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ENDPOINT BOUNDS FOR MULTILINEAR FRACTIONAL
INTEGRALS

Seungwoo Kuk and Sungyun Lee

Abstract. We prove that the multilinear fractional integral operator Iα(f1, . . . ,
fk)(x) =

∫
Rn f1(x−θ1y) . . . fk(x−θky)|y|α−ndy, where θj , j = 1, . . . , k are distinct and

nonzero, (due to Grafakos [G]) has the endpoint weak-type boundedness into Lr,∞ when
r = n

2n−α
. Hence, we obtain by the multilinear interpolation theorem that Iα is bounded

into Lr for all r > n
2n−α

. Moreover, We also prove that Iα is not bounded into Lr for

any r < n
2n−α

under some conditions on θj ’s. Similarly, we show that the multilinear

Hilbert transform H(f, g, h1, . . . , hk)(x) = p.v.
∫

f(x + t)g(x − t)
∏k

j=1 hj(x − θjt) dt
t

,

where θj �= ±1 are distinct and nonzero, is not bounded into Lr for any r < 1
2

under

some conditions on θj ’s.

1. Introduction

The purpose of this note is to describe the endpoint boundedness result on the higher-
order multilinear fractional integral operator Iα acting on functions of R

n defined as
follows

(1.1) Iα(f1, . . . , fk)(x) =
∫

Rn

f1(x − θ1t) · · · fk(x − θkt)|t|α−n dt,

where 0 < α < n, k denotes an integer ≥ 3, and θj , j = 1, . . . , k, are fixed, distinct,
nonzero real numbers. In 1992, Grafakos [G] proved that Iα is bounded from Lp1 ×
· · · × Lpk to Lr, where 1

r = 1
p1

+ · · · + 1
pk

− α
n , p1, . . . , pk > 1, under the crucial

restriction 1 ≤ r < ∞. Kenig and Stein [KS] treated another type Iα of multilinear
operator of fractional integration defined by

Iα(f1, f2, . . . , fk+1)(x)(1.2)

=
∫

Rnk

f1(l1)f2(l2) · · · fk+1(lk+1)K(x1, . . . , xk)dx1 · · · dxk,

where K(x1, . . . , xk) = |(x1, . . . , xk)|−nk+α, xj ∈ R
n, 1 ≤ j ≤ k, x ∈ R

n, and lj =
lj(x1, . . . , xk, x), 1 ≤ j ≤ k + 1, are linear mappings from R

n(k+1) to R
n satisfying

appropriate assumptions, see [KS].
The operators Iα and Iα could be regarded as modified multilinear versions of the

bilinear fractional integration

Bα(f, g)(x) =
∫

Rn

f(x − t)g(x + t)|t|α−ndt.

In [GK,KS], it is shown by very elementary considerations that Bα is bounded from
Lp1 × Lp2 to Lr for the full range 1 < pi ≤ ∞, i = 1, 2, and 1

r = 1
p1

+ 1
p2

− α
n , with
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r < ∞ instead of the crucial condition 1 ≤ r < ∞ for boundedness of Iα. Viewing the
bilinear fractional integration Bα as a special case of Iα with k = 2, we would like
to investigate the property of Iα for the range r < 1. As a boundedness result, the
endpoint weak boundedness is established in Section 2. The unboundedness results
are given in Section 3. To be more specific, we show that Iα is not bounded into Lr for
any r < n

2n−α under some conditions on θj ’s. Similarly, we show that the multilinear
Hilbert transform H(f, g, h1, . . . , hk)(x) = p.v.

∫
f(x+ t)g(x− t)

∏k
j=1 hj(x−θjt)dt

t ,
where θj �= ±1 are distinct and nonzero, is not bounded into Lr for any r < 1

2 under
some conditions on θj ’s.

2. The endpoint weak-type estimate of Iα

Let us first treat the following preliminary result.

Lemma 2.1. Let

I(f1, . . . , fk)(x) =
∫

Rn

f1(x − θ1t) · · · fk(x − θkt)dt,

Ii(f1, . . . , fk)(x) =
∫

|t|≤2i

f1(x − θ1t) · · · fk(x − θkt)dt,

for i ∈ Z. Assume that 1
p1

+ · · · + 1
pk

= 2, pj ≥ 1, j = 1, . . . , k. Then

(i) ‖I(f1, . . . , fk)‖L1 ≤ C

k∏

j=1

‖fj‖Lpj .

(ii) ‖Ii(f1, . . . , fk)‖
L

1
2
≤ C2in

k∏

j=1

‖fj‖Lpj .

We adapt the argument of the proof of Lemma 5 in [KS].

Proof. Without loss of generality, we may assume that f1, . . . , fk ≥ 0. We begin with
proving (i).

‖I(f1, . . . , fk)‖L1 =
∫

Rn

I(f1, . . . , fk)(x)dx =
∫

Rn

∫

Rn

k∏

j=1

fj(x − θjt) dt dx

≤ C‖f1‖L1‖f2‖L1

k∏

j=3

‖fj‖L∞

where the last inequality follows from using the change of variables and Fubini’s
theorem. Thus, I is bounded from L1 × L1 × L∞ × · · · × L∞ to L1. We write it as

I :

k
︷ ︸︸ ︷
(1, 1, 0, . . . , 0) → L1. Moreover, we have I :

k
︷ ︸︸ ︷
(1/p1, . . . , 1/pk) → L1, where the two

among {pj : 1 ≤ j ≤ k} are 1 and the other else are ∞, by interchanging the roles
of the functions fj in an arbitrary way. By multilinear (Riesz–Thorin) interpolation
theorem, (i) follows. We next show (ii) when i = 0. For �a ∈ Z

n, we let Q�a be the unit
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size cube in R
n, whose bottom left coordinate is �a. Then

∫

Q�a

I0(f1, . . . , fk)(x)dx =
∫

Q�a

∫

|t|≤1

f1(x − θ1t) · · · fk(x − θkt) dt dx

≤ C

∫

Q∗
�a

f1 ·
∫

Q∗
�a

f2 ·
k∏

j=3

‖fj‖L∞(Q∗
�a
),

for some sufficiently expansion (depending only on θj , j = 1, . . . , k) Q∗
�a of Q�a. Thus,

‖I0(f1, . . . , fk)‖L1(Q�a) ≤ C‖f1‖L1(Q∗
�a
)‖f2‖L1(Q∗

�a
)

k∏

j=3

‖fj‖L∞(Q∗
�a
).

Moveover, we have the same boundedness of I0 by interchanging the roles of the
functions fj in an arbitrary way:

‖I0(f1, . . . , fk)‖L1(Q�a) ≤ C

k∏

j=1

‖fj‖Lpj (Q∗
�a
),

where the two among {pj : 1 ≤ j ≤ k} are 1 and the other else are ∞. By multilinear
(Riesz–Thorin) interpolation theorem as proving (i), we have

(2.1) ‖I0(f1, . . . , fk)‖L1(Q�a) ≤ C

k∏

j=1

‖fj‖Lpj (Q∗
�a
),

for 2 = 1
p1

+ · · · + 1
pk

. Hence

‖I0(f1, . . . , fk)‖
L

1
2

=

(
∑

�a∈Zn

∫

Q�a

I0(f1, . . . , fk)(x)
1
2 dx

)2

≤
{
∑

�a∈Zn

(∫

Q�a

I0(f1, . . . , fk)(x)dx

) 1
2
}2

≤ C

k∏

j=1

(
∑

�a∈Zn

{(∫

Q�a∗
f

pj

j

) 1
pj

}pj
) 1

pj

= C
k∏

j=1

(
∑

�a∈Zn

∫

Q∗
�a

f
pj

j

) 1
pj

,

where the first inequality holds by Jensen’s inequality and the second inequality by
Hölder inequality for sequences for (2.1). Finally, since the {Q∗

�a} have finite overlap,

(
∑

�a

∫
Q∗

�a
f

pj

j )
1

pj ≤ C‖fj‖Lpj , for each j = 1, . . . , k. Hence, we have shown that (ii)
follows when i = 0. For the remainder cases i �= 0 else, (ii) follows from the case i = 0
by scaling. Lemma 2.1 is established. �

Our main result is the following.

Theorem 2.2. Iα is bounded from Lp1 × · · · × Lpk to L
n

2n−α ,∞ for 1
p1

+ · · · + 1
pk

=
2, pj ≥ 1, j = 1, . . . , k.
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Proof. This proof is the adaptation of Example 5.6. in [GK]. However, we expose the
details with amending the misprint of Example 5.6. in [GK] for the convenience of
the reader.

We may assume that f1, . . . , fk ≥ 0. We note that

Iα(f1, . . . , fk) ≤ C
∑

i∈Z

2i(α−n)Ii(f1, . . . , fk).

Observe that for any measurable set E with finite measure
∫

E

(Ii(f1, . . . , fk)(x))1/2dx ≤
(∫

E

Ii(f1, . . . , fk)(x)dx

)1/2

|E|1/2

≤ C

k∏

j=1

‖fj‖1/2

Lpj |E|1/2,

where the first inequality follows from Hölder inequality and the second from Lemma
2.1 (i). This observation and Lemma 2.1 (ii) implies that for any measurable set E
with finite measure we have

(2.2)
∫

E

(Ii(f1, . . . , fk)(x))1/2dx ≤ C

k∏

j=1

‖fj‖1/2

Lpj min(2in, |E|)1/2.

Let K be a compact subset of Eλ = {x : |Iα(f1, . . . , fk)(x)| > λ}. Then applying
Chebychev’s inequality and (2.2), we obtain

λ1/2|K| ≤
∫

K

∣
∣
∣
∣
∣

∑

i∈Z

2i(α−n)Ii(f1, . . . , fk)(x)

∣
∣
∣
∣
∣

1/2

dx

≤
∑

i∈Z

2i(α−n)/2

∫

K

|Ii(f1, . . . , fk)(x)|1/2dx

≤ C
∑

i∈Z

2i(α−n)/2
k∏

j=1

‖fj‖1/2

Lpj min(2in, |K|)1/2

≤ C

⎛

⎝
∑

2in<|K|
2i(α−n)/22in/2 +

∑

|K|≤2in

2i(α−n)/2|K|1/2

⎞

⎠
k∏

j=1

‖fj‖1/2

Lpj

≤ C
(
|K|α/2n + |K|(α−n)/2n|K|1/2

) k∏

j=1

‖fj‖1/2

Lpj

= C|K|α/2n
k∏

j=1

‖fj‖1/2

Lpj .

This means that

λ|K|2−α
n ≤ C

k∏

j=1

‖fj‖Lpj .1

1It has a pedagogic meaning as an analysis technique to consider a compact subset K of Eλ,

because of having divided |K|α
n here.
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Taking the supremum over all compact K ⊂ Eλ and using the inner regularity of
Lebesque measure, we obtain that

λ|Eλ|2−α
n ≤ C

k∏

j=1

‖fj‖Lpj ,

which is the required weak-type estimate Lp1 × · · ·×Lpk → L
n

2n−α ,∞. Theorem 2.2 is
now completely proved. �

Remark 2.3. Substituting f1 = δ0, we have Iα(f1, . . . , fk)(x) = f2(x − θ2
x
θ1

)f3(x −
θ3

x
θ1

) · · · fk(x−θk
x
θ1

)| x
θ1
|α−n. This shows that in Theorem 2.2, the strong-type bound-

edness of Iα for 1 + 1
p2

+ 1
p3

+ · · · + 1
pk

= 2, p2, . . . , pk ≥ 1 is not established.

We find the usefulness in the following multilinear Marcinkiewicz interpolation
theorem for Lorentz spaces, which is introduced from Theorem 3 in [KS].

Theorem 2.4 (Theorem 3 (Janson [J]), [KS]). Suppose that an k-linear operator
T : Lp1j

,1 × · · · × Lpkj
,1 → Lqj ,∞, where 0 < pij ≤ ∞, 0 < qj ≤ ∞, for k + 1 points

( 1
p1j

, . . . , 1
pkj

), 1 ≤ j ≤ k + 1 in R
k, that do not lie on the same hyperplane. Suppose

further that there are real numbers α0, α1, . . . , αk with αi > 0 for i = 1, . . . , k, so that
1
qj

= α0 +
∑k

i=1
αi

pij
, for j = 1, . . . , k + 1. Then

T : Lp1,s1 × · · · × Lpk,sk → Lq,s,

where 1 ≤ si ≤ ∞, 1
s = 1

s1
+ · · · + 1

sk
, and ( 1

p1
, 1

p2
, . . . , 1

pk
, 1

q ) lies in the open convex
hull of ( 1

p1j
, 1

p2j
, . . . , 1

pkj
, 1

qj
).

Remark 2.5. Instead of the above multilinear interpolation theorem, we may use a
multilinear interpolation theorem of [GLLZ] to pay attention when the case si = ∞
in proving Theorem 2.6 in the following. Thus, the proof of Theorem 2.6 may be a
sketch of the proof of Theorem 2.6.

We improve Theorem 1 of [G] by applying the preceding theorems.

Theorem 2.6. Iα is bounded from Lp1 × · · · × Lpk to Lr for 1
r = 1

p1
+ · · · + 1

pk
− α

n ,
n

2n−α < r < ∞, pi > 1, i = 1, . . . , k. (In fact, Iα is bounded from Lp1 × · · · × Lpk to
Lr,s, where 1

s = 1
p1

+ · · ·+ 1
pk

, for 1
r = 1

p1
+ · · ·+ 1

pk
− α

n , n
2n−α < r < ∞, pi > 1, i =

1, . . . , k .)

Proof. By applying Theorem 2.4 (multilinear interpolation theorem), this follows from
Theorem 2.2 in this paper and Theorem 1 in [G], and Remark 4 in [KS]. Indeed, since
Lp ⊇ Lp,1 for p ≥ 1, we have by Theorem 2.2 that Iα is bounded from Lp1j

,1 × · · · ×
Lpkj

,1 to Lrj ,∞, for rj = n
2n−α , 1

p1j
+ · · ·+ 1

pkj
= 2, pij ≥ 1, i = 1, . . . , k when j = 1.

Since Iα is bounded from Lp1 × · · · × Lpk to Lr, for 1
p1

+ · · · + 1
pk

− α
n = 1

r , r ≥
1, pi > 1, i = 1, . . . , k (Theorem 1, [G]), and Lr,∞ ⊇ Lr, we have that Iα is bounded
from Lp1j

,1 × · · · × Lpkj
,1 to Lrj ,∞, where 1

p1j
+ · · · + 1

pkj
− α

n = 1
rj

, rj ≥ 1, pij >

1, i = 1, . . . , k, when j = 2, . . . , k+1, satisfying k+1 points
(

1
p1j

, . . . , 1
pkj

)
∈ R

k, j =
1, . . . , k+1 that do not lie on the same hyperplane. Now by applying Theorem 2.4 with
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considering the open convex hull consisting of
(

1
p1j

, 1
p2j

, . . . , 1
pkj

, 1
rj

)
, j = 1, . . . , k+1,

we obtain that Iα : Lp1,s1 × · · ·×Lpk,sk → Lr,s, where 1 ≤ si ≤ ∞, 1
s = 1

s1
+ · · ·+ 1

sk
,

for 1
p1

+ · · · + 1
pk

− α
n = 1

r , n
2n−α < r < ∞, pi > 1, i = 1, . . . , k. Taking si = pi, and

then 1
s ≥ 1

r , so that Lr,s ⊂ Lr, we obtain that Iα : Lp1 × · · · × Lpk → Lr (Remark
4, [KS]). This completes the proof. �

Remark 2.7. In conclusion of this section, the question whether there exist results
when r < 1 for Iα raised in [KS] is solved manifestly in this paper. (the range r < n

2n−α

is dealt in the next section 3 as the unboundedness of Iα, see Theorem 3.2.)

3. The unboundedness of multilinear fractional integration
and Hilbert transform

Observing Remark 2.3, the strong-type boundedness of Iα does not hold for the
hyper-line pi = 1 for either i = 1, . . . , k included in the hyperplane 1

p1
+ · · · + 1

pk
=

2, p1, . . . , pk ≥ 1. However, the failure of the strong-type boundedness of Iα for the
open hyperplane 1

p1
+ · · · + 1

pk
= 2, p1, . . . , pk > 1 is unknown. Hence, considering

the multilinear interpolation theorem, the boundedness of Iα beyond the hyperplane
1
p1

+ · · ·+ 1
pk

= 2, p1, . . . , pk > 1 is yet to be known. Thus, we investigate whether Iα

is bounded for 1
p1

+ · · · + 1
pk

> 2, p1, . . . , pk > 1 in this section.
Let us first state the Theorem of M. Christ [C] which is used to obtain our results.

Theorem 3.1 (Theorem 1, [C]). Suppose that {Sj} is nondegenerate.
If {Sj} is not rationally commensurate, then for any p < 3/2, there exist nonneg-

ative functions fj ∈ Lp and a set E ⊂ R
d of positive Lebesgue measure such that

T (f1, f2, f3)(x) =
∫

|t|≤1

3∏

j=1

fj(Sj(x, t))dt = +∞,

for all x ∈ E.

Here, we would mention the reference [C], p.44 about the definition of rationally
commensurate and nondegenerate of {Sj}. To put it briefly, it may be said that the
above trilinear operator T (f1, f2, f3) has a rationally commensurate {Sj : 1 ≤ j ≤ 3}
if T (f1, f2, f3) is reduced to a canonical form

∫
f1(x+ t)f2(x− t)f3(x− θt)dt for some

parameter θ ∈ Q\{0,−1, +1}, or to
∫

f1(x + t)f2(x− t)f3(t)dt by simple symmetries
invariant on the boundedness of the operator, as explained in [C], p. 45. Thus, we
may regard

∫ ∏k
j=1 fj(Sj(x, t))dt in the above Theorem 3.1 as a generalization of∫

f1(x − θ1t) . . . fk(x − θkt)dt, where θj ’s are nonzero and distinct.
Before stating our theorem in the following, we may note that homogeneity con-

siderations imply that Iα(f1, . . . , fk) can map Lp1 × · · · × Lpk → Lr only when

1
p1

+ · · · + 1
pk

− α

n
=

1
r
.

Theorem 3.2. In some cases of θj’s, Iα is not bounded from Lp1 × · · · × Lpk to Lr

for any r < n
2n−α , equivalently 1

p1
+ · · · + 1

pk
> 2, p1, . . . , pk > 1.
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Proof. By referring to Section 7 Remarks in [C], we have a higher-order multilin-
ear analogue of Theorem 3.1 (ii). Given finitely many distinct coefficients θj �= ±1,
consider the multilinear operator

T (f1, . . . , fk)(x) =
∫

|t|≤1

f1(x + t)f2(x − t)
k∏

j=3

fj(x − θjt) dt.

Suppose θ3 /∈ Q. Define γj = (1 + θj)/(1 − θj) for j = 3, . . . , k. If all γj/γ3 are
rational, then for any pi, i = 1, . . . , k with 1

p1
+ · · · + 1

pk
> 2, p1, . . . , pk > 1, there

exist nonnegative fi ∈ Lpi , i = 1, . . . , k for which T (f1, . . . , fk)(x) = +∞ for all x in
a set of positive measure.2 Since
∫

Rn

f1(x+ t)f2(x− t)
k∏

j=3

fj(x−θjt)
dt

|t|n−α
≥
∫

|t|≤1

f1(x+ t)f2(x− t)
k∏

j=3

fj(x−θjt)dt,

the proof is complete. �

Viewing the boundedness and the unboundedness of Iα in the preceding, we regard
that the ranges r < n

2n−α and n
2n−α < r < ∞ of the boundedness and the unbounded-

ness of Bα, respectively, are the same with those of Iα. We may note that Bα and Iα

have the same integral over R
n, comparing that Iα in (1.2) have the integral over R

nk.
In contrast to the boundedness of Iα, we may also observe that it is shown in [KS]
that Iα is bounded into Lr for the full range r < ∞.

Let us consider the multilinear Hilbert transform as following: given distinct and
nonzero θj �= ±1,

(3.1) H(f, g, h1, . . . , hk) = p.v.
∫

f(x + 1)g(x − 1)
k∏

j=1

hj(x − θjt)
dt

t
.

We may note that it follows from homogeneity considerations that H(f, g, h1, . . . , hk)
maps from Lp1 × · · · × Lpk+2 to Lr appears only when

1
p1

+ · · · + 1
pk+2

=
1
r
.

We assume in Theorem 3.3 below that pi > 1, i = 1, . . . , k + 2. The case pi ≤ 1,
for any i = 1, . . . , k + 2, is impossible for the boundedness of H, which is seen easily
by the indirect proof using the multilinear interpolation theorem since H is not of
strong-type bounded on Lpi × L∞ × · · · × L∞ (the order of {pi,∞, . . . ,∞} of the
product space is arbitrary) when pi = 1.

The bilinear case of H(f, g, h1, . . . , hk) is well-known as the bilinear Hilbert trans-
form H(f, g). We see that H(f, g) is not bounded from Lp1×Lp2 to Lr for any r < 1/2
since p1, p2 ought to be > 1 for the boundedness of H(f, g). Referring to our results in
the preceding that Iα and Bα have the same range for the unboundedness, we question
whether the multilinear Hilbert transform H(f, g, h1, . . . , hk) and the bilinear Hilbert
transform H(f, g) have the same unboundedness range. The following theorem states
that the answer about it is indeed positive. However, the authors would mention that
the following theorem is nothing else but to change the location of functions f, g of

2For detail about it, the readers may refer to the proof of Theorem 3.3.
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the operator T in Section 2 of [C], because we use almost identically the argument
of [C] to prove the following theorem for the completeness of the proof.

Theorem 3.3. In some cases of θj’s, H(f, g, h1, . . . , hk) is not bounded into Lr for
any r < 1/2. In particular, for given irrational θ with −1−θ

1−θ > 0, the trilinear Hilbert
transform H(f, g, h) = p.v.

∫
f(x + t)g(x− t)h(x− θt)dt

t is not bounded to Lr for any
r < 1/2.

Remark 3.4. After this work, we learn the result of C. Demeter [D] about the
unboundedness of the trilinear Hilbert transform:

(3.2) H(f, g, h) = p.v.
∫

f(x + t)g(x + 2t)h(x + 3t)
dt

t

is not bounded into Lr for any r < 1
3 (1+ log6 2

1+log6 2 ). Observe 1
3 (1+ log6 2

1+log6 2 ) < 1/2. We
may note that the case of {Sj} in (3.2) is rationally commensurate, comparing that
the case of {Sj} in the above Theorem 3.3 is irrationally commensurate.

Proof. Let us denote γj = −1−θj

1−θj
, for each j = 1, . . . , k. Let θ1 be irrational with

γ1 = −1−θ1
1−θ1

> 0. Then there exist rational approximations that there are sequences
{cn} and {dn} of positive integers tending to ∞ such that cn, dn are relatively prime
for each n, and so that

(3.3)
∣
∣
∣
∣
−1 − θ1

1 − θ1
− cn

dn

∣
∣
∣
∣ <

1
d2

n

.

Let θj , j = 2, . . . , k be such that γj/γ1 is positive rational. Then for each j =
2, . . . , k there exist integers aj , bj such that for cn, dn in (3.3)

∣
∣
∣
∣
−1 − θj

1 − θj
− bjcn

ajdn

∣
∣
∣
∣ <

1
d2

n

.

For simplicity, we drop the subscript n, and write c, d for cn, dn. Set N = d and
δ = C(N)−2, for sufficiently small C. Let us consider the sets

F =
d⋃

i= d
2

{x : |x − id−1| < δ},

G =

c
2⋃

m=1

{x : |x + mc−1| < δ},

Hj =
ajd+bj

c
2⋃

l=aj
d
2 +bj

{x : |x − ly| < C2,jδ}, j = 1, . . . , k,

where y = (1 − θj)/(2ajd), a1 = b1 = 1, and C2,j is a large constant to be chosen
later. Set f =

∑d
i= d

2
fi, g =

∑
gm, hj =

∑
hlj , j = 1, . . . , k, where fi, gm, and hlj

are the characteristic function of the ith, mth, and lth component intervals of F , G,
and Hj , j = 1, . . . , k respectively.
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Let us consider the operator H(f, g, h1, . . . , hk) of the theorem:

H(f, g, h1, . . . , hk) = lim
ε→0

⎛

⎝
∫ ∞

ε

f(x + t)g(x − t)
k∏

j=1

hj(x − θjt)
dt

t

+
∫ −ε

−∞
f(x + t)g(x − t)

k∏

j=1

hj(x − θjt)
dt

t

⎞

⎠ .

Then the second term is zero since the intersection of f(x + t) and g(x − t) corre-
sponding to x is on the positive axis of t. Thus

H(f, g, h1, . . . , hk) = lim
ε→0

∫ ∞

ε

f(x + t)g(x − t)
k∏

j=1

hj(x − θjt)
dt

t

=
∫ ∞

0

f(x + t)g(x − t)
k∏

j=1

hj(x − θjt)
dt

t
.

Since
∫ ∞

0

f(x + t)g(x − t)
k∏

j=1

hj(x − θjt)
dt

t
≥
∫ 1

0

f(x + t)g(x − t)
k∏

j=1

hj(x − θjt)dt

= T (f, g, h1, . . . , hk)(x),

it suffices to treat T (f, g, h1, . . . , hk) instead of H(f, g, h1, . . . , hk) to show the
unboundedness of H(f, g, h1, . . . , hk).

Each functions f, g, h1, . . . , hk has ‖ · ‖p ∼ (Nδ)1/p ∼ (N−1)1/p ∼ N−1/p. We see
that T (fj , gm, 1, . . . , 1) ∼ δ on the interval of length δ centered at (id−1−mc−1)/2, and
is supported on the concentric interval with length 2δ. Since |id−1−mc−1| ≥ (dc)−1 ∼
N−2 for all (i, m) �= (0, 0), the points id−1−mc−1 are distant more than N−2 for each
other pair of indices i, m. Hence, T (fj , gm, 1, . . . , 1) have pairwise disjoint supports
for distinct pairs of indices i = d/2, . . . , d, m = 1, . . . , c/2. Thus, T (f, g, 1, . . . , 1) ∼ δ
at a set EN of measure ≥ N2δ ∼ 1. Here, the set EN are subsets of some interval
independent of N .

If x + t = id−1 and x − t = −mc−1, then for each j = 1, . . . , k

(x − θjt) =
1
2

{

(1 − θj)
aji

ajd
+ (−1 − θj)

bjm

bjc

}

=
1
2
(1 − θj)

aji + bjm

ajd
+ mc−1 · O(N−2) = (aji + bjm)y + O(N−2),

thus setting l = aji + bjm there exists C2,j such that |(x − θjt) − ly| ≤ C2,jδ. Thus,
we see that if x + t ∈ supp(f) and x − t ∈ supp(g), then x + θjt ∈ supp(hj). Hence
T (f, g, h1, . . . , hk) = T (f, g, 1, . . . , 1).

Therefore, we have

T (f, g, h1, . . . , hk)(x)/(‖f‖p1‖g‖p2

k∏

j=1

‖hj‖pj+2)

� δ/(Nδ)
1

p1
+···+ 1

pk+2 ∼ N
1

p1
+···+ 1

pk+2
−2 = N

1
r −2
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for all x ∈ EN , for all N . If r < 1/2 then this exponent 1
r −2 is positive. The remained

proof is straightforward; see Section 2 of [C].
We omit the detail of the trilinear case, which is the special case of the multilin-

ear case. �
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