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WEAK GEODESICS IN THE SPACE OF KÄHLER METRICS

Tamás Darvas and László Lempert

Abstract. Given a compact Kähler manifold (X, ω0), according to Mabuchi, the set H0

of Kähler forms cohomologous to ω0 has the natural structure of an infinite-dimensional

Riemannian manifold. We address the question whether points in H0 can be joined by
a geodesic, and strengthening the finding of [LV], we show that this cannot always be
done even with a certain type of generalized geodesics. As in [LV], the result is obtained

through the analysis of a Monge–Ampère equation.

1. Introduction

Let X be a connected compact complex manifold of dimension m > 0 and ω0 a
smooth Kähler form on it. In the 1980s Mabuchi discovered that there is a natural
infinite-dimensional Riemannian manifold structure on the set H0 of smooth Kähler
forms cohomologous to ω0, and on the set

H = {v ∈ C∞(X) : ω0 + i∂∂̄v > 0}
of smooth strongly ω0-plurisubharmonic functions. He also showed that H is isometric
to the Riemannian product H0 × R, [M]. In [LV], answering a question posed by
Donaldson, Vivas and the second author proved that in general there is no geodesic
of class C2 between two points in H, resp. in H0; in fact, there is not even one of
Sobolev regularity W 1,2.

Since geodesics and their generalizations, weak geodesics, potentially play an
important role in the study of special Kähler metrics (for geodesics, see [D,M]), it is of
interest to know whether two points in H can be connected at least by a weak geodesic.
What the notion of weak geodesic should be is suggested by Semmes’ reformulation
of the geodesic equation in H, see [S]. Let S = {s ∈ C : 0 < Im s < 1} and ω the
pullback of ω0 by the projection S ×X → X. With any C2 curve [0, 1] � t �→ vt ∈ H
associate a function u : S ×X → R,

u(s, x) = v Ims(x),

itself a C2 function. Then t �→ vt is a geodesic if and only if u satisfies the Monge–
Ampère equation (ω + i∂∂̄u)m+1 = 0. Therefore a C2 geodesic connecting 0, v ∈ H
gives rise to a solution u ∈ C2(S ×X) of a boundary value problem for this Monge–
Ampère equation on S × X; furthermore ω + i∂∂̄u ≥ 0. This latter is expressed by
saying that u is ω-plurisubharmonic. By a weak, or generalized, geodesic connecting,
say, 0, v ∈ H one then means an ω-plurisubharmonic solution u : S × X → R of
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the problem

(ω + i∂∂̄u)m+1 = 0,

u(s+ σ, x) = u(s, x), if (s, x) ∈ S ×X, σ ∈ R,

u(s, x) =

{
0, if Ims = 0,
v(x), if Ims = 1.

(1.1)

It has to be assumed that u is sufficiently regular so that (ω+ i∂∂̄u)m+1 can be given
sense; for example, according to [BT], the continuity of u more than suffices. Chen has
indeed proved that for v ∈ H (1.1) admits a continuous ω-plurisubharmonic solution
for which the current ∂∂̄u is represented by a bounded form, see [C] and complements
in [B�l]. In other words, any two points in H can be connected by a weak geodesic. One
should keep in mind, though, that a weak geodesic u need not give rise to a curve in
H, first because vt = u(t, ·) is not necessarily C∞, not even C2, and second because
even if vt is C∞, there is no reason why it should be strongly ω0-plurisubharmonic.

In this paper we show that the regularity that Chen obtains cannot be improved:
(1.1) may have a solution with ∂∂̄u bounded, but in general it will not have a solution
with ∂∂̄u continuous.

If Z is a complex manifold, possibly with boundary, and Z = int Z, we define

C∂∂̄(Z) = {w ∈ C(Z) : the current ∂∂̄(w|Z) is represented by a form

continuous on Z}.
Given w ∈ C∂∂̄(Z), we will simply write ∂∂̄w for the continuous form on Z that
represents the current ∂∂̄(w|Z), and if z1, z2, . . . , are local coordinates on Z, we write
wzj z̄k

for the coefficient of dzj ∧ dz̄k in ∂∂̄w.
Clearly C2(Z) ⊂ C∂∂̄(Z), and it is well understood in harmonic analysis that the

inclusion is strict. For example, if Z = {ζ ∈ C : |ζ| ≤ 1/2} and k = 2, 3, . . ., the
function

w(ζ) =

{
ζk log log |ζ|−2, if 0 < |ζ| ≤ 1/2,
0, if ζ = 0

is not in Ck(Z), but wζ̄ ∈ Ck−1(Z) and wζζ̄ ∈ Ck−2(Z).

Theorem 1.1. Suppose a connected compact Kähler manifold (X,ω0) admits a holo-
morphic isometry g : X → X with an isolated fixed point, and g2 = idX . Then there
is a v ∈ H for which (1.1) has no ω-plurisubharmonic solution u ∈ C∂∂̄(S×X). One
can choose v to satisfy g∗v = v.

The proof will show that among symmetric potentials the v ∈ H in Theorem 1.1
even form an open set.

Theorem 1.1 corresponds to [LV, Theorem 1.2], but the C3 regularity from [LV] has
been lowered. The proofs here and in [LV] are similar in that, denoting by x0 ∈ X an
isolated fixed point of g, in both proofs we analyze the behavior of a regular solution
u in a neighborhood of S × {x0}. The upshot of the analysis is a condition on the
Hessian of the boundary value at x0, a condition that not all v ∈ H satisfy. In [LV] the
analysis involved the Monge–Ampère foliation associated with a u ∈ C3(S ×X), and
it was crucial that the foliation was of class C1. The foliation method is not available
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when u is only C∂∂̄ , and we will have to be thriftier with our tools, but in spite of
this, we will recover the same condition on the Hessian as in [LV] when m = 1. When
m > 1, the present condition is even slightly stronger than the one in [LV].

2. Generalities

In this section, we collect a few simple facts concerning currents and the homogeneous
Monge–Ampère equation.

Proposition 2.1. Let f : Y → Z be a holomorphic map of complex manifolds, ϕ and
ψ continuous forms on Z satisfying ∂∂̄ϕ = ψ as currents. Then ∂∂̄f∗ϕ = f∗ψ as
currents.

Proof. We can assume Z is an open subset of some C
n. Regularizing ϕ and ψ by

convolutions gives rise to sequences of smooth forms ϕk and ψk = ∂∂̄ϕk that converge
locally uniformly to ϕ, resp. ψ. Therefore f∗ϕk → f∗ϕ and ∂∂̄f∗ϕk = f∗∂∂̄ϕk → f∗ψ
locally uniformly, whence the claim follows from the continuity of ∂∂̄ in the space of
currents. �

Next consider a complex manifold Z and a plurisubharmonic U ∈ C∂∂̄(Z). Suppose
Y ⊂ Z is a one-dimensional, not necessarily closed complex submanifold and TY ⊂
Ker∂∂̄U . The normal bundle NY = (T 1,0Z|Y )/T 1,0Y is a holomorphic vector bundle
and ∂∂̄U induces a possibly degenerate Hermitian metric h on it. With p : T 1,0Z|Y →
NY the canonical projection, the metric is

h(pζ) = ∂∂̄U(ζ, ζ) ≥ 0, ζ ∈ T 1,0Z|Y.
Thus h is continuous, but can degenerate, i.e., vanish on nonzero vectors as well.

Proposition 2.2. The metric h is seminegatively curved in the sense that log h◦σ is
subharmonic for any holomorphic section σ of NY over some open Y ′ ⊂ Y . (Here it is
convenient not to exclude from subharmonic functions those that are identically −∞
on some component of Y ′.) Further, on the line bundle detNY the metric induced by
h is also seminegatively curved.

When h is smooth and nondegenerate, and moreover (∂∂̄U)dim Z = 0, the semi-
negativity of detNY was first proved by Bedford and Burns in [BB, Proposition 4.1],
and [CT, Theorem 4.2.8] gives the seminegativity of NY itself. For possibly degen-
erate h [BF, Lemma] represents an equivalent result, albeit without the curvature
interpretation, and under the assumption that U is C2. Our proof is a variant of the
proof in [BF].

Proof. For the first statement we only need to prove that log h ◦ σ has the sub-
meanvalue property, and this at points where h ◦ σ �= 0. To do so, we can assume
Z ⊂ C

n is the unit polydisc, Y = Y ′ = {z ∈ Z : z2 = · · · = zn = 0}, and that
σ(z1, 0, 0, . . .) = p(∂/∂z2). Thus

(2.1) (h ◦ σ)(z1, 0, . . .) = Uz2z̄2(z1, 0, . . .).
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Green’s formula implies for 0 < r < 1

1
r2

∫ 1

0

(
U(z1, re2πit, 0, . . .) − U(z1, 0, 0, . . .)

)
dt(2.2)

=
i

πr2

∫
|z2|≤r

(log r − log |z2|)Uz2z̄2(z1, z2, 0, . . .) dz2 ∧ dz̄2,

certainly if U is C2, but then upon regularizing by convolutions, whenever U and
∂∂̄U are continuous — as in our case. Proposition 2.1, with f the embedding Y → Z,
implies ∂∂̄(U |Y ) = (∂∂̄U)|Y = 0. Hence, the left hand side of (2.2) is a subharmonic
function of z1, and so is the right-hand side. As r → 0, these functions converge locally
uniformly to Uz2z̄2(z1, 0, . . .); in light of (2.1) h ◦ σ is therefore subharmonic.

If ϕ ∈ O(Y ) and σ is replaced by eϕ/2σ, we obtain that eReϕh ◦ σ is also subhar-
monic. Therefore, it satisfies the maximum principle, and so does Re ϕ + log h ◦ σ;
knowing this for all ϕ ∈ O(Y ) is equivalent to the subharmonicity of log h ◦ σ, see,
e.g., [H, Theorem 1.6.3].

Now given any holomorphic vector bundle E → Y of rank r, endowed with a
seminegatively curved, possibly degenerate continuous Hermitian metric h, the in-
duced metric on the line bundle detE is also seminegatively curved. Indeed, denoting
by h(e, e′) the inner product of e, e′ ∈ Ey, y ∈ Y , so that h(e) = h(e, e), for (local)
sections σ1, . . . , σr of E the induced metric is given by

(2.3) hdet(σ1 ∧ · · · ∧ σr) = det
(
h(σj , σk)

)
.

If h is smooth and nondegenerate and y ∈ Y , any nonzero holomorphic section of detE
in a neighborhood of y can be written as σ1 ∧ · · · ∧ σr, where the σj are holomorphic
sections of E near y, and h(σj , σk) vanish to second order at y for j �= k. Thus
det

(
h(σj , σk)

) − ∏r
j=1 h(σj , σj) vanishes to fourth order at y. By virtue of (2.3) this

implies that at y

i∂∂̄ log hdet(σ1 ∧ · · · ∧ σr) = i∂∂̄ log
r∏

j=1

h(σj , σj) ≥ 0.

Therefore hdet is seminegatively curved when h is smooth and nondegenerate. To
prove for a general h we can assume Y ⊂ C is connected, E = Y ×C

r is holomorphi-
cally trivial, and hdet degenerates nowhere. We can regularize h by convolutions, and
obtain hdet as the locally uniform limit of seminegatively curved metrics, hence itself
seminegatively curved. �

Lastly, we record a uniqueness result and its corollary:

Proposition 2.3. Given a compact Kähler manifold (X,ω0) and v ∈ H, the equa-
tion (1.1) has at most one ω-plurisubharmonic solution u ∈ C∂∂̄(S ×X).

The result follows from [B�l, Proposition 2.2 or Theorem 2.3] or from [PS, p. 144],
once one checks that for ω-plurisubharmonic u ∈ C∂∂̄(S × X) the Monge–Ampère
measure (ω + i∂∂̄u)m+1, as defined, e.g., in [BT], agrees with what is obtained by
taking the exterior power of the continuous form ω + i∂∂̄u. Alternatively, the more
elementary arguments for [D, Lemma 6] and the first paragraph of the proof of [LV,
Proposition 2.3] also give uniqueness, provided one first checks the following: if Z
is a complex manifold and w ∈ C∂∂̄(Z) is real valued, then i∂∂̄w ≥ 0 at any local
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minimum point of w. Because of Proposition 2.1, it suffices to verify this latter when
dimZ = 1, and then it is straightforward: if i∂∂̄w < 0 at a point, then i∂∂̄w < 0 in a
neighborhood, whence w is strongly superharmonic there, and has no local minimum.

Corollary 2.1. Suppose v ∈ H satisfies g∗v = v, and u ∈ C∂∂̄(S × X) is an
ω-plurisubharmonic solution of (1.1). Then u(s, x) = u(s, g(x)).

3. Proof of Theorem 1.1

Let X,ω0, ω, and g be as in Theorem 1.1, and let x0 ∈ X be an isolated fixed point of g.
Using [LV, Proposition 2.2] we choose local coordinates z1, . . . , zm in a neighborhood
V ⊂ X of x0 in which g is expressed as (zj) �→ (−zj).

Proposition 3.1. If an ω-plurisubharmonic u ∈ C∂∂̄(S × V ) is a solution of (1.1)
and u(s, x) = u(s, g(x)), then u(s, x0) = a Im s for s ∈ S, with some a ∈ R.

Proof (essentially taken over from [BF, Proposition]). From our symmetry assump-
tion it follows that usz̄j (s, x0) = 0, and so

(3.1) 0 = (−iω + ∂∂̄u)m+1 = (−iω + ∂X∂Xu)m ∧ ∂S∂Su

at points of S×{x0}. Hence, for any s ∈ S either (−iω+∂X∂Xu)m or ∂S∂Su vanishes
at (s, x0). The goal is to show that it is always the latter that vanishes.

We claim that on S × {x0}

λ = log
(−iω + ∂X∂Xu

)m
(

∂

∂z1
∧ ∂

∂z̄1
∧ · · · ∧ ∂

∂zm
∧ ∂

∂z̄m

)

is subharmonic and not identically −∞. Indeed, by Proposition 2.1 (∂∂̄u)|{s}×X =
∂∂̄(u|{s} ×X) for s ∈ S, and by the continuity of ∂∂̄, also for s ∈ S. But u(0, ·) = 0
is strongly ω0-plurisubharmonic, hence λ(s, x0) > −∞ when s = 0, and also when
s ∈ S is near 0. As to subharmonicity, it suffices to verify it on the open set

S0 = {s ∈ S : λ(s, x0) > −∞}.
Choose a smooth w0 in a neighborhood of x0 ∈ X such that ω0 = i∂∂̄w0, let w(s, x) =
w0(x) and U = u+w. By what has been observed above, Usz̄j (s, x0) = Uss̄(s, x0) = 0 if
s ∈ S0; in other words, S0×{x0} is tangential to Ker ∂∂̄U . By virtue of Proposition 2.2
λ is subharmonic on S0 × {x0}, hence on S × {x0}, as claimed.

Once we know λ|S × {x0} is subharmonic, it follows that S0 is dense in S; since
by (3.1) uss̄ vanishes on S0 × {x0}, it vanishes on all of S × {x0}. The Proposition
now follows, because a harmonic function on S that depends only on Im s must be a
linear function of Im s. �

In the proof of the next proposition we will make use of the Poisson integral rep-
resentation of harmonic functions in a strip. If ψ is harmonic in S, continuous and
bounded in S, then we have the following integral representation (for more on this
see [W]):

(3.2) ψ(ξ + iη) =
∫ +∞

−∞
P (t− ξ, η)ψ(t)dt+

∫ +∞

−∞
P (t− ξ, 1 − η)ψ(t+ i)dt,
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where P is the following Poisson kernel:

P (ξ, η) =
sinπη

2(coshπξ − cosπη)
.

As expected, the above integral representation formula also gives a recipe to generate
bounded continuous harmonic functions in S given bounded continuous boundary
data on ∂S.

Let ω0 =
∑m

j,k=1 ωjkdzj ∧ dz̄k on V ⊂ X.

Proposition 3.2. Suppose a ∈ R and u is a bounded continuous ω-plurisubharmonic
function in S × V satisfying

u(s, x) = 0, if (s, x) ∈ R × V,

u(s, x0) = a Im s, if s ∈ S.

If v = u(i, ·) is twice differentiable at x0 and dv = 0 there, then

(3.3)

∣∣∣∣∣∣
m∑

j,k=1

vzjzk
(x0)ξjξk

∣∣∣∣∣∣ ≤
m∑

j,k=1

(
2ωjk(x0) + vzj z̄k

(x0)
)
ξjξk for ξj ∈ C,

and this estimate is sharp.

Proof. We will assume a = 0 (otherwise we replace u(s, x) by u(s, x) − a Im s). Thus
u(s, x0) = v(x0) = 0. By passing to a slice, the proof is reduced to the case m = 1.
We will denote the local coordinate on V by z = z1; it identifies V and x0 with a
neighborhood of 0 ∈ C and with 0 ∈ C. Since m = 1, we need to verify

(3.4) |vzz(0)| ≤ 2ω11(0) + vzz̄(0).

Suppose f : S → C is bounded and holomorphic with f(α) = 0, for some α ∈ S. Let
q = vzz(0), and choose real numbers p > vzz̄(0) and r > ω11(0). With a neighborhood
V ′ ⊂ V of 0 we will have

v(z) ≤ p|z|2 + Re qz2 and ω < i∂∂r|z|2

for all z ∈ V ′. Clearly, this implies that the function U(s, z) = r|z|2 + u(s, z) is
plurisubharmonic in S × V ′, and if ζ ∈ C is sufficiently small, then

φ(s) = U(s, ζf(s)) = r|ζf(s)|2 + u(s, ζf(s))

is a subharmonic function of s ∈ S. On the boundary of S we have the following
estimates:

φ(s)

{
= r|ζf(s)|2, if Im s = 0,
≤ (p+ r)|ζf(s)|2 + Re qζ2f(s)2, if Im s = 1.

We take ζ such that qζ2 is nonnegative. Then Re qζ2f(s)2 = |qζ2|Re f(s)2.
Let ψ1,ψ2 and ψ3 be bounded, continuous and harmonic functions on S defined by

the following boundary data:

ψ1(s) = |f(s)|2, if s ∈ ∂S,
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ψ2(s) = 0, if Im s = 0 and ψ2(s) = |f(s)|2, if Im s = 1,

ψ3(s) = 0, if Im s = 0 and ψ3(s) = Re f(s)2, if Im s = 1.

Since ψ1, ψ2, ψ3 and φ are all bounded on S, by the maximum principle we obtain

(3.5) 0 = u(α, 0) = φ(α) ≤ r|ζ|2ψ1(α) + p|ζ|2ψ2(α) + |q||ζ|2ψ3(α).

We will show that ψ2(α)/ψ1(α) can be chosen arbitrarily close to 1/2 and that
ψ3(α)/ψ1(α) can be chosen arbitrarily close to −1/2. We can work with any α ∈ S,
but if α = ξ+iη = i/2, Poisson’s formula (3.2) simplifies and gives ψ1(i/2) = (I+J)/2,
ψ2(i/2) = J/2 and ψ3(i/2) = K/2, where

I = I(f) =
∫ +∞

−∞

|f(t)|2
coshπt

dt, J = J(f) =
∫ +∞

−∞

|f(t+ i)|2
coshπt

dt,

K = K(f) =
∫ +∞

−∞

Re f(t+ i)2

coshπt
dt.

We need to choose f so that I ≈ J ≈ −K. No matter what f , clearly |K| ≤ J ;
to achieve J ≈ −K, the integrands in J and K must be negatives of each other, at
least approximately and for most t ∈ R that make the integrands large. This means
that f(t + i) must be close to imaginary. If also |f(t)| ≈ |f(t + i)|, then I ≈ J . Now
f(s) = eπs/2−eπi/4 satisfies both conditions and vanishes at i/2, but it is unbounded.
Instead, with a large λ ∈ R we let

fλ(s) =
eπs/2 − eπi/4

1 + eπ(s−λ)/2
.

We claim that I(fλ) ∼ J(fλ) ∼ 2λ and K(fλ) ∼ −2λ as λ → ∞. This will be
verified only for J(fλ), the other two are treated similarly. We have

J(fλ) =
(∫ 0

−∞
+

∫ λ

0

+
∫ +∞

λ

) |ieπt/2 − eπi/4|2
|1 + ieπ(t−λ)/2|2 coshπt

dt.

Since in the first integral the numerator is bounded, and in the last it is O(coshπt),
both integrals have bounds independent of λ. After a change of variables τ = t/λ in
the middle integral, we obtain∫ λ

0

|ieπt/2 − eπi/4|2
|1 + ieπ(t−λ)/2|2 coshπt

dt = λ

∫ 1

0

|ieπλτ/2 − eπi/4|2
|1 + ieπλ(τ−1)/2|2 cosh(πλτ)

dτ

= 2λ
∫ 1

0

|i− eπ(i/4−λτ/2)|2
|1 + ieπλ(τ−1)/2|2(1 + e−2πλτ )

dτ.

This last expression has bounded integrand, and the dominated convergence theorem
implies J(fλ) ∼ 2λ, as claimed. Letting λ → ∞ in (3.5) (with α = i/2) we obtain
0 ≤ p− |q| + 2r, and letting p→ vzz, r → ω11, (3.4) follows.

To prove the sharpness of estimate (3.3), suppose that V ⊂ C is the unit disc and
ω = i∂∂|z|2. Let

u(s, z) = − 2 Im s

ε+ Im s
(Re z)2,
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for some ε > 0. Clearly u is bounded and continuous on S × V , u(s, z) = 0 for all
(s, z) ∈ R×V , and u(s, 0) = 0 for all s ∈ S. One verifies that u is ω-plurisubharmonic
in S × V by checking that ∣∣∣∣uss usz

usz 1 + uzz

∣∣∣∣ = 0

and observing that 1 + uzz > 0. This confirms that the Levi form of |z|2 + u is semi-
positive everywhere. If ε → 0 then 2 + vzz(0) = 2 + uzz(i, 0) → 1 and |vzz(0)| =
|uzz(i, 0)| → 1; hence the estimate (3.3) is indeed sharp. �

Proof of Theorem 1.1. Given a g-invariant v ∈ H, suppose (1.1) has an ω-plurisub-
harmonic solution u ∈ C∂∂̄(S × X). By Corollary 2.4, u(s, x) = u(s, g(x)); since
dv(x0) = 0 is automatic for g-invariant v, by Propositions 3.1 and 3.2 v then satisfies
(3.3). Conversely, if a g-invariant v ∈ H does not satisfy (3.3), then (1.1) will have
no ω-plurisubharmonic solution u ∈ C∂∂̄(S×X). Such v certainly exist (and form an
open set among g-invariant potentials in H), because the matrices (vzj z̄k

(x0)) = (pjk)
and (vzjzk

(x0)) = (qjk) can be arbitrarily prescribed for g-invariant v ∈ H, as long as
(ωjk(x0) + pjk) is positive definite; see [LV, Lemma 3.3]. �
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