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ON THE CONIVEAU OF CERTAIN SUB-HODGE STRUCTURES

Lie Fu

Abstract. We study the generalized Hodge conjecture for certain sub-Hodge structure
defined as the kernel of the cup product map with a big cohomology class, which is of
Hodge coniveau at least 1. As predicted by the generalized Hodge conjecture, we prove

that the kernel is supported on a divisor, assuming the Lefschetz standard conjecture.

1. Introduction

Given a smooth projective variety X defined over C, let Hk(X,Q) be its kth Betti
cohomology group, which carries a pure Hodge structure of weight k. We can ask the
philosophical question: how much information about the geometry of the variety, for
example a knowledge of its subvarieties, can be extracted from the shape of certain
associated transcendental objects, namely the Hodge structures on its cohomology
groups? The generalized Hodge conjecture formulates a precise such relationship.

Recall that the Hodge coniveau of a weight k (pure) Hodge structure (L, Lp,q)
is defined to be the largest integer c ≤ �k

2 � such that L0,k = L1,k−1 = · · · =
Lc−1,k−c+1 = 0. If for any integer c, we define N c

HdgH
k(X,Q) as the sum of all

the sub-Hodge structures in Hk(X,Q) of Hodge coniveau at least c, we obtain the
Hodge coniveau filtration on Hk(X,Q). On the other hand, in terms of the topology of
algebraic subvarieties of X, we also have the so-called arithmetic filtration or coniveau
filtration N cHk(X,Q) (cf. [8,13,14]), where N cHk(X,Q) consists of the cohomology
classes supported on some algebraic subset of codimension at least c, here supported
on a closed subset means the class becomes zero when it is restricted to the open
complement. The following inclusion (cf. Section 2) gives a first relation between the
two filtrations:

(1.1) N cHk(X,Q) ⊂ N c
HdgH

k(X,Q).

In his famous paper [14], Grothendieck conjectures that the two filtrations in fact
coincide, more precisely:

Conjecture 1.1 (Grothendieck amended generalized Hodge conjecture). Let
X be a smooth projective variety of dimension n, 0 ≤ k ≤ n be an integer, and
L ⊂ Hk(X,Q) be a sub-Hodge structure of Hodge coniveau at least c, then there
exists a closed algebraic subset Z of codimension at least c, such that

L ⊂ Ker(j∗ : Hk(X,Q) → Hk(X\Z,Q)),

where j : X\Z → X is the natural inclusion.
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Note that the usual Hodge conjecture is the case k = 2c.
The usual Hodge conjecture already has many theoretical consequences. For exam-

ple, it implies that a morphism of Hodge structures between the cohomology groups
of two smooth projective varieties is always induced by an algebraic correspondence
(cf. Remark 2.4). In particular, it implies the Lefschetz standard conjecture (cf. Sec-
tion 4.1), which says that the inverse of the hard Lefschetz isomorphism

Li
X : Hn−i(X,Q) �−→ Hn+i(X,Q)

is induced by an algebraic cycle in CHn−i(X×X)Q. The generalized Hodge conjecture
has strong implications about the Chow groups, let us just mention [20,23,24].

The usual Hodge conjecture is widely open. The known cases of it include k =
2c = 0, 2, 2n− 2, 2n (thus for varieties of dimension at most 3), varieties with cellular
decomposition (Grassmannians, flag varieties, or more generally, quotients of reduc-
tive linear algebraic groups by parabolic subgroups), cubic four-folds ( [7, 25]) etc.
While for the generalized Hodge conjecture, besides the aforementioned cases, very
few are known. One class of known cases concerns about algebraic varieties with an
automorphism group, see for example [6, 20]. As far as we know, besides these and
some results about abelian varieties (cf. [1–3]), there are no general results verifying
the conjecture for a proper sub-Hodge structure.

In this paper, we try to understand such a sub-Hodge structure situation. Our
starting point is a discovery of a sub-Hodge structure of Hodge coniveau ≥ 1, which
we describe here in the case of divisors for simplicity.

For an ample divisor A on an n-dimensional smooth projective variety X, the hard
Lefschetz isomorphism tells us in particular that Ker(∪[A] : Hn−1(X) → Hn+1(X))
vanishes. Now if we weaken the positivity assumption, namely consider a big divisor
D = A + E, where A is an ample divisor, and E =

∑
i miEi is an effective divisor,

then in general,
L := Ker(∪[D] : Hn−1(X) → Hn+1(X))

could be non-trivial, for instance: (see also Example 3.2)

Example. Let X = Bly Y
τ−→ Y be the blow-up of a point in a smooth projective

3-fold Y , and D := τ∗(OY (1)) be the pull back of an ample divisor on Y . Then D is
big, while L = Ker(∪[D] : H2(X) → H4(X)) is generated by the fundamental class
of the exceptional divisor [E] ∈ H2(X).

Although L does not vanish in general, we still expect the positivity condition
on D implies some control on L. In the above example we can readily see that L is
supported on a divisor, thus of Hodge coniveau ≥ 1 in particular. Following the idea
of [23], we get in general:

Observation (Lemma 3.3): L is of Hodge coniveau at least 1.
Indeed, for any class α ∈ Hn−1,0(X) (in particular it is primitive), if D∪α = 0 but

α 
= 0, then 0 =
∫

X
Dαα =

∫
X

[A]αα +
∫

X
[E]αα =

∫
X

[A]αα +
∑

i mi

∫
Ẽi

τ∗
i (α)τ∗

i (α),

where τi : Ẽi → Ei is a resolution of singularities for each i. However, the second
Hodge–Riemann bilinear relation (cf. [21]) gives

(−1)
n(n−1)

2 in−1

∫

X

[A]αα > 0
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and for any i

(−1)
n(n−1)

2 in−1

∫

Ẽi

τ∗
i (α)τ∗

i (α) ≥ 0

Summing up these inequalities, we have a contradiction; therefore α = 0, thus proving
the observation.

Regarding the generalized Hodge conjecture, we ask the natural

Question (Conjecture 3.4). Can we prove that the kernel L of cup product with
a big class is supported on a divisor of X?

We answer this question in this paper assuming the Lefschetz standard conjecture.
Here is the main theorem, where the role of big divisor classes is played by the more
general notion of big cohomology classes (cf. Definition 3.1):

Theorem 1.2 (=Theorem 4.11). Let X be a smooth projective variety of dimension
n, k ∈ {0, 1, . . . , n} be an integer, and γ ∈ H2n−2k(X,Q) be a big cohomology class.
Let L be the kernel of the following morphism of “cup product with γ”:

∪γ : Hk(X,Q) → H2n−k(X,Q).

Then assuming the Lefschetz standard conjecture, L is supported on a divisor of X,
that is,

L ⊂ Ker
(
Hk(X,Q) → Hk(X\Z,Q)

)

for some closed algebraic subset Z of codimension 1.

The proof consists of three steps:
• Proposition 3.5 realizes L(1) effectively as a sub-Hodge structure of the degree

(k−2) cohomology of some other smooth projective variety. This step reduces
the question to the usual Hodge conjecture.

• We use the standard conjecture to construct adjoint correspondences (Sec-
tion 4.2) to get a divisor-supported sub-Hodge structure, which is transverse
to the orthogonal complement of L as in (4.6).

• We use the adjoint correspondences (Section 4.2) to construct the orthogonal
projector onto L in Proposition 4.12.

Here is the structure of this paper. In Section 2, besides some general remarks on
the generalized Hodge conjecture, we give a description of the gap between the usual
and the generalized Hodge conjectures (Lemma 2.3). In Section 3, we introduce the
coniveau 1 sub-Hodge structure mentioned above, which is our main object of study,
and we show that the generalized Hodge Conjecture 1.1 is satisfied for it assuming
the usual Hodge conjecture. In Section 4, we begin by making some general remarks
concerning the Lefschetz standard conjecture, then we give the basic construction of
the so-called adjoint correspondences, and finally we prove our main Theorem 1.2. In
Section 5, we discuss some unconditional results and give a reinterpretation of our
main result in the language of motivated cycles of Y. André.

2. Generalities of the generalized Hodge conjecture

In this section, we introduce the generalized Hodge conjecture and make a comparison
with the usual Hodge conjecture.
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First of all, let us recall some standard terminologies.1 Let m be an integer.
• The Tate Hodge structure Q(m) is the pure Hodge structure of weight −2m,

with the underlying rational vector space Q, and with the Hodge decomposi-
tion concentrated at bidegree (−m,−m).

• The Tate twist L(m) of a pure Hodge structure L of weight k is defined
to be the tensor product L ⊗ Q(m), which is a Hodge structure of weight
k − 2m. More concretely, the underlying rational vector space is L, while the
Hodge decomposition L(m)⊗QC = ⊕p+q=k−2mL(m)p,q is given by L(m)p,q =
Lp+m,q+m.

• A weight k pure Hodge structure (L, LC = ⊕p+q=kLp,q) is called effective, if
Lp,q = 0, when p < 0 or q < 0.

Here is the important notion of Hodge coniveau of a Hodge structure.

Definition 2.1 (Hodge coniveau). Let

(L, LC =
⊕

p+q=k
p,q≥0

Lp,q)

be an effective pure Hodge structure of weight k. The Hodge coniveau of L is defined to
be the largest integer c such that the Tate twist L(c) is an effective pure Hodge struc-
ture of weight k − 2c. In other words, the Hodge decomposition takes the following
form:

LC = Lc,k−c ⊕ Lc+1,k−c−1 ⊕ · · · ⊕ Lk−c,c

with Lc,k−c 
= 0.
Note that the Hodge coniveau of a non-zero effective pure Hodge structure of weight

k is always ≤ �k
2 �.

Given a smooth projective variety X of dimension n, and a closed algebraic subset
Z of codimension ≥ c, it is an easy consequence of the strictness of morphisms between
mixed Hodge structures (cf. [10]) that

Ker
(
Hk(X)

j∗
−→ Hk(X\Z)

)
= Im

(
H2n−k(Z)(−n) i∗−→ Hk(X)

)

is equal to

Im
(

H2n−k(Z̃)(−n) ĩ∗−→ Hk(X)
)

= Im
(

Hk−2c(Z̃)(−c) ĩ∗−→ Hk(X)
)

,

where i, j are the inclusions, τ : Z̃ → Z is a resolution of singularities of Z, ĩ = i◦τ , and
all the (co-)homology groups are with rational coefficients. Since Hk−2c(Z̃,Q)(−c) is
a Hodge structure of Hodge coniveau ≥ c, we deduce that Im(̃i∗) hence Ker(j∗) is a
sub-Hodge structure of Hodge coniveau at least c.

This explains in particular the inclusion (1.1) in the introduction:

N cHk(X,Q) ⊂ N c
HdgH

k(X,Q),

while Grothendieck’s generalized Hodge conjecture 1.1 states the reverse inclusion. In
the situation of Conjecture 1.1, we say that L is supported on Z.

1We will ignore the usual factor 2πi, which is the period making the formulations in algebraic
de Rham cohomology and in Betti cohomology compatible. However, we will not make any such
comparison argument in this paper.
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Remark 2.2. The generalized Hodge conjecture is widely open.

• The cases k = 0, 1 are trivial, and the case of k = 2 follows from the Lefschetz
theorem on (1,1)-classes.

• For k ≤ n, if we view the cohomology group H2n−k(X,Q) as of weight k via
the twist Q(n − k), the analogous conjecture for H2n−k(X,Q) follows from
the conjecture for Hk(X,Q) by hard Lefschetz isomorphisms.

• Note that the usual Hodge conjecture is exactly the case when k = 2i and
c = i, since to give a sub-Hodge structure of Hodge coniveau i in H2i(X,Q)
amounts to give a Hodge class of degree 2i up to a constant scalar. The known
cases of the usual Hodge conjecture include k = 2c = 0, 2, 2n − 2, 2n (thus
for varieties of dimension at most 3), varieties with cellular decomposition
(Grassmannians, flag varieties), cubic four-folds [7, 25] and so on.

• For general complete intersections in projective spaces, the generalized Hodge
conjecture for the middle cohomology is equivalent to the generalized Bloch
conjecture, assuming the Lefschetz standard conjecture (cf. [24]).

• Voisin [20] deals with some complete intersection surfaces with an automor-
phism group. See also [6] for a similar result about Calabi–Yau three-folds.

• There are some results for abelian varieties (cf. [1–3]).

We would like to make the following well-known remark which says that the gap
between the usual Hodge conjecture and the generalized Hodge conjecture is the
problem of finding an effective realization of the Tate twist of the sub-Hodge struc-
ture. For more general remarks to the generalized Hodge conjecture, we refer to the
papers [18,19].

Lemma 2.3 (Hodge conjecture versus generalized Hodge conjecture). Let
X be a smooth projective variety of dimension n, and L ⊂ Hk(X,Q) be a sub-Hodge
structure of Hodge coniveau at least c. Assume the following condition:

(∗) There exists a smooth projective variety Y , such that L(c) is a sub-Hodge struc-
ture of Hk−2c(Y,Q).

Then the usual Hodge conjecture for Y ×X implies the generalized Hodge conjecture
for L.

Before the proof of the lemma, let us recall the following fundamental interpretation
of a morphism between two Hodge structures as a Hodge class in their Hom-space
viewed as a Hodge structure (cf. [21]):

Remark 2.4. Let k1, k2 ∈ Z be of the same parity, and we set c = k2−k1
2 ∈ Z.

Let L1, L2 be two rational pure Hodge structures of weights k1, k2 respectively. The
canonical identification HomQ(L1, L2) = L∗

1⊗QL2 induces on HomQ(L1, L2) a Hodge
structure of weight k2 − k1. Then a linear map f ∈ HomQ(L1, L2) is a morphism of
Hodge structures of bidegree (c, c) if and only if f is a Hodge class of degree 2c
with respect to this natural Hodge structure. In the geometric setting, let X, Y be
smooth projective varieties of dimension n, m respectively, and f : Hk1(X,Q) →
Hk2(Y,Q) be a Q-linear map, then f is a morphism of Hodge structures of bidegree
(c, c) if and only if f is a Hodge class of degree 2c in HomQ(Hk1(X,Q), Hk2(Y,Q)) =
Hk1(X,Q)∗⊗Q Hk2(Y,Q) ∼= H2n−k1(X,Q)(n)⊗Q Hk2(Y,Q), which is a direct factor
of H2n−k1+k2(X × Y,Q)(n) by the Künneth formula. For such Hodge class f , if
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moreover there is an algebraic cycle Z ∈ CHn+c(X ×Y )Q such that the fundamental
class [Z ] ∈ H2n+2c(X×Y,Q) coincides with f when projecting to the Künneth factor
H2n−k1(X,Q)(n) ⊗Q Hk2(Y,Q), then we say that f is algebraic, meaning that f is
induced by an algebraic correspondence. In particular, the (usual) Hodge conjecture
implies that any morphism of Hodge structures f : Hk1(X,Q) → Hk2(Y,Q) is in fact
algebraic.

Proof of Lemma 2.3 (cf. [19].) Since the Hodge structure Hk−2c(Y,Q) is polarizable,
L(c) is a direct factor of Hk−2c(Y,Q) in the category of Hodge structures. In partic-
ular, there is a projection Hk−2c(Y,Q) � L(c), which is a morphism of Hodge struc-
tures. Twisting it by Q(−c), and composing with the inclusion of L into Hk(X,Q),
we get a morphism of Hodge structures

Hk−2c(Y,Q)(−c) → Hk(X,Q)

with image L. Now apply the usual Hodge conjecture for Y ×X (cf. Remark 2.4), we
conclude that this morphism of Hodge structures is algebraic, i.e., it is the correspon-
dence induced by an algebraic cycle Z ∈ CHn−c(Y × X). Therefore, L = Im([Z ]∗ :
Hk−2c(Y )(−c) → Hk(X)) is supported on Z := Supp(pr2(Z )), the support of the
image of Z under the projection to X. Clearly, every irreducible component of Z is
of dimension at most dim(Z ) = n − c, hence of codimension at least c. �

Remark 2.5. The condition (∗) in the above lemma is always satisfied when k = 2c
(trivial) or k = 2c + 1 (thanks to the anti-equivalence of categories between weight 1
effective rational Hodge structures and abelian varieties up to isogenies). Moreover, by
the Lefschetz theorem of hyperplane sections, we can reduce to the case of dim(Y ) =
k − 2c by taking successive general hyperplane sections on Y .

3. Kernel of the cup product map with big classes

For a smooth projective variety X, let H2i(X,Q)alg be the Q-subspace of H2i(X,
Q) generated by the fundamental classes of algebraic cycles of codimension i. In
H2i(X,Q)alg sits the effective cone generated by the effective algebraic cycles of codi-
mension i. Making an analogue of the divisor case, we define a cohomology class to
be big, if it is in the interior (when passing to the real coefficients) of the effective
cone. Here is the practical definition that we will use in this paper.

Definition 3.1 (Big cohomology classes). Let X be a smooth projective variety,
and let 0 ≤ i ≤ dim(X) be an integer. A cohomology class γ ∈ H2i(X,Q)(i) is called
big, if some of its positive multiples is of the form

mγ = [A]i + [E] in H2i(X,Z)(i), m ∈ N∗,

where A is an ample divisor, E is an effective algebraic cycle of codimension i, and
[-] means the cohomology class of an algebraic cycle.

To simplify the notation, we will mostly suppress the Tate twists from now on,
except when we want to highlight it.

Note that if the class γ ∈ H2i(X,Q) is “ample” in the sense that γ ∈ [A]i · Q>0

for some ample divisor A, then the hard Lefschetz theorem says ∪γ : Hn−i(X,Q) →
Hn+i(X,Q) is an isomorphism; in particular, the kernel is trivial. However, when γ
is only big, the kernel could be non-trivial as the following example shows.
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Example 3.2. Let V be a smooth projective variety of dimension n with a smooth
subvariety Z of codimension c ≥ 2. Let X := BlZ V

τ−→ V be the blow-up of V along
Z, and E be the exceptional divisor:

E

�

ι ��

p

��

BlZ V

τ

��
Z

i
�� V

We consider γ = τ∗(A), the pull-back of an ample divisor class A on V . Thanks to
the following formula for the cohomology of blow-ups (cf. [21] Theorem 7.31):

τ∗ ⊕
c−2⊕

i=0

ι∗ξip∗ : Hn−1(V ) ⊕
c−2⊕

i=0

Hn−3−2i(Z) �−→ Hn−1(X),

where ξ = OE(1), we find that

Ker
(∪γ : Hn−1(X) → Hn+1(X)

) �
c−2⊕

i=0

Ker
(∪A|Z : Hn−3−2i(Z) → Hn−1−2i(Z)

)
,

which does not vanish in general.

Despite Ker(∪γ) 
= 0 in general, we still expect the positivity assumption on γ
would imply the kernel is “small” in certain sense. For instance in the above exam-
ple, we observe that the kernel is in fact supported in the exceptional divisor E; in
particular, Ker(∪γ) is of Hodge coniveau at least 1.

The following Lemma 3.3 generalizes this example. This observation is the starting
point of the paper. The idea of using the Hodge–Riemann bilinear relations goes back
to [23].

Lemma 3.3 (Observation). Let X be a smooth projective variety of dimension n,
0 ≤ k ≤ n be an integer, and γ ∈ H2n−2k(X,Q) be a big cohomology class. Let L be
the kernel of the following morphism of “cup product with γ”:

∪γ : Hk(X,Q) → H2n−k(X,Q).

Then L is a sub-Hodge structure of Hk(X,Q) of Hodge coniveau at least 1.

Proof. Replacing γ by a multiple if necessary, we can suppose that

γ = [A]n−k + [E] in H2n−2k(X,Z),

where A = OX(1) is a general hyperplane section, and E is an effective algebraic
cycle of codimension n − k. Since ∪γ is clearly a morphism of Hodge structures, its
kernel L is of course a sub-Hodge structure. Therefore, to prove the Hodge coniveau
1 assertion, which means Lk,0 = 0, it suffices to show that for any class α ∈ Hk,0(X),
if γ ∪ α = 0, then α = 0. Let α be such a class.

Let E =
∑

i miEi with mi ∈ N∗ be the decomposition into linear combination
of prime divisors, and τi : Ẽi → Ei be a resolution of singularities for each i. As
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γ ∪ α = 0, we have

0 =
∫

X

γαα

=
∫

X

[A]n−kαα +
∫

X

[E]αα

=
∫

X

[A]n−kαα +
∑

i

mi

∫

Ẽi

τ∗
i (α)τ∗

i (α)

However, since α is primitive in Hk(X,C), by the second Hodge–Riemann bilinear
relation (cf. [21]),

(3.1) (−1)
k(k−1)

2 ik
∫

X

[A]n−kαα ≥ 0,

with equality holds only when α = 0.
Similarly, since τ∗

i (α) is also of type (k, 0), in particular primitive in Hk(Ẽi,C),
we have again by the second Hodge–Riemann bilinear relation that for each i,

(3.2) (−1)
k(k−1)

2 ik
∫

Ẽi

τ∗
i (α)τ∗

i (α) ≥ 0.

As the sum of the left-hand sides of (3.1) and (3.2) is zero, we have an equality in
(3.1), i.e., α = 0, and hence L is of Hodge coniveau at least 1. �

Combining the above observation 3.3 with the generalized Hodge conjecture 1.1,
one gets the following conjecture which is the main subject of the paper.

Conjecture 3.4. Let X be a smooth projective variety of dimension n, 0 ≤ k ≤ n
be an integer, and γ ∈ H2n−2k(X,Q) be a big cohomology class (in the sense of
Definition 3.1). Let L be the kernel of the following morphism of “cup product with γ”:

∪γ : Hk(X,Q) → H2n−k(X,Q).

Then L is supported on a divisor of X, i.e., L ⊂ Ker(Hk(X,Q) → Hk(X\Z,Q)) for
some Z closed algebraic subset of codimension 1.

In the presence of Lemma 3.3, the cases of k = 0, 1, n are trivial, and the case of
k = 2 follows from the Lefschetz theorem on (1,1)-classes.

We would like to show first (see Corollary 3.6) that Conjecture 3.4 is implied by
the usual Hodge conjecture. The key point is the following Proposition 3.5 of effective
realization of L(1). The argument appeared in Voisin’s paper [23]. We reproduce her
argument here since the construction will be useful in Section 4, where we will show
that Conjecture 3.4 is in fact a consequence of the Lefschetz standard conjecture.

Proposition 3.5 (Effective realization). Let X, k, γ, L be as above. Then there
exists a (not necessarily connected) smooth projective variety Y of dimension k − 1

with a morphism μ : Y → X, such that the composition L ↪→ Hk(X,Q)
μ∗
−→ Hk(Y,Q)

is injective.
In particular, L(1) is a sub-Hodge structure of Hk−2(Y,Q).
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Proof. Adopting the notations in Lemma 3.3, up to replacing γ by a positive multiple,
we can assume

γ = [A]n−k + [E] in H2n−2k(X,Z),
where A = OX(1) is a general hyperplane section and E =

∑
i miEi with mi ∈ N∗

is an effective algebraic cycle of dimension k, and τi : Ẽi →Ei is a resolution of
singularities for each i. Let B be the intersection of (n − k + 1) general hyperplane
sections of X, and Hi be a general section of a very ample line bundle on Ẽi, in
particular, B and Hi are irreducible smooth projective varieties of dimension k − 1.

Let Y := B�⊔
i Hi be their disjoint union, and μ : Y →X be the natural morphism.

We claim:
(∗∗) The composition L ↪→ Hk(X,Q)

μ∗
−→ Hk(Y,Q) is injective, i.e., L∩Ker(μ∗) =

{0}.
Indeed, since L ∩ Ker(μ∗) is a sub-Hodge structure, it suffices to show, for each

(p, q) with p + q = k, that if α ∈ Hp,q(X) satisfies α ∪ γ = 0 and μ∗(α) = 0, then we
have α = 0. Suppose the contrary: α 
= 0.

Since the composition Hk(X,Q)
i∗B−→ Hk(B,Q)

iB∗−−→ H2n−k+2(X,Q) is exactly
the Lefschetz operator [B] = [A]n−k+1 and the second morphism is an isomorphism
by Lefschetz’s hyperplane theorem, we find that Ker(i∗B : Hk(X,Q) → Hk(B,Q)) =
Hk(X,Q)prim, where iB = μ |B is the natural inclusion of B into X; in particular, α
is a primitive class of type (p, q).

As in the proof of Lemma 3.3, firstly we have

0 =
∫

X

γαα (since γ ∪ α = 0)

=
∫

X

[A]n−kαα +
∫

X

[E]αα

=
∫

X

[A]n−kαα +
∑

i

mi

∫

Ẽi

τ∗
i (α)τ∗

i (α).

However, since α 
= 0 is primitive of type (p, q), by the second Hodge–Riemann bilinear
relation (cf. [21]), we have

(−1)
k(k−1)

2 ip−q

∫

X

[A]n−kαα > 0.

Therefore, since the sum is zero, there exists i, such that

(−1)
k(k−1)

2 ip−q

∫

Ẽi

τ∗
i (α)τ∗

i (α) < 0.

By the second Hodge–Riemann bilinear relation of Ẽi, we deduce that τ∗
i (α) is NOT

primitive in Hk(Ẽi,Q), i.e., [Hi] ∪ τ∗
i (α) 
= 0. In particular, (μ |Hi)

∗(α) 
= 0, giving a
contradiction to the assumption that α ∈ Ker(μ∗). So the claim (∗∗) follows, and this
is exactly what we want.

As for the last assertion, composing the injective morphism of Hodge structures
obtained above L ↪→ Hk(Y,Q), with the inverse of the hard Lefschetz isomorphism
(as Hodge structures) Hk−2(Y,Q)(−1) �−→ Hk(Y,Q), we get an inclusion of Hodge
structures L(1) ↪→ Hk−2(Y,Q) as desired. �
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Corollary 3.6. Conjecture 3.4 is implied by the usual Hodge conjecture.

Proof. To reach the generalized Hodge conjecture from the usual Hodge conjecture,
we use Lemma 2.3 that explains the gap between them; so we only have to check in
our situation the condition (∗) in Lemma 2.3.

However, the above Proposition 3.5 provides an inclusion of Hodge structures
L(1) ↪→ Hk−2(Y,Q), and this is exactly the condition (∗) in Lemma 2.3. �

The rest of the paper is devoted to the proof of the main Theorem 1.2, which says
that Conjecture 3.4 is in fact implied by an a priori much weaker conjecture, namely
the Lefschetz standard conjecture.

4. Lefschetz standard conjecture implies Conjecture 3.4

We first recall the Lefschetz standard conjecture. Then in the second subsection we
deal with the construction and the formal properties of the adjoint of an algebraic
correspondence, which incorporates the strength of the Lefschetz standard conjecture;
while in the third subsection, by rather formal arguments, we will deduce our main
Theorem 4.11 from Proposition 3.5, which embeds the Tate twist of the sub-Hodge
structure in question into the cohomology of some smooth projective variety.

4.1. Lefschetz standard conjecture. Here we gather some well-known general
remarks concerning the Lefschetz standard conjecture, for a more complete treatment
see [16, 17]. Let X be a smooth projective variety of dimension n, OX(1) be a very
ample divisor which is chosen to be the polarization of X. Let ξ = c1(OX(1)) ∈
H2(X,Q). Define the Lefschetz operator

LX = ∪ξ : Hk(X,Q) → Hk+2(X,Q)

to be cup product with the first Chern class of the polarization. The hard Lefschetz
theorem asserts that for any integer k ∈ {0, . . . , n}, the morphism

Ln−k
X : Hk(X,Q) → H2n−k(X,Q)

is an isomorphism. Note that this isomorphism is in fact algebraic (see Remark 2.4),
which means that it is the correspondence induced by a dimension k algebraic cycle
ΔX∗(OX(1)n−k) ∈ CHk(X×X), where ΔX : X ↪→ X×X is the diagonal inclusion. In
his paper [15], Grothendieck conjectures that the inverse of the Lefschetz isomorphism
is also algebraic.

Conjecture 4.1 (Lefschetz standard conjecture). In the above situation, there
exists a codimension k algebraic cycle with rational coefficients Z ∈ CHk(X × X)Q,
such that the induced correspondence

[Z ]∗ : H2n−k(X,Q) → Hk(X,Q)

is the inverse of the isomorphism Ln−k
X defined above.

Remark 4.2. We list some basic facts about the standard conjecture. Some of them
will be used in the sequel.
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• There are several equivalent versions of the Lefschetz standard conjecture
(cf. [16,17]). Besides the one stated above, let us just mention another equiv-
alent one which says that the projectors πLi

XHk−2i(X)prim
, with respect to

the Lefschetz decomposition Hk(X) =
⊕

i≥max{0,k−n} Li
XHk−2i(X)prim, are

algebraic.
• The Lefschetz standard conjecture implies the Künneth standard conjecture

which says that all the projectors πk : H∗(X) � Hk(X) ↪→H∗(X) are alge-
braic.

• The Lefschetz standard conjecture is implied by the usual Hodge conjecture.
Indeed, (Ln−k

X )−1 is a morphism of Hodge structures, by Remark 2.4 the
corresponding cohomology class of X × X is a Hodge class (it is an absolute
Hodge class2 in fact), and the Hodge conjecture claims the existence of an
algebraic cycle inducing (Ln−k

X )−1.
• The Lefschetz standard conjecture in degree 1, namely the algebraicity of

(Ln−1)−1 : H2n−1(X,Q) → H1(X,Q), is implied by the Lefschetz theorem
of (1,1)-class on X ×X. Thus the Lefschetz standard conjecture is known for
curves and surfaces. Besides, other known cases include abelian varieties, gen-
eralized flag varieties. Note that this conjecture is stable by taking products,
hyperplane sections (cf. [17]). Let us also mention the recent work [9] veri-
fying this conjecture for certain type of irreducible holomorphic symplectic
varieties.

4.2. Adjoint correspondences. For any smooth projective variety X of dimension
n, with polarization OX(1) and corresponding Lefschetz operator LX , let us consider
the following operator sX on H∗(X,Q), which changes the signs of the factors in the
Lefschetz decomposition to retain the positivity property as in the primitive part.

Definition 4.3 (Operator sX on H∗(X)). For any integer k ∈ {0, . . . , n}, the
action of the operator sX on Hk(X) =

⊕
0≤i≤� k

2 � Li
XHk−2i(X)prim is defined as

multiply by (−1)
k(k−1)

2 · (−1)i on the direct factor Li
XHk−2i(X)prim in the Lefschetz

decomposition. Let the action of sX on H2n−k(X) be the action induced from the
one on Hk(X) via the hard Lefschetz isomorphism.

Remarks 4.4. From the above definition, we note that

• sX is an involution: sX ◦ sX = id.
• sX commutes with the Lefschetz operator LX ◦ sX = sX ◦ LX .
• The transpose of sX is sX .
• sX is rational, i.e., it comes from a Q-linear operator on H∗(X,Q), the reason

is that the Lefschetz decomposition is rational.

Lemma 4.5 (Algebraicity of sX). Assuming the Lefschetz standard conjecture, the
operator sX is algebraic, i.e., it is induced by an algebraic cycle in CHn(X × X)Q.

2Roughly speaking, they “descend” with the field of definition of X; cf. [11].
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Proof. We can write

sX =
n∑

k=0

⎛

⎝
� k

2 �∑

i=0

(−1)iπLi
XHk−2i(X)prim

⎞

⎠ · (−1)
k(k−1)

2 πk

+
n∑

k=0

⎛

⎝
� k

2 �∑

i=0

(−1)iπLn−k+i
X Hk−2i(X)prim

⎞

⎠ · (−1)
k(k−1)

2 π2n−k.

By the first two points of Remark 4.2, assuming the Lefschetz standard conjecture,
all the projectors appearing in the above formula, hence sX itself, are algebraic. �

Usually, for 0 ≤ k ≤ n, people use the pairing 〈−,−〉 on Hk(X) defined by

〈x, y〉 :=
∫

X

Ln−k
X xy for any x, y ∈ Hk(X).

Although it is non-degenerate thanks to the hard Lefschetz isomorphism, it does not
have the positivity property enjoyed by the primitive part any more. In the language of
Hodge theory, we say that this pairing is NOT a polarization. To retain the positivity
property, we define the following modified bilinear pairing on Hk(X):

(4.1) (x, y)Hk(X) :=
∫

X

Ln−k
X x · sX(y)

for any x, y ∈ Hk(X). We sometimes suppress the subscript to write (−,−) if we do
not want to mention the Hodge structure explicitly. Then

• (−,−)Hk(X) is rational;
• (x, y)Hk(X) = (−1)k(y, x)Hk(X) for any x, y ∈ Hk(X).

Moreover, by the Hodge–Riemann bilinear relations (cf. [21]), we find that for any
0 ≤ k ≤ n, any x ∈ Hp,q(X) and y ∈ Hp′,q′

(X) with p + q = p′ + q′ = k, we have
• (x, y) =

∫
X

Ln−k
X x · sX(y) = 0 unless (p, q) = (q′, p′);

• (ip−qx, x) =
∫

X
Ln−k

X · ip−qx · sX(x) > 0 for any 0 
= x ∈ Hp,q(X).
Therefore the bilinear pairing (4.1) on Hk(X) is a polarization (cf. [21]) of the Hodge
structure Hk(X,Q). As for the Hodge structure H2n−k(X,Q), we use the polarization
induced from the one on Hk(X,Q) via the hard Lefschetz isomorphism.

Throughout this paper, we will always use this polarization (4.1) on the cohomology
groups of any polarized smooth projective variety.

Remark 4.6. The advantage of using the polarizations (−,−) instead of the usual
pairings 〈−,−〉 can be summarized in the following very vague analogue: as long as
we stay3 in the category of polarizable Hodge structures equipped with the polarizations
above, to do linear algebra we can pretend that the spaces are euclidean spaces equipped
with positive definite scalar products. To illustrate this intuition as well as for later use,
we want to recall here several basic properties of polarizations of Hodge structures,
and more analogues can be found in the rest of this paper. Let H be a Hodge structure
with polarization (−,−), and L be a sub-Hodge structure, then (cf. [21])

3That is, all the vector spaces considered are Hodge structures and all the relevant morphisms
between them are morphisms of Hodge structures. In particular, all the subspaces should be sub-
Hodge structures.
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• (−,−)|L gives a polarization of L;
• L⊥ is a sub-Hodge structure with polarization (−,−)|L⊥ ;
• L ∩ L⊥ = {0}, thus L ⊕ L⊥ = H.

Here comes the basic terminology that we will use in the following.

Proposition-Definition 4.7 (Adjoint correspondence). Let X, Y be smooth
projective varieties of dimension n, m respectively, and −n ≤ r ≤ m be an integer.
Given Z ∈ CHn+r(X ×Y )Q an algebraic cycle with rational coefficients, viewed as a
correspondence (cf. [12]) from X to Y , it induces morphisms on cohomology groups
for any k ∈ {0, . . . , 2n}:

C := [Z ]∗ : Hk(X,Q) → Hk+2r(Y,Q).

Assuming the Lefschetz standard conjecture, then there exists an algebraic cycle with
coefficients Z † ∈ CHm−r(Y × X)Q, such that as a correspondence from Y to X, for
any k ∈ {0, . . . , 2n}, the induced morphism on cohomology groups:

C† := [Z †]∗ : Hk+2r(Y,Q) → Hk(X,Q)

satisfies

(4.2) (Cα, β)Hk+2r(Y ) = (α, C†β)Hk(X)

for any α ∈ Hk(X) and any β ∈ Hk+2r(Y ), where (−,−) denotes the polarization of
Hodge structures fixed in (4.1).

We call Z † an adjoint correspondence of Z , and also C† the adjoint (cohomo-
logical) correspondence of C.

Proof. Since the Lefschetz standard conjecture implies the Künneth standard conjec-
ture (cf. Remark 4.2), it suffices to construct for each k ∈ {0, . . . , 2n}, an algebraic
cycle Z †

k ∈ CHm−r(Y × X)Q such that (4.2) is satisfied. Indeed, we could take
Z † =

∑
k πk

X ◦ Z †
k ◦ πk+2r

Y , where ◦ means composition of correspondences (cf. [12])
and π are Künneth projectors, which are algebraic by assumption.

Now we construct Z †
k ∈ CHm−r(Y × X)Q. For simplicity, we give the formula in

the case that 0 ≤ k ≤ n and 0 ≤ l := k + 2r ≤ m; the other cases follow immediately
since we know that the inverse of the hard Lefschetz isomorphism is given by an
algebraic correspondence. For any α ∈ Hk(X), β ∈ H l(Y ), we have:

(Cα, β)Hl(Y ) =
∫

Y

[Z ]∗(α) · Lm−l
Y ◦ sY (β) (Definition (4.1))

=
∫

X

α · [Z ]∗ ◦ Lm−l
Y ◦ sY (β) (projection formula)

=
∫

X

Ln−k
X α · sX ◦ (Ln−k

X )−1

◦ sX ◦ [Z ]∗ ◦ Lm−l
Y ◦ sY (β) (Remark 4.4)

= (α, (Ln−k
X )−1 ◦ sX ◦ [Z ]∗ ◦ Lm−l

Y ◦ sY (β))Hk(X). (Definition (4.1))

The s-operators and the inverse of the Lefschetz operator are supposed to be algebraic
by the Lefschetz standard conjecture as the preceding lemma shows. We use the same
notation to denote the algebraic cycles inducing them. Therefore, we can take

(4.3) Z † = (Ln−k
X )−1 ◦ sX ◦ tZ ◦ Lm−l

Y ◦ sY ,
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where tZ ∈ CHn+r(Y ×X)Q is the transpose of the correspondence Z ∈ CHn+r(X×
Y )Q (cf. [12]), and ◦ means the composition of correspondences. C† is defined to be
the cohomological correspondence induced by Z †. �
Remark 4.8. Although the adjoint correspondence Z † of Z is not uniquely deter-
mined as an algebraic cycle modulo rational equivalence, the adjoint (cohomological)
correspondence C† of C is uniquely determined as a cohomological class in H∗(Y ×X),
since the polarization is non-degenerate.

As expected, we have immediately:

Lemma 4.9. Let X, Y , r, Z , C be as above, then
• For any k ∈ {0, · · · , 2n}, α ∈ Hk(X), β ∈ Hk+2r(Y ), we have

(C†β, α)Hk(X) = (β, Cα)Hk+2r(Y ).

• The operator † is an involution:

C†† = C.

• If we have a third smooth projective variety Z, and an algebraic correspon-
dence from Y to Z: Z ′ ∈ CH(Y × Z)Q, and let C ′ be the corresponding
cohomological correspondence, then we have a functoriality:

(C ′C)† = C†C ′†.

Proof. Indeed,

(C†β, α)Hk(X) = (−1)k(α, C†β)Hk(X)

= (−1)k+2r(Cα, β)Hk+2r(Y ) (by (4.2))

= (β, Cα)Hk+2r(Y )

gives the first assertion, and

(β, C††α)Hk+2r(Y ) = (C†β, α)Hk(X) = (β, Cα)Hk+2r(Y )

yields the second one by the non-degeneracy of the polarization. Similarly,

(α, (C ′C)†γ) = (C ′Cα, γ) = (Cα, C ′†γ) = (α, C†C ′†γ)

gives the third assertion. �
The following formal property will play an important role in the final part of our

argument. It appeared in [22], Lemma 5. We recall that the restriction of a polarization
on a Hodge structure to a sub-Hodge structure is non-degenerate (cf. Remark 4.6).

Proposition 4.10 (Invariance of rank). Let X, Y , Z , C as above. We have

rank(C) = rank(C†) = rank(CC†) = rank(C†C).

In particular,

Ker(CC†) = Ker(C†);

Ker(C†C) = Ker(C);

Im(CC†) = Im(C);

Im(C†C) = Im(C†).
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Proof. We only need to show Ker(C†C) = Ker(C). Indeed, replacing C by C† gives
another equality for kernels since C†† = C, then combining the obvious fact that
rank(C) = rank(C†) we get all the equalities of ranks, and the equalities of images
follow immediately.

Now Ker(C†C) ⊃ Ker(C) is obvious. For the other inclusion, let α ∈ Ker(C†C), we
have (Cα, Cα′) = (C†Cα, α′) = 0 for any α′ ∈ Hk(X). However, since C is induced by
an algebraic correspondence, it is a morphism of Hodge structures; in particular Im(C)
is a sub-Hodge structure, therefore as we remarked above, the restriction (−,−)|Im(C)

is non-degenerate, which implies Cα = 0, i.e., α ∈ Ker(C). This gives the other
inclusion Ker(C†C) ⊂ Ker(C). �

4.3. The proof of the main theorem. We now prove the main theorem which
says that Conjecture 3.4 is implied by the Lefschetz standard conjecture:

Theorem 4.11 (= Theorem 1.2). Let X be a smooth projective variety of dimen-
sion n, 0 ≤ k ≤ n be an integer, and γ ∈ H2n−2k(X,Q) be a big cohomology class.4

Let L be the kernel of the following morphism of “cup product with γ”:

∪γ : Hk(X,Q) → H2n−k(X,Q).

Assuming the Lefschetz standard conjecture, then L is supported on a divisor of X,
that is,

L ⊂ Ker(Hk(X,Q) → Hk(X\Z,Q))

for some closed algebraic subset Z of codimension 1.

Proof. Firstly, recall that in Proposition 3.5 we have constructed a (not necessarily
connected) smooth projective variety Y of dimension k− 1 with a morphism μ : Y →
X, and showed that the composition L ↪→ Hk(X,Q)

μ∗
−→ Hk(Y,Q) is injective, i.e.,

L ∩ Ker(μ∗) = {0}.
Note that the Lefschetz standard conjecture on Y tells us the inverse hard Lef-

schetz isomorphism (LY )−1 : Hk(Y,Q) �−→ Hk−2(Y,Q) is algebraic. Therefore, the
composition

(4.4) C := (LY )−1 ◦ μ∗ : Hk(X,Q) → Hk−2(Y,Q)

is algebraic, i.e., C = [Z ]∗ for some Z ∈ CHn−1(X × Y )Q. The above injectivity is
of course preserved, thus

Ker(C) ∩ L = {0}.
Taking the orthogonal complements (with respect to the fixed polarization
(−,−)Hk(X) introduced in (4.1)) of both sides, and using the non-degeneracy of the
polarization, we get:

(4.5) Ker(C)⊥ + L⊥ = Hk(X,Q).

Now consider the adjoint correspondence C† = [Z †]∗ : Hk−2(Y,Q) → Hk(X,Q),
where Z † ∈ CHn−1(Y × X)Q is the algebraic cycle constructed in (4.3) using the
Lefschetz standard conjecture. By the adjoint property (C†α, α′) = (α, Cα′) for any
α ∈ Hk−2(Y,Q) and α′ ∈ Hk(X,Q), we find that Im(C†) ⊂ Ker(C)⊥. However,

4cf. Definition 3.1.
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dim Ker(C)⊥ = dimHk(X) − dim Ker(C) = dim Im(C) = dim Im(C†), so in fact
Im(C†) = Ker(C)⊥. Therefore, (4.5) is equivalent to

(4.6) Im(C†) + L⊥ = Hk(X,Q).

We first finish the proof by assuming the following Proposition 4.12, which says that
with respect to the orthogonal decomposition Hk(X,Q) = L ⊕ L⊥ (cf. Remark 4.6),
the orthogonal projector

prL : Hk(X,Q) � L ↪→ Hk(X,Q)

is algebraic, i.e., induced by an algebraic cycle Z ′ ∈ CHn(X × X)Q.
Now consider the composition of the algebraic correspondences Z ′ ◦ Z †:

Hk−2(Y,Q)
C†=[Z †]∗ ��

�� ������������
Hk(X,Q)

prL=[Z ′]∗ ��

�� ����
��

��
��

��
Hk(X,Q)

Im(C†)
� �

������������
�� �� L

� �

������������

where we place the cohomological correspondences in the first line, and the images
of two morphisms in the second line. Then the equality (4.6) says exactly that the
induced morphism in the bottom line from Im(C†) to L is surjective, in other words,

Im
(
[Z ′ ◦ Z †]∗ : Hk−2(Y,Q) → Hk(X,Q)

)
= L.

Therefore, L is supported on Z := Supp(pr2(Z ′ ◦ Z †)): the support of the image of
Z ′ ◦ Z † ∈ CHn−1(Y × X)Q under the projection to X, so the dimension of each
irreducible component of Z is at most n − 1, hence L is supported on a divisor of
X. �

To complete the proof, we only need to show the following:

Proposition 4.12 (Orthogonal projector to L). Let X, γ, L as in the above
theorem. Then for the orthogonal decomposition5 Hk(X,Q) = L⊕L⊥ with respect to
the fixed polarization (−,−)Hk(X), the orthogonal projector

prL : Hk(X,Q) � L ↪→ Hk(X,Q)

is algebraic (in the sense of Remark 2.4).

Proof. Define B : Hk(X,Q) → Hk(X,Q) to be the unique morphism satisfying

(Bα, α′)Hk(X) =
∫

X

γαα′

for any α, α′ ∈ Hk(X). (Here the rationality of B comes from those of γ and sX .)
However, by

∫

X

γαα′ =
∫

X

Ln−k
X · (Ln−k

X )−1 ◦ sX(γα) · sX(α′)

= ((Ln−k
X )−1 ◦ sX(γα), α′),

we deduce that
B = (Ln−k

X )−1 ◦ sX ◦ (γ∪),

5See the last point of Remark 4.6.
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where γ is an algebraic class, sX and (Ln−k
X )−1 are also induced by algebraic cor-

respondences under the assumption of Lefschetz standard conjecture; therefore B is
algebraic, i.e., B = [W ]∗, for some W ∈ CHn(X × X)Q.

Observe that (Bα, α′) =
∫

X
γαα′ = (−1)k

∫
X

γα′α = (−1)k(Bα′, α) = (α, Bα′),
which means that B is self-adjoint :

B† = B.

By Proposition 4.10, we have rank(B2) = rank(BB†) = rank(B), i.e.,

(4.7) Im(B) = Im(B2).

The following elementary lemma in linear algebra allows us to construct from such
an endomorphism a projector onto its image.

Lemma 4.13. Let V be a finite dimensional Q-vector space, f : V → V be an
endomorphism satisfying Im(f2) = Im(f). Then there exists a Q-coefficient polyno-
mial P with P (0) = 0, such that the endomorphism g := P (f) is a projector onto
Im(f), i.e., g2 = g and Im(g) = Im(f). Moreover, Ker(f) = Ker(g).

Proof. By assumption f |Im(f) : Im(f) → Im(f) is surjective hence an isomorphism.
Let Q ∈ Q[T ] be the minimal polynomial of f |Im(f), since f |Im(f) is an isomorphism,
Q(0) 
= 0.

Defining R ∈ Q[T ] to be R[T ] = −Q(T )−Q(0)
Q(0)·T , then R

(
f |Im(f)

)
=

(
f |Im(f)

)−1; in
other words,

(R(f) · f) |Im(f) = idIm(f) .

Now we set P ∈ Q[T ] to be P (T ) = R(T ) ·T . Then P (0) = 0, and g := P (f) satisfies

(4.8) g|Im(f) = idIm(f) .

However, since P (0) = 0, we have Im(g) ⊂ Im(f), thus (4.8) implies Im(g) = Im(f)
and thus also g2 = g, i.e., g is a projector onto Im(f).

Moreover, by P (0) = 0, we have a priori Ker(f) ⊂ Ker(g); but f and g have the
same image, thus the same rank, we deduce that Ker(f) = Ker(g). �

We continue the proof of the Proposition. By (4.7), we can apply the above lemma
to B to get a rational coefficient polynomial P with P (0) = 0, such that P (B) is a
projector onto Im(B), and Ker (P (B)) = Ker(B). Therefore, P (B) and id−P (B) is
a pair of projectors corresponding to the direct sum decomposition

Hk(X,Q) = Im(B) ⊕ Ker(B).

Moreover, we remark that the above direct sum decomposition is in fact orthogonal
with respect to (−,−)Hk(X): this is an immediate consequence of the self-adjoint
property of B.

To conclude, we remark that L = Ker(γ∪) = Ker(B), thus ΔX−P (W ) ∈ CHn(X×
X)Q induces on the cohomology Hk(X,Q) the orthogonal projector id−P (B) onto
L, where ΔX denotes the diagonal class in X × X, and the multiplication in P (W )
is given by composition of correspondences (NOT the intersection product).

This finishes the proof of the Proposition 4.12 and thus also the proof of the main
Theorem 4.11. �
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5. Final remarks

Remark 5.1 (Unconditional results). Our proof of Conjecture 3.4 using the stan-
dard conjecture is in fact unconditional in some cases. In the following discussion, let
X, γ, L be as in the main Theorem 4.11, and we adopt all the constructions and
notations of its proof in the preceding section.

When k = 0, 1, there is nothing to prove. The k = 2 case reduces to the Lefschetz
theorem on (1,1)-classes for H2(X,Q).

When k = 3, 4, 5, recall that the correspondence needed in the proof of the main
Theorem 4.11 is prL ◦C† : Hk−2(Y,Q) → Hk(X,Q), and we use Lefschetz standard
conjecture on Y to get the algebraicity of C†, and use it on X to get the algebraicity
of prL. However, by an explicit calculation:

C† = ((LY )−1 ◦ μ∗)† (see (4.4))

= (μ∗)† ◦ (L−1
Y )† (Lemma 4.9)

= ((Ln−k
X )−1 ◦ sX ◦ μ∗ ◦sY ◦ LY ) ◦ L−1

Y (by (4.3))

= (Ln−k
X )−1 ◦ sX ◦ μ∗ ◦sY ,

we find that we only need the standard conjecture on X and the algebraicity of the
morphism sY : Hk−2(Y,Q) → Hk−2(Y,Q). While the algebraicity of sY on Hi(Y ) for
i ≤ 3 is known: firstly sY acts as identity on H0(Y ) and H1(Y ), thus is obviously alge-
braic; as for H2(Y ) (resp. H3(Y )), the Lefschetz decomposition has only two factors,
and the projector to the primitive factor can be constructed using only the Lefschetz
operator and the inverse H2 dim Y (Y ) �−→ H0(Y ) (resp. H2 dim Y −1(Y ) �−→ H1(Y )),
which is also known to be algebraic. In conclusion, our proof works unconditionally
when k = 3, 4, 5 for X a smooth complete intersection of a product of curves, surfaces,
and abelian varieties etc.

Remark 5.2 (A reinterpretation by motivated cycles). To get around the
standard conjectures and thus obtain some unconditional theories of motives, André
[4] introduced the notion of motivated cycles, which is a space of cohomology classes
fitting in the following inclusions (conjecturally they are all the same):

{classes of cycles}⊂{motivated cycles}⊂{absolute Hodge classes}⊂{Hodge
classes}. Roughly speaking, motivated cycles are constructed from algebraic cycles
by adding the cohomology classes of the inverses of hard Lefschetz isomorphisms in
the category of smooth projective varieties with morphisms given by algebraic cor-
respondences. We refer to the original paper loc.cit. for more details, and also to [5]
Chapters 9 and 10 for an introduction.

Now if we considered motivated cycles and motivated correspondences (=motivated
cycles in the product spaces) instead of the algebraic ones, we would not have any
problem caused by the standard conjectures. In particular, we could define a sub-
Hodge structure L of Hk(X,Q) to be of motivated coniveau at least c if there exists
a motivated correspondence Γ from another smooth projective variety Y to X, such
that L is contained in the image of Γ∗ : Hk−2c(Y ) → Hk(X). In this language, our
result Theorem 4.11 can be reformulated as:

Theorem 5.3. Let X be a smooth projective variety of dimension n, 0 ≤ k ≤ n be
an integer, and γ ∈ H2n−2k(X,Q) be a big cohomology class. Let L be the kernel of
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the following morphism of “cup product with γ”:

∪γ : Hk(X,Q) → H2n−k(X,Q).

Then L is of motivated coniveau at least 1.
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