
Math. Res. Lett. 19 (2012), no. 06, 1237–1244 c© International Press 2012

STRONG L-SPACES AND LEFT-ORDERABILITY

Adam Simon Levine and Sam Lewallen

Abstract. We introduce the notion of a strong L-space, a closed, oriented three-
manifold admitting a Heegaard diagram whose associated Heegaard Floer complex has

rank equal to the order of the first homology of the manifold. Examples of strong L-
spaces include the branched double covers of alternating links in the three-sphere. We
prove that the fundamental group of a strong L-space is not left-orderable.

1. Introduction

Heegaard Floer homology, developed by Ozsváth and Szabó [12] in the early 2000s, has
been an extremely effective tool for answering classical questions about 3-manifolds.
However, surprisingly little is known about the relationship between Heegaard Floer
homology and topological properties of Heegaard splittings, even though a Heegaard
diagram is an essential ingredient in defining the Heegaard Floer homology of a
closed 3-manifold Y . In particular, a Heegaard diagram provides a presentation of
the fundamental group of Y , and it is natural to ask how this presentation is related
to the Heegaard Floer chain complex. In this paper, we shall investigate one such
connection.

A left-ordering on a non-trivial group G is a total order < on the elements of G
such that g < h implies kg < kh for any g, h, k ∈ G. A group G is called left-orderable
if it is non-trivial and admits at least one left-ordering. The question of which 3-
manifolds have left-orderable fundamental group has been of considerable interest and
is closely connected to the study of foliations. For instance, if Y admits a co-oriented,
R-covered foliation (i.e., a taut, co-oriented foliation such that the leaf-space of the
induced foliation on the universal cover ˜Y is homeomorphic to R), then π1(Y ) is left-
orderable. Boyer, Rolfsen, and Wiest [3] showed that the fundamental group of any
irreducible three-manifold Y with b1(Y ) > 0 is left-orderable, reducing the question
to that of rational homology spheres.

In its simplest form, Heegaard Floer homology associates to a closed, oriented three-
manifold Y a Z/2Z–graded, finitely generated abelian group ̂HF(Y ). This group is
computed as the homology of a free chain complex ̂CF(H) associated to a Heegaard
diagram H for Y ; different choices of diagrams for the same manifold yield chain-
homotopy-equivalent complexes. The group ̂CF(H) depends only on the combinatorics
of H, but the differential on ̂CF(H) involves counts of holomorphic curves that rely on
auxiliary choices of analytic data. If Y is a rational homology sphere, then the Euler
characteristic of ̂HF(Y ) is equal to |H1(Y ; Z)|, which implies that the rank of ̂HF(Y ) is
at least |H1(Y ; Z)|. Y is called an L-space if ̂HF(Y ) ∼= Z

|H1(Y ;Z)|; thus, L-spaces have
the simplest possible Heegaard Floer homology. Examples of L-spaces include S3, lens
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spaces (whence the name), all manifolds with finite fundamental group, and branched
double covers of alternating (or, more broadly, quasi-alternating) links. Additionally,
Ozsváth and Szabó [10] showed that if Y is an L-space, it does not admit any taut
foliation; whether the converse is true is an open question.

The following related conjecture, stated formally by Boyer, Gordon, and Watson
[2], has recently been the subject of considerable attention:

Conjecture 1. Let Y be a closed, connected, irreducible 3-manifold. Then π1(Y ) is
not left-orderable if and only if Y is an L-space.

This conjecture is now known to hold for all geometric, non-hyperbolic three-
manifolds [2].1 Additionally, Boyer, Gordon, and Watson [2] and Greene [5] have
shown that the branched double cover of any non-split alternating link in S3 —
which is generically a hyperbolic three-manifold — has non-left-orderable fundamen-
tal group.

In this paper, we prove the “if” direction of Conjecture 1 for manifolds that are
“L-spaces on the chain level.” To be precise, we call a three-manifold Y a strong
L-space if it admits a Heegaard diagram H such that ̂CF(H) ∼= Z

|H1(Y ;Z)|. This
purely combinatorial condition implies that the differential on ̂CF(H) vanishes, with-
out any consideration of holomorphic discs. We call such a Heegaard diagram a strong
Heegaard diagram. By considering the presentation for π1(Y ) associated to a strong
Heegaard diagram, we prove:

Theorem 1. If Y is a strong L-space, then π1(Y ) is not left-orderable.

The standard Heegaard diagram for a lens space is easily seen to be a strong dia-
gram. Moreover, Greene [6] constructed a strong Heegaard diagram for the branched
double cover of any alternating link in S3; indeed, Boyer, Gordon, and Watson’s proof
that the fundamental group of such a manifold is not left-orderable essentially makes
use of the group presentation for π1 associated to that Heegaard diagram. In fact,
it is quite tempting to conjecture that every strong L-space can be realized as the
branched double cover of an alternating link in S3. While this conjecture is perhaps
overly ambitious, we do not know of any any counterexamples at the present. Indeed,
while it is not hard to construct families of low-genus strong Heegaard diagrams that
a priori seem unrelated to Greene’s construction (in which the genus of the Heegaard
diagram equals the number of crossings in an alternating diagram for the link), the
manifolds presented by these diagrams nevertheless turn out to be branched double
covers of alternating links. Although an affirmative answer to this conjecture would
render Theorem 1 redundant, it would provide an alternate topological characteriza-
tion of the manifolds arising as branched double covers of alternating links and thus
partially answer R. H. Fox’s famous open question: “What is an alternating knot?” [7,
p. 32]. In any case, Theorem 1 seems like a useful step in the direction of Conjecture 1
in that it relies only on data contained in the Heegaard Floer chain complex to prove
a result about the fundamental group.

Additionally, the following theorem, which is well known but does not appear in
the literature, indicates that being a strong L-space is a fairly restrictive condition:

1Specifically, the work of Boyer, Rolfsen, and Wiest [3] and Lisca and Stipsicz [8] gives the result
for Seifert manifolds with base orbifold S2, as was also observed by Peters [13]. The cases of Seifert
manifolds with non-orientable base orbifold and of Sol manifolds follow from [3] and [2].
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Theorem 2. If Y is an integer homology sphere that is a strong L-space, then Y ∼= S3.

In particular, there exist integer homology spheres that are L-spaces (e.g., the
Poincaré homology sphere) but not strong L-spaces. The fact that the condition of
being a strong L-space detects S3 suggests that it might be possible to obtain a more
explicit characterization or even a complete classification of strong L-spaces. Below,
we shall present a graph-theoretic proof of Theorem 2. In subsequent work with Josh
Greene, we shall extend this argument to show that for any n, there are finitely many
strong L-spaces with |H1(Y ; Z)| ≤ n. Apropos of the previous discussion, this result
is reminiscent of the classical theorem of Bankwitz [1] and Crowell [4] that there are
only finitely many alternating knots with a given determinant.

2. Proofs of Theorems 1 and 2

To prove Theorem 1, we will use a simple obstruction to left-orderability that can be
applied to group presentations.

Let X denote the set of symbols {0, +,−, ∗}. These symbols are meant to represent
the possible signs of real numbers: + and − represent positive and negative numbers,
respectively, and ∗ represents a number whose sign is not known. As such, we define
a commutative, associative multiplication operation on X by the following rules: (1)
0 · ε = ε · 0 = 0 for any ε ∈ X; (2) + · + = − · − = +; (3) + · − = − · + = −; and (4)
ε · ∗ = ∗ · ε = ∗ for ε ∈ {+,−, ∗}.

A group presentation G = 〈x1, . . . , xm | r1, . . . , rn〉 gives rise to an m × n matrix
E(G) = (εi,j) with entries in X by the following rule:

(2.1) εi,j =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if neither xi nor x−1
i occurs in rj

+ if xi appears in rj but x−1
i does not

− if x−1
i appears in rj but xi does not

∗ if both xi and x−1
i occur in rj .

Lemma 1. Let G = 〈x1, . . . , xm | r1, . . . , rn〉 be a group presentation such that for any
d1, . . . , dm ∈ {0, +,−}, not all zero, the matrix M obtained from E(G) by multiplying
the ith row by di has a non-zero column whose non-zero entries are either all + or
all −. Then the group G presented by G is not left-orderable.

Proof. Suppose that < is a left-ordering on G, and let di be 0, +, or − according to
whether xi = 1, xi > 1, or xi < 1 in G. Since G is non-trivial, at least one of the di is
non-zero. If the jth column of M is non-zero and has entries in {0, +}, the relator rj

is a product of generators xi that are all non-negative in G, and at least one of which
is strictly positive. Thus, rj > 1 in G, which contradicts the fact that rj is a relator.
An analogous argument applies for a non-zero column with entries in {0,−}. �

We shall focus on presentations with the same number of generators as relations.
For a permutation σ ∈ Sn, let sign(σ) ∈ {+,−} denote the sign of σ (+ if σ is even,
− if σ is odd). The key technical lemma is the following:

Lemma 2. Let G = 〈x1, . . . , xn | r1, . . . , rn〉 be a group presentation such that E(G)
has the following properties:

(1) There exists at least one permutation σ0 ∈ Sn such that the entries ε1,σ0(1), . . . ,
εn,σ0(n) are all non-zero.
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Figure 1. Illustration of the proof of Lemma 2. In the matrix M
shown at left, the entries mi,σ(i) are highlighted, where σ is the per-
mutation constructed in the proof. To find σ, we start with the + in
the upper left corner, travel to a − in the same column, and then
travel to the diagonal entry in the same row as this −. Repeating
this procedure, we eventually obtain a closed loop, as shown at right.

(2) For any permutation σ ∈ Sn such that ε1,σ(1), . . . , εn,σ(n) are all non-zero, we
have ε1,σ(1), . . . , εn,σ(n) ∈ {+,−}.

(3) For any two permutations σ, σ′ as in (2), we have

sign(σ) · ε1,σ(1) · . . . · εn,σ(n) = sign(σ′) · ε1,σ′(1) · . . . · εn,σ′(n).

Then the group G presented by G is not left-orderable.

In other words, if we consider a formal determinant

det(E(G)) =
∑

σ∈Sn

sign(σ) · ε1,σ(1) · . . . · εn,σ(n),

viewed as a formal sum of elements of X, condition (1) says that at least one summand
is non-zero, condition (2) says that no non-zero summand is ∗, and condition (3) says
all the non-zero elements are the same.

Proof. By reordering the generators and relations, it suffices to assume that σ0 from
condition (1) is the identity, so that εi,i �= 0 for i = 1, . . . , n, and hence εi,i ∈ {+,−}
by condition (2). We shall show that E(G) satisfies the hypotheses of Lemma 1.

Suppose, then, toward a contradiction, that d1, . . . , dn are elements of {0, +,−},
not all zero, such that every non-zero column of the matrix M obtained as in Lemma
1 contains a non-zero off-diagonal entry (perhaps a ∗) that is not equal to the diagonal
entry in that column. Denote the (i, j)th entry of M by mi,j .

We may inductively construct a sequence of distinct indices i1, . . . , ik ∈ {1, . . . , n}
such that

(A) mij ,ij ∈ {+,−} for each j = 1, . . . , m, and
(B) mij+1,ij �= 0 and mij+1,ij �= mij ,ij

for each j = 1, . . . , k, taken modulo k. This is done by “connecting the dots” as in
Figure 1. Specifically, we begin by choosing any i1 such that mi1,i1 �= 0. Given ij , our
assumption on M states that we can choose ij+1 satisfying assumption (B) above; we
then have mij+1,ij+1 �= 0 since otherwise the whole ithj+1 row would have to be zero.
Repeating this procedure, we eventually obtain an index ik that is equal to some
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previously occurring index ik′ , where k′ +1 < k. The sequence ik′+1, . . . , ik, relabeled
accordingly, then satisfies the assumptions (A) and (B).

Define a k-cycle σ ∈ Sn by σ(ij) = ij+1 for j = 1, . . . , k mod k, and σ(i′) = i′ for
i′ �∈ {i1, . . . , ik}. By construction, εi,σ(i) �= 0 for each i = 1, . . . , n, so the sequence
(ε1,σ(1), . . . , εn,σ(n)) contains no ∗s by condition (2). The sequences (ε1,σ(1), . . . , εn,σ(n))
and (ε1,1, . . . , εn,n) differ in exactly k entries, and the signature of σ is (−1)k−1. This
implies that

sign(σ) · ε1,σ(1) · . . . · εn,σ(n) = (−1)2k−1 sign(id) · ε1,1 · . . . · εn,n,

which contradicts condition (3). This completes the proof. �
Remark 1. The classification of matrices satisfying these three conditions is actually
a version of Pólya’s permanent problem [14], dating to 1913, which asks when the
permanent of a matrix of real numbers can be computed as the determinant of a
matrix obtained by changing the signs of some entries. The version described here was
first studied by Samuelson [15] in 1947 in the context of linear differential equations
arising in economics. For an excellent review of Pólya’s permanent problem, including
a proof of a version of Lemma 2; see McCuaig [9]. (The authors discovered Lemma 2
independently.)

Now we will apply Lemma 2 to prove Theorem 1. We first recall some basic facts
about the Heegaard Floer chain complex. A Heegaard diagram is a tuple H = (Σ, α,β),
where Σ is a closed, oriented surface of genus g, α = (α1, . . . , αg) and β = (β1, . . . , βg)
are each g-tuples of pairwise disjoint simple closed curves on Σ that are linearly in-
dependent in H1(Σ; Z), and each pair of curves αi and βj intersect transversely. A
Heegaard diagram H determines a closed, oriented three-manifold Y = YH with a
self-indexing Morse function f : Y → [0, 3] such that Σ = f−1(3/2), the α circles are
the belt circles of the 1-handles of Y , and the β circles are the attaching circles of the
2-handles. If we orient the α and β circles, the Heegaard diagram determines a group
presentation

π1(Y ) = 〈a1, . . . , ag | b1, . . . , bg〉 ,

where the generators a1, . . . , ag correspond to the α circles, and bj is the word obtained
as follows: If p1, . . . , pk are the intersection points of βj with the α curves, indexed
according to the order in which they occur as one traverses βi, and p� ∈ αi�

∩ βi for
� = 1, . . . , k, then

(2.2) bj =
k

∏

�=1

a
η(pi)
i�

,

where η(pi) ∈ {±1} is the local intersection number of αi�
and βj at pi.

Let Symg(Σ) denote the gth symmetric product of Σ, and let Tα, Tβ ⊂ Symg(Σ) be
the g-dimensional tori α1× . . .×αg and β1× . . .×βg, which intersect transversally in a
finite number of points. Assuming Y is a rational homology sphere, ̂CF(H) is the free
abelian group generated by points in SH = Tα∩Tβ .2 More explicitly, these are tuples
x = (x1, . . . , xg), where xi ∈ αi ∩ βσ(i) for some permutation σ ∈ Sg. The differential
on ̂CF(H) counts holomorphic Whitney discs connecting points of SH (and depends

2For general three-manifolds, we must restrict to a particular class of so-called admissible
diagrams.
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on an additional choice of a basepoint z ∈ Σ), but we do not need to describe this in
any detail here.

Orienting the α and β circles determines orientations of Tα and Tβ . For x ∈ SH,
let η(x) denote the local intersection number of Tα and Tβ at x. If x = (x1, . . . , xg)
with xi ∈ αi ∩ βσ(i), we have

(2.3) η(x) = sign(σ)
g

∏

i=1

η(xi).

These orientations determine a Z/2-valued grading gr on ̂CF(Y ) by the rule that
(−1)gr(x) = η(x); the differential shifts this grading by 1. If Y is a rational homology
sphere, then with respect to this grading, we have χ( ̂CF(H)) = ±|H1(Y ; Z)|, and we
may choose the orientations such that the sign is positive. (See [11, Section 5] for
further details.)

The proof of Theorem 1 is completed with the following:

Lemma 3. If H is a strong Heegaard diagram for a strong L-space Y , then the
corresponding presentation for π1(Y ) satisfies the hypotheses of Lemma 2.

Proof. If rank( ̂CF(H)) = χ( ̂CF(H)) = |H1(Y ; Z)|, then ̂CF(H) is supported in a
single grading, so η(x) = 1 for all x ∈ Tα ∩ Tβ . The result then follows quickly from
equations (2.1), (2.2), and (2.3). Specifically, since SH �= ∅, there exists σ0 ∈ Sg such
that αi ∩ βσ0(i) �= ∅ for each i, and hence εi,σ0(i) �= 0. If αi and βj contain a point x
that is part of some x ∈ SH, then every other point x′ ∈ αi∩βj has η(x′) = η(x), and
hence εi,j = η(x) ∈ {+,−}. Finally, if x = (x1, . . . , xg) and x′ = (x′

1, . . . , x
′
g), with

xi ∈ αi ∩βσ(i) and x′
i ∈ αi ∩βσ′(i), then equation (2.3) and the fact that η(x) = η(x′)

imply the final hypothesis. �
Finally, to prove Theorem 2, we use a simple graph-theoretic argument due to Josh

Greene. Given a Heegaard diagram H, let ΓH denote the bipartite graph with vertex
sets A = {A1, . . . , Ag} and B = {B1, . . . , Bg}, with an edge connecting Ai and Bj for
each intersection point in αi ∩ βj . The set SH thus corresponds to the set of perfect
matchings on ΓH.

Lemma 4. If H is a Heegaard diagram of genus g > 1, and ΓH contains a leaf
(a 1-valent vertex), then YH admits a Heegaard diagram H′ of genus g − 1 with a
bijection between SH and SH′ .

Proof. If Ai is 1-valent, then the curve αi intersects one β curve, say βj , in a single
point and is disjoint from the remaining β curves. By a sequence of handleslides of
the α curves, we may remove any intersections of βj with any α curve other than
αi, without introducing or removing any other intersection points. We may then
destabilize to obtain H′. Since every element of SH includes the unique point of
αi ∩ βj , we have a bijection between SH and SH′ . (Indeed, Γ′

H is obtained from ΓH
by deleting Ai and Bj , which does not change the number of perfect matchings.) The
case where Bi is 1-valent is analogous. �
Proof of Theorem 2. Let H be a strong Heegaard diagram for Y whose genus g is
minimal among all strong Heegaard diagrams for Y . Suppose, toward a contradiction,
that g > 1. By Lemma 4, ΓH has no leaves. By assumption, ΓH has a single perfect
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matching μ. We direct the edges of ΓH by the following rule: an edge points from A
to B if it is included in μ and from B to A otherwise. Thus, every vertex in A has
exactly one outgoing edge, and every vertex in B has exactly one incoming edge. We
claim that ΓH contains a directed cycle σ. To see this, let γ be a maximal directed
path in ΓH that visits each vertex at most once, and let v be the initial vertex of γ. If
v ∈ B, then there is a unique directed edge e in ΓH from some point w ∈ A to v, and
e is not included in γ. Likewise, if v ∈ A, then there is an edge e not in γ connecting
v and some point w ∈ B since v is not a leaf, and e is directed from w to v since the
only outgoing edge from v is in γ. In either case, the maximality of γ implies that
w ∈ γ, which means that γ ∪ e contains a directed cycle. However, (μ − σ) ∪ (σ − μ)
is then another perfect matching for ΓH.

Thus, the Heegaard diagram H is a torus with a single α curve and a single β
curve intersecting in a single point, which describes the standard genus-1 Heegaard
splitting of S3. �
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[10] P. Ozsváth and Z. Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334

(electronic).
[11] ———, Holomorphic disks and three-manifold invariants: properties and applications,

Ann. Math. (2) 159(3) (2004), 1159–1245.

[12] ———, Holomorphic disks and topological invariants for closed three-manifolds, Ann. Math.
(2) 159(3) (2004), 1027–1158.

[13] T. Peters, On L-spaces and non left-orderable 3-manifold groups. Preprint (2009),

arXiv:0903.4495.
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