‖l1(Zd) ≤ C‖f‖l1(Zd)

for a suitable C that might depend on d and Ω in principle. We assume without loss
of generality that f ≥ 0. It suffices to prove that

∥∥∥∥
∂

∂xi
Mf

∥∥∥∥
l1(Zd)

≤ C̃‖f‖l1(Zd),

for each i = 1, 2, . . . , d. We will work with i = d (this is the reason we normalized at
the beginning to have �ed ∈ ∂Ω). The other cases are analogous, via a renormalization
to put �ei ∈ ∂Ω. Let us write each �n = (n1, n2, . . . , nd) ∈ Z

d as �n = (n′, nd), where
n′ = (n1, n2, . . . , nd−1) ∈ Z

d−1. For each n′ ∈ Z
d−1 we will consider the sum over the

line perpendicular to Z
d−1 passing through n′, i.e.,

∞∑

l=−∞

∣∣∣∣
∂

∂xd
Mf

(
n′, l

)∣∣∣∣ =
∞∑

l=−∞

∣∣Mf
(
n′, l + 1

)− Mf
(
n′, l

)∣∣.

For a discrete function g : Z → R we say that a point a is a local maximum of g if
g(a − 1) ≤ g(a) and g(a + 1) < g(a). Analogously, we say that a point b is a local
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minimum of g if g(b − 1) ≥ g(b) and g(b + 1) > g(b). We let {ai}i∈Z and {bi}i∈Z be
the sequences of local maxima and local minima of Mf

(
n′, ·) ordered as follows:

· · · < b−1 < a−1 < b0 < a0 < b1 < a1 < · · · .

Observe that this sequence (that depends on n′) might be finite (either on one side or
both). In this case, since Mf ∈ l1weak(Zd), it would terminate in a local maximum and
minor modifications would have to be done in the argument we present below. For
simplicity let us proceed with the case where the sequence of local extrema is infinite
on both sides. In this case we have

(2.5)
∞∑

l=−∞

∣∣∣∣
∂

∂xd
Mf

(
n′, l

)∣∣∣∣ = 2
∞∑

j=−∞

{
Mf

(
n′, aj

)− Mf
(
n′, bj

)}
.

2.1.2. The double counting argument. Let rj be the minimal radius such that the
supremum in (1.3) is attained for the point

(
n′, aj

)
(such a radius exists since f ∈

l1(Zd)). We write

(2.6) Mf
(
n′, aj

)
= Arj f

(
n′, aj

)
:=

1
N(rj)

∑

�m∈Ωrj

f
((

n′, aj

)
+ �m

)
.

If we consider the radius sj = rj + (aj − bj) centered at the point
(
n′, bj

)
we obtain

(2.7) Mf
(
n′, bj

) ≥ Asj f
(
n′, bj

)
=

1
N(rj + (aj − bj))

∑

�m∈Ωsj

f
((

n′, bj

)
+ �m

)
.

The observation that motivates this particular choice of the radius sj is that

Ωrj

((
n′, aj

)) ⊂ Ωsj

((
n′, bj

))
,

which follows from the convexity of Ω and the fact that �ed ∈ ∂Ω.
From (2.5) to (2.7) we obtain

∥∥∥∥
∂

∂xd
Mf

∥∥∥∥
l1(Zd)

=
∑

n′∈Zd−1

∞∑

l=−∞

∣∣∣∣
∂

∂xd
Mf

(
n′, l

)∣∣∣∣(2.8)

≤
∑

n′∈Zd−1

2
∞∑

j=−∞

{
Arj f

(
n′, aj

)− Asj f
(
n′, bj

)}
,

where aj = aj(n′) and bj = bj(n′). We now consider a general point �p = (p1, p2,
. . . , pd) ∈ Z

d, also represented as �p =
(
p′, pd

)
, with p′ ∈ Z

d−1. We want to evaluate
the maximum contribution that f

(
p′, pd

)
might have to the right-hand side of (2.8).

For given n′ and j, this contribution will only be positive if the point
(
p′, pd

)
belongs

to both sets Ωrj

((
n′, aj

))
and Ωsj

((
n′, bj

))
(in case the point

(
p′, pd

)
belongs only to

Ωsj

((
n′, bj

))
, or does not belong to any of these Ω-balls, the contribution is negative

or zero and we disregard it).
Since

(
p′, pd

) ∈ Ωrj

((
n′, aj

))
, from (2.3) we have

(2.9)
∣∣(p′, pd

)− (n′, aj

)∣∣ ≤ λrj .
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Using (2.1), (2.2) and (2.9), we can estimate the maximum contribution of f
(
p′, pd

)
,

for given n′ and j, on the associated summand on right-hand side of (2.8) as

f
(
p′, pd

)( 1
N(rj)

− 1
N(rj + aj − bj)

)
(2.10)

≤ f
(
p′, pd

)( 1
N(rj)

− 1
N(rj + aj − aj−1)

)

≤ f
(
p′, pd

)( 1
CΩ(rj − c1)d

+

− 1
CΩ(rj + aj − aj−1 + c1)d

)

≤ f
(
p′, pd

)
⎛

⎜⎝
1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 − c1

)d

+

− min

⎧
⎪⎨

⎪⎩
1

CΩ (c2 + aj − aj−1 + c1)d
,

1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 + aj − aj−1 + c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ ,

In the last inequality of (2.10), we have used (2.9) and the fact that the function

g(x) =
(

1
CΩ(x − c1)d

− 1
CΩ(x + aj − aj−1 + c1)d

)

is decreasing as x → ∞, for x ≥ c2. If we sum (2.10) over all j and then over all
n′ ∈ Z

d−1, we find an upper bound for the contribution of f
(
p′, pd

)
to the right-hand

side of (2.8). This is given by

2f
(
p′, pd

) ∑

n′∈Zd

∞∑

j=−∞

⎛

⎜⎝
1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 − c1

)d

+

(2.11)

− min

⎧
⎪⎨

⎪⎩
1

CΩ (c2 + aj − aj−1 + c1)d
,

1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 + aj − aj−1 + c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ .

2.1.3. The summability argument. We now prove that the double sum in (2.11) is
bounded independently of the the point

(
p′, pd

)
and the increasing sequence {aj}. For

this we may assume p′ = 0 (since the sum is over all n′ ∈ Z
d−1 we can just change

variables here to m′ = n′ + p′). We also assume pd = 0, since we may consider the
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increasing sequence a′
j = aj + pd. The problem becomes then to bound

S({aj}) =
∑

n′∈Zd−1

∞∑

j=−∞

⎛

⎜⎝
1

CΩ

(
λ−1

(|n′|2 + a2
j

)1/2 − c1

)d

+

(2.12)

− min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+aj−aj−1+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + a2
j

)1/2+aj−aj−1+c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

independently of the increasing sequence {aj} of integers. The key tool is the lemma
below.

Lemma 2 (Summability lemma). For any increasing sequence {aj}j∈Z of integers
consider the sum S({aj}) given by (2.12). The sum S({aj}) is maximized for the
sequence aj = j, and in this case the sum is finite.

Proof. Suppose we have two terms in the sequence, say a0 and a1, that are not
consecutive. Let us prove that if we introduce a term ã0 in the sequence, with a0 <
ã0 < a1, the overall sum does not decrease. For this it is sufficient to see that

⎛

⎜⎝
1

CΩ

(
λ−1

(|n′|2 + a2
1

)1/2 − c1

)d

+

− min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+a1−a0+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + a2
1

)1/2+a1−a0+c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

≤

⎛

⎜⎝
1

CΩ

(
λ−1

(|n′|2 + a2
1

)1/2 − c1

)d

+

− min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+a1−ã0+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + a2
1

)1/2+a1−ã0+c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

+

⎛

⎜⎝
1

CΩ

(
λ−1

(|n′|2 + ã2
0

)1/2 − c1

)d

+

− min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+ã0−a0+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + ã2
0

)1/2+ã0−a0+c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ ,
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and this is true if and only if
⎛

⎜⎝min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+a1−ã0+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + a2
1

)1/2+a1−ã0+c1

)d

⎫
⎪⎬

⎪⎭

− min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+a1−a0+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + a2
1

)1/2+a1−a0+c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

≤

⎛

⎜⎝
1

CΩ

(
λ−1

(|n′|2 + ã2
0

)1/2 − c1

)d

+

− min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+ã0−a0+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + ã2
0

)1/2+ã0−a0+c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ .

The last inequality can be verified from the fact that

g(x) =
1

CΩxd
− 1

CΩ(x + ã0 − a0)d

is decreasing as x → ∞, for x ≥ 0, and the fact that

λ−1
(|n′|2 + a2

1

)1/2
+
(
a1 − ã0

) ≥ λ−1
(|n′|2 + ã2

0

)1/2
.

The latter follows by calling a1 = ã0 + t (note that t > 0), and then differentiating
the expression with respect to the variable t to check the sign (here we make use of
the fact that λ ≥ 1, since we might have |ã0| > |a1|).

Therefore, the required sum (2.12) is bounded above by the sum considering the
particular sequence aj = j. This gives us

S =
∑

n′∈Zd−1

∞∑

j=−∞

⎛

⎜⎝
1

CΩ

(
λ−1

(|n′|2 + j2
)1/2 − c1

)d

+

(2.13)

− min

⎧
⎪⎨

⎪⎩
1

CΩ(c2+ 1+c1)d
,

1

CΩ

(
λ−1

(|n′|2 + j2
)1/2+ 1+c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

=
∑

�n∈Zd

⎛

⎝ 1

CΩ

(
λ−1|�n| − c1

)d
+

− min

{
1

CΩ(c2+1+c1)d
,

1

CΩ

(
λ−1|�n|+1+c1

)d

}⎞

⎠

≤
∑

λ−1|�n|≤c2

1 +
∑

λ−1|�n|>c2

(
1

CΩ

(
λ−1|�n| − c1

)d − 1

CΩ

(
λ−1|�n| + 1 + c1

)d

)

= C̃(d, Ω) < ∞. �
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2.1.4. Conclusion. We have proved that the contribution of a generic point f(p1, p2,

. . . , pd) to the right-hand side of (2.8) is at most a constant 2 C̃ = 2 C̃(d, Ω) and
therefore, when we sum over all points, we get

∥∥∥
∂

∂xd
Mf

∥∥∥
l1(Zd)

≤ 2 C̃‖f‖l1(Zd)

and this completes the proof. �

2.2. Non-centered case. We will indicate here the basic modifications that have
to be made in comparison with the proof for the centered case. The setup is the same
up to the beginning of the double counting argument. For a given point

(
n′, aj

)
, we

can pick a point �xj and a radius rj such that
(
n′, aj

) ∈ Ωrj (�xj) and the average over
the set Ωrj (�xj) realizes the supremum in the maximal function, i.e.,

(2.14) M̃f
(
n′, aj

)
= A(�xj ,rj)f

(
n′, aj

)
:=

1
N(�xj , rj)

∑

�m∈Ωrj
(�xj)

f(�m).

The existence of such a pair
(
�xj , rj

)
for which the supremum is attained is guaranteed,

since for any maximizing sequence
(
�xk

j , rk
j

)
, the right-hand side of (2.14) must be

stationary. In fact, we should have the sequence
(
�xk

j , rk
j

)
trapped in a bounded subset∣∣�xk

j

∣∣ ≤ R and rk
j ≤ R, for some R > 0 (since f ∈ l1(Zd)), and then we would have

only a finite number of subsets of Z
d to choose from for the sum in (2.14).

We now consider the Ω-ball of radius sj = rj + aj − bj centered at �yj = �xj − (aj −
bj)�ed. Note that (n′, bj) ∈ Ωrj (�yj) ⊂ Ωsj (�yj). From the convexity of Ω and the fact
that �ed ∈ ∂Ω we also have Ωrj (�xj) ⊂ Ωsj (�yj). Therefore

(2.15) M̃f
(
n′, bj

) ≥ A(�yj ,sj)f
(
n′, bj

)
=

1
N(�yj , sj)

∑

�m∈Ωsj
(�yj)

f(�m),

and
∥∥∥∥

∂

∂xd
M̃f

∥∥∥∥
l1(Zd)

=
∑

n′∈Zd−1

∞∑

l=−∞

∣∣∣∣
∂

∂xd
M̃f

(
n′, l

)∣∣∣∣(2.16)

≤
∑

n′∈Zd−1

2
∞∑

j=−∞

{
A(�xj ,rj)f

(
n′, aj

)− A(�yj ,sj)f
(
n′, bj

)}
.

Consider a point �p =
(
p′, pd

) ∈ Z
d. The term f

(
p′, pd

)
will only contribute pos-

itively to a summand on the right-hand side of (2.16) if
(
p′, pd

) ∈ Ωrj (�xj). In this
case, since

(
n′, aj

) ∈ Ωrj (�xj), using (2.3) we have

(2.17)
∣∣(p′, pd

)− (n′, aj)
∣∣ ≤ 2 λ rj .

The rest of the proof is the same.

3. Proof of Theorem 1 — Continuity

3.1. Centered case. We want to show that if fk → f in l1(Zd) then ∇Mfk → ∇Mf
in l1(Zd).
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3.1.1. Setup. Since
∣∣|fk| − |f |∣∣ ≤ ∣∣fk − f

∣∣ and the maximal operator only sees the
absolute value of a function, we may assume without loss of generality that fk ≥ 0
for all k, and that f ≥ 0. It suffices to prove the result for each partial derivative, i.e.,
that

(3.1)
∥∥∥∥

∂

∂xi
Mfk − ∂

∂xi
Mf

∥∥∥∥
l1(Zd)

→ 0

as k → ∞, for each i = 1, 2, . . . , d. As before, we shall prove it for i = d and the other
cases are analogous.

3.1.2. A discrete version of Luiro’s lemma. For a function g ∈ l1(Zd) and a point
�n ∈ Z

d let us define Rg(�n) as the set of all radii that realize the supremum in the
maximal function at the point �n, i.e.,

Rg(�n) =

⎧
⎨

⎩r ∈ [0,∞); Mg(�n) = Ar|g|(�n) =
1

N(r)

∑

�m∈Ωr

∣∣g
(
�n + �m

)∣∣

⎫
⎬

⎭ .

The next lemma gives us information about the convergence of these sets of radii. It
can be seen as the discrete analog of [13, Lemma 2.2].

Lemma 3. Let fk → f in l1(Zd). Given R > 0 there exists k0 = k0(R) such that, for
k ≥ k0, we have Rfk(�n) ⊂ Rf(�n) for each �n ∈ BR.

Proof. Fix �n ∈ BR and consider the mapping r �→ Arf(�n) for r ≥ 0. From the fact
that f ∈ l1(Zd) together with (2.2) we can see that Arf(�n) → 0 as r → ∞. Therefore,
the set of values in the image {Arf(�n); r ≥ 0} such that Arf(�n) ≥ 1

2Mf(�n) is a finite
set. There exists then a “second larger” value which falls short of the maximum by
a quantity we define as ε(�n), i.e., if Arf(�n) > Mf(�n) − ε(�n) then Arf(�n) = Mf(�n)
and r ∈ Rf(�n). Define

ε =
1
3

min
{
ε(�n); �n ∈ BR

}
.

Since fk → f in l1(Zd), we have fk → f in l∞(Zd). Pick k0 such that for k ≥ k0 we
have ‖fk − f‖l∞ ≤ ε. For any �n ∈ BR if we take s ∈ Rf(�n) we have

(3.2) Mf(�n) = Asf(�n) = Asfk(�n) + As(f − fk)(�n) ≤ Mfk(�n) + ε.

Now given rk ∈ Rfk(�n) we can use (3.2) to obtain

Ark
f(�n) = Ark

fk(�n) + Ark
(f − fk)(�n)

= Mfk(�n) + Ark
(f − fk)(�n) ≥ Mfk(�n) − ε ≥ Mf(�n) − 2ε,

and from the definition of ε and ε(�n) we conclude that rk ∈ Rf(�n). �
3.1.3. Reduction via the Brezis–Lieb lemma. Given ε > 0, we can find k0 such that
‖fk − f‖l∞ ≤ ε, and using Lemma 3 for a fixed �n ∈ Z

d, we can choose k1 ≥ k0 so that
we also have Rfk(�n) ⊂ Rf(�n) for k ≥ k1. Taking any rk ∈ Rfk(�n) we have

(3.3)
∣∣Mf(�n) − Mfk(�n)

∣∣ =
∣∣Ark

f(�n) − Ark
fk(�n)

∣∣ ≤ ε,

for k ≥ k1 and thus Mfk(�n) → Mf(�n) as k → ∞. The same can be said replacing �n
by �n + �ed and thus we find that

(3.4)
∂

∂xd
Mfk(�n) → ∂

∂xd
Mf(�n)
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pointwise as k → ∞. Since
∣∣∣∣
∣∣∣

∂

∂xd
Mfk(�n)

∣∣∣−
∣∣∣

∂

∂xd
Mfk(�n) − ∂

∂xd
Mf(�n)

∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∂

∂xd
Mf(�n)

∣∣∣∣

and the latter is in l1(Zd) from the boundedness part of the theorem, an application
of the dominated convergence theorem with (3.4) gives us

lim
k→∞

{∥∥∥∥
∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

−
∥∥∥∥

∂

∂xd
Mfk − ∂

∂xd
Mf

∥∥∥∥
l1(Zd)

}
=
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

.

Therefore, to prove (3.1) it suffices to show that

(3.5) lim
k→∞

∥∥∥∥
∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

=
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

.

The reduction to (3.5) is the content of the Brezis–Lieb lemma [4] in the case p = 1.
We henceforth focus our efforts in proving (3.5).

3.1.4. Lower bound. From Fatou’s lemma and (3.4) we have

(3.6)
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

≤ lim inf
k→∞

∥∥∥∥
∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

.

3.1.5. Upper bound. Given ε > 0 we shall prove that there exists k0 = k0(ε) such
that for k ≥ k0 we have

(3.7)
∥∥∥∥

∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

≤
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

+ ε.

This would imply that

lim sup
k→∞

∥∥∥∥
∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

≤
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

,

which together with (3.6) would prove that the limit exists and (3.5) holds.
Let us start with a sufficiently large integer radius R (to be properly chosen later)

and consider the cube
{
�x ∈ R

d; |�x|∞ ≤ 2R
}

. Let us continue writing �n ∈ Z
d as

�n =
(
n′, nd

)
with n′ ∈ Z

d−1. We write the required sum in the following way
∥∥∥∥

∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

=
∑

|n′|∞≤2R

|nd|∞≤2R

∣∣∣∣
∂

∂xd
Mfk

(
n′, nd

)∣∣∣∣+
∑

|n′|∞>2R

nd∈Z

∣∣∣∣
∂

∂xd
Mfk

(
n′, nd

)∣∣∣∣(3.8)

+
∑

|n′|∞≤2R

|nd|∞>2R

∣∣∣∣
∂

∂xd
Mfk

(
n′, nd

)∣∣∣∣

:= S1 + S2 + S3.

We shall bound S1, S2 and S3 separately.
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3.1.6. Bound for S1. Let us pick ε1 > 0 (to be properly chosen later). With the
aid of Lemma 3 we find k1 = k1(ε1, R) such that Rfk(�n) ⊂ Rf(�n) for each �n with
|�n|∞ ≤ 2R + 1 and

(3.9) ‖fk − f‖l∞(Zd) ≤ ε1,

for k ≥ k1. Using (3.3) we have that

∣∣∣∣
∂

∂xd
Mfk(�n) − ∂

∂xd
Mf(�n)

∣∣∣∣ ≤ 2ε1,

for any �n with |�n|∞ ≤ 2R. Thus

S1 =
∑

|n′|∞≤2R

|nd|∞≤2R

∣∣∣∣
∂

∂xd
Mfk

(
n′, nd

)∣∣∣∣ ≤
∑

|n′|∞≤2R

|nd|∞≤2R

∣∣∣∣
∂

∂xd
Mf

(
n′, nd

)∣∣∣∣+ 2 ε1(4R + 1)d

(3.10)

≤
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

+ 2 ε1(4R + 1)d.

3.1.7. Bound for S2. Here, we start with the same idea (and notation for the local
maxima and local minima over vertical lines) as in (2.8)

S2 =
∑

|n′|∞>2R

∞∑

l=−∞

∣∣∣
∂

∂xd
Mfk

(
n′, l

)∣∣∣(3.11)

≤
∑

|n′|∞>2R

2
∞∑

j=−∞

{
Arj fk

(
n′, aj

)− Asj fk

(
n′, bj

)}
.

We find an upper bound for the contribution of a generic point fk

(
p′, pd

)
to the

right-hand side of (3.11) as previously done in (2.11). This is given by

2fk

(
p′, pd

) ∑

|n′|∞>2R

∞∑

j=−∞

⎛

⎜⎝
1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 − c1

)d

+

(3.12)

− min

⎧
⎪⎨

⎪⎩
1

CΩ (c2 + aj − aj−1 + c1)d
,

1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 + aj − aj−1 + c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ .
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Using Lemma 2 we see that the sum on the right-hand side of (3.12) is majorized by
the sum with the sequence aj = j. This gives us

2fk

(
p′, pd

) ∑

|n′|∞>2R

∞∑

j=−∞

⎛

⎜⎝
1

CΩ

(
λ−1

(|p′ − n′|2 + j2
)1/2 − c1

)d

+

(3.13)

− min

⎧
⎪⎨

⎪⎩
1

CΩ (c2 + 1 + c1)d
,

1

CΩ

(
λ−1

(|p′ − n′|2 + j2
)1/2 + 1 + c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ .

We now evaluate this contribution in two distinct sets. First, we consider the case
when

(
p′, pd

) ∈ BR, for which we have |p′ − n′| ≥ R. Imposing the condition that

(3.14) λ−1R > c2

we can ensure that the contribution of fk

(
p′, pd

)
is majorized by

2fk

(
p′, pd

) ∑

|�n|≥R

(
1

CΩ (λ−1|�n| − c1)d
− 1

CΩ (λ−1|�n| + 1 + c1)d

)

:= 2 fk

(
p′, pd

)
h(R).

(3.15)

The fact that h(R) → 0 as R → ∞ is a crucial point in this proof and shall be used
when we choose R at the end. Secondly, when

(
p′, pd

)
/∈ BR the contribution will

simply be bounded by 2 C̃fk

(
p′, pd

)
as we found in (2.13). If we then sum up these

contributions and plug them in on the right-hand side of (3.11) we find

(3.16) S2 ≤ 2 h(R) ‖χBR
fk‖l1(Zd) + 2 C̃ ‖χBR

cfk‖l1(Zd).

3.1.8. Bound for S3. We start by noting that

S3 =
∑

|n′|∞≤2R

∞∑

l=2R+1

∣∣∣∣
∂

∂xd
Mfk

(
n′, l

)∣∣∣∣+
∑

|n′|∞≤2R

−2R−1∑

l=−∞

∣∣∣∣
∂

∂xd
Mfk

(
n′, l

)∣∣∣∣

:= S+
3 + S−

3 .

Let us provide an upper bound for S+
3 . The upper bound for S−

3 is analogous. We
consider the sequence of local maxima {aj} and local minima {bj} for Mfk

(
n′, l

)

when l ≥ 2R + 1. In this situation we do have a first local maximum a1 (which might
be the endpoint 2R + 1) and we order this sequence as follows:

2R + 1 ≤ a1 < b2 < a2 < b3 < a3 . . .
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If the sequence terminates, it will be in a local maximum since Mfk ∈ l1weak(Zd), and
we can just truncate the sum in the argument below. Keeping the notation as before
(and including for convenience a0 = b1 = −∞) we have

(3.17) S+
3 ≤

∑

|n′|∞≤2R

2
∞∑

j=1

{
Arj fk

(
n′, aj

)− Asj fk

(
n′, bj

)}
.

The contribution of a generic point fk

(
p′, pd

)
to the right-hand side of (3.17) (following

the calculation (2.11)) has an upper bound of

2fk

(
p′, pd

) ∑

|n′|∞≤2R

∞∑

j=1

⎛

⎜⎝
1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 − c1

)d

+

(3.18)

− min

⎧
⎪⎨

⎪⎩
1

CΩ (c2 + aj − aj−1 + c1)d
,

1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − aj)2
)1/2 + aj − aj−1 + c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠ .

Following the ideas of Lemma 2, keeping the constraint that a0 = −∞, the sum on
the right-hand side of (3.18) is maximized when aj = 2R + j for j ≥ 1. We would
then have the upper bound

2fk

(
p′, pd

) ∑

|n′|∞≤2R

1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − 2R − 1)2
)1/2 − c1

)d

+

(3.19)

+ 2fk

(
p′, pd

) ∑

|n′|∞≤2R

∞∑

j=2

⎛

⎜⎝
1

CΩ

(
λ−1

(|p′ − n′|2 + (pd − 2R − j)2
)1/2 − c1

)d

+

− min

⎧
⎪⎨

⎪⎩
1

CΩ (c2 + 1 + c1)d
,

1

CΩ

(
λ−1

(|p′ −n′|2 + (pd − 2R− j)2
)1/2 + 1 + c1

)d

⎫
⎪⎬

⎪⎭

⎞

⎟⎠.

Again, we evaluate this contribution separately for
(
p′, pd

)
in the sets BR and BR

c
.

In the first case, if
(
p′, pd

) ∈ BR we have |pd − 2R − 1| ≥ R, and if we choose R
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satisfying (3.14) the contribution of fk

(
p′, pd

)
will be less than or equal to

2fk

(
p′, pd

)
{

(4R + 1)d−1

CΩ (λ−1R − c1)d
(3.20)

+
∑

|�n|≥R

(
1

CΩ (λ−1|�n| − c1)d
− 1

CΩ (λ−1|�n| + 1 + c1)d

)⎫⎬

⎭

= 2fk

(
p′, pd

)
{

(4R + 1)d−1

CΩ (λ−1R − c1)d
+ h(R)

}
.

In the second case, if
(
p′, pd

) ∈ BR
c
, we just bound the contribution of fk

(
p′, pd

)
by

2 C̃ fk

(
p′, pd

)
as in (2.13). Plugging these upper bounds in (3.17) we find

(3.21) S+
3 ≤ 2

{
(4R + 1)d−1

CΩ (λ−1R − c1)d
+ h(R)

}
‖χBR

fk‖l1(Zd) + 2 C̃ ‖χBR
cfk‖l1(Zd).

By symmetry the same bound holds for S−
3 .

3.1.9. Conclusion. Putting together (3.8), (3.10), (3.16) and (3.21) we obtain
∥∥∥∥

∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

≤
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

+ 2 ε1(4R + 1)d(3.22)

+

{
4

(4R + 1)d−1

CΩ (λ−1R − c1)d
+ 6 h(R)

}
‖χBR

fk‖l1(Zd) + 6 C̃‖χBR
cfk‖l1(Zd).

We choose (in this order) R large enough so that it satisfies (3.14),

(3.23)

{
4

(4R + 1)d−1

CΩ (λ−1R − c1)d
+ 6 h(R)

}
≤ ε

3
(‖f‖l1(Zd) + 1

) ,

and
‖χBR

cf‖l1(Zd) ≤
ε

36C̃
.

Then we choose ε1 such that

(3.24) ε1 ≤ ε

6(4R + 1)d
,

and this generates k1 as described in (3.9). We now choose k0 ≥ k1 such that for all
k ≥ k0 we have

‖fk − f‖l1(Zd) ≤ min
{

ε

36C̃
, 1
}

,

which then implies that

(3.25) ‖χBR
fk‖l1(Zd) ≤ ‖fk‖l1(Zd) ≤

(‖f‖l1(Zd) + 1
)

and

‖χBR
cfk‖l1(Zd) ≤ ‖χBR

cf‖l1(Zd) + ‖χBR
c(fk − f)‖l1(Zd) ≤

ε

18C̃
.(3.26)
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Plugging (3.23)–(3.26) into (3.22) gives us
∥∥∥∥

∂

∂xd
Mfk

∥∥∥∥
l1(Zd)

≤
∥∥∥∥

∂

∂xd
Mf

∥∥∥∥
l1(Zd)

+
ε

3
+

ε

3
+

ε

3
,

for all k ≥ k0, and the proof is now complete. �
3.2. Non-centered case. We will indicate here the basic changes that have to be
made in comparison with the centered case argument.

For a function g ∈ l1(Zd) and a point �n ∈ Z
d, let us define the set R̃g(�n) as

the set of all pairs (�x, r) ∈ R
d × R

+ such that �n ∈ Ωr(�x) and the supremum in the
non-centered maximal function at �n is attained for Ωr(�x), i.e.,

R̃g(�n) =

⎧
⎨

⎩(�x, r) ∈ R
d × R

+; M̃g(�n) = A(�x,r)|g|(�n) =
1

N(�x, r)

∑

�m∈Ωr(�x)

∣∣g
(
�m
)∣∣

⎫
⎬

⎭ .

The proof of the following result is essentially the same as in Lemma 3.

Lemma 4. Let fk → f in l1(Zd). Given R > 0 there exists k0 = k0(R) such that, for
k ≥ k0, we have R̃fk(�n) ⊂ R̃f(�n) for each �n ∈ BR.

The rest of the proof is also similar, using (2.15)–(2.17) in the appropriate places.
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[1] J.M. Aldaz and J. Pérez Lázaro, Functions of bounded variation, the derivative of the one

dimensional maximal function, and applications to inequalities, Trans. Amer. Math. Soc. 359(5)
(2007), 2443–2461 (electronic).

[2] J. Bober, E. Carneiro, K. Hughes and L.B. Pierce, On a discrete version of Tanaka’s theorem

for maximal functions, Proc. Amer. Math. Soc. 140(5) (2012), 1669–1680.
[3] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math.

47 (1986) 69–85.
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