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SEPARATION OF A LOWER DIMENSIONAL FREE BOUNDARY
IN A TWO-PHASE PROBLEM

Mark Allen

Abstract. We study minimizers of the energy functional∫
D

|xn|a|∇u|2 +

∫
D∩(Rn−1×{0})

λ+χ{u>0} + λ−χ{u<0} dHn−1

without any sign restriction on the function u. The main result states that the two free
boundaries

Γ+ = ∂{u( · , 0) > 0} and Γ− = ∂{u( · , 0) < 0}
cannot touch, i.e., Γ+ ∩ Γ− = ∅.

1. Introduction

This paper aims to study the local properties of a two-phase free boundary problem
for the fractional Laplacian. Recently, in [1,6,9], the following free boundary problem
for the half-Laplacian has been studied. For a function u ∈ C(RN ) and domain D
consider the problem

(−Δ)1/2u(x) = 0, in D ∩ {u > 0},

lim
y→x

u(y)
((y − x) · ν(x))1/2

= A, if x ∈ D ∩ ∂{u = 0}.(1.1)

The study of (1.1) presents certain difficulties since the fractional Laplacian is a
global operator. Many of the common techniques for studying free boundaries are
unavailable. However, one may work in R

n = R
N+1 and a common reformulation of

the half-Laplacian is the following:

(−Δ)1/2u(x′) = lim
xn→0

ũxn(x′, xn) for x′ ∈ R
N .

By adding the extra dimension, one may then study a localized version of the free
boundary problem (1.1) by studying minimizers of the functional∫

D

|∇u|2 +
∫

D∩(Rn−1×{0})
χ{u>0} dHn−1.

Since the above functional gives study to a one-phase problem, it is natural to study
the corresponding two-phase problem∫

D

|∇u|2 +
∫

D∩(Rn−1×{0})
λ+χ{u>0} + λ−χ{u<0} dHn−1,

Received by the editors October 26, 2011.

1055



1056 MARK ALLEN

which has been done in [1]. One may generalize the study of the free boundary problem
(1.1) by considering other powers 0 < s < 1 of the fractional Laplacian. In [4], the
appropriate extension theorem was proven enabling one to give a reformulation of the
fractional Laplacian by adding an extra dimension. By adding an extra dimension,
the study of (1.1) with s replacing 1/2 is reduced to the study of the minimizers of
the functional ∫

D

|xn|a|∇u|2 +
∫

D∩(Rn−1×{0})
χ{u>0} dHn−1,

where a = 1− 2s and n = N + 1. This problem has been recently studied in [6]. This
paper will study the corresponding two-phase problem and extend one of the main
results in [1] to the general fractional case, when 0 < s < 1. This paper will then focus
on the localized two-phase problem that is to consider minimizers of the functional

(1.2)
∫

D

|xn|a|∇u|2 +
∫

D∩(Rn−1×{0})
λ+χ{u>0} + λ−χ{u<0} dHn−1

over the class
H1(a, D) def= {v ∈ L2(D) | |y|a/2∇v ∈ L2(D)}

and such that u − φ ∈ H1
0 (a, D) for a prescribed φ. From the relation 0 < s < 1

and s = (1 − a)/2 it follows that a will vary in the range −1 < a < 1. Throughout
the paper, we assume that λ+ and λ− are positive constants. By use of the extension
theorem given in [4], it is natural to make the assumptions that D and φ are symmetric
about the hyperplane R

n−1 × {0}; however, we will not make these assumptions in
this paper since the proofs presented will not rely on even symmetry.

The main study of this paper concerns the local properties of the two free bound-
aries

Γ+ = ∂{u( · , 0) > 0} and Γ− = ∂{u( · , 0) < 0}
with the boundary being defined by the topology of R

n−1 × {0}.
Motivation and applications. The motivation for studying the problem (1.2)
comes from recognizing the similarity to the problem of studying minimizers of the
functional

(1.3) J(u) =
∫

D

|∇u|2 + λ+χ{u>0} + λ−χ{u<0},

which has been done in [2]. The minimizers of (1.3) are generalized solutions of a
classical two-phase free boundary problem

Δu = 0 in {u > 0} ∪ {u < 0},
|∇u+|2 − |∇u−|2 = M on ∂{u > 0} ∪ ∂{u < 0},(1.4)

with M = (λ+)2 − (λ−)2. The study of problem (1.4) has applications in two-
dimensional flow problems as well as in heat flow. In one specific application, the
problem (1.4) arises in a simplified model for premixed equidiffusional flames, in the
stationary case, in the limit as ε → 0+ of a singular perturbation problem; see, e.g., [5].
By measuring the positivity and negativity on the boundary R

n−1 × {0}, minimizers
of (1.2) can be seen as the limit of solutions to a boundary reaction problem; see,
e.g., [1].
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In modeling physical applications where long-range interactions are present, it is
useful to replace the Laplacian by nonlocal operators, such as the fractional Laplacian.
See papers [3, 6, 16].

Main results. As previously mentioned the two-phase case of (1.2) has been recently
studied in [1] under the additional assumption that a = 0 (or s = 1/2). By restricting
the two-phase problem to the case in which a = 0, the authors in [1] were able to
use more technical tools such as the Alt–Caffarelli–Friedman (ACF) monotonicity
formula. One of the main results in [1] is that if a = 0, then Γ+ ∩ Γ− = ∅, i.e.,
the free boundaries Γ+ and Γ− cannot touch. This result is in complete contrast to
many two-phase free boundary problems. Often the interphase Γ+ ∩ Γ− is difficult
to study. In the classical two-phase free boundary problem in (1.4), the two-phase
points create a major complication even in the proof of the optimal (Lipschitz in
that case) regularity of solutions; see [2]. The separation of Γ+ and Γ− is useful in
that it reduces the two-phase free boundary problem to the one-phase free boundary
problem. That is, locally minimizers have a sign in R

n−1×{0}, and so we may assume
either λ+ = 0 or λ− = 0. In the case a = 0, after one establishes optimal regularity
and nondegeneracy, the separation of Γ+ and Γ− is an immediate consequence of the
ACF monotonicity formula which was introduced and proven in [2]. The main result
of this paper is the separation of the free boundaries for the more general case in
which a �= 0, namely

Theorem I. Let −1 < a < 1 and let u be a minimizer to the functional in (1.2).
Then Γ+ ∩ Γ− = ∅. Furthermore, if x0 ∈ Γ+ (x0 ∈ Γ−) then there exists r > 0, such
that u ≥ 0 (u ≤ 0) in Br(x0).

The ACF monotonicity formula provides a simple proof to Theorem I when a = 0.
Therefore, it would be natural in seeking to prove Theorem I to try to prove a general-
ization of the ACF monotonicity formula that applies to solutions of div(|xn|a∇u) ≥ 0.
Unfortunately, the proof of such a formula would require much more than mere adap-
tations to the proof of the classical ACF monotonicity formula. In this paper, we pro-
vide an alternate method that gives a relatively simple proof of Theorem I and does
not utilize a generalization of the ACF formula. In its place, we utilize a Weiss-type
monotonicity formula (defined in Section 4) that is an adaptation of the Weiss-type
monotonicity formula given in [1]. The proof that the functional in (4.2) is monotone
requires only slight modifications of the proof provided in [1].

Outline of paper. The outline of this paper is as follows.

- In Section 2, we state known results for the weight |xn|adx and solutions of
div(|xn|a∇u) = 0 that we will need.

- In Section 3, we prove the optimal regularity of minimizers and its corollaries.
- In Section 4, we use nondegeneracy and the Weiss monotonicity formula to

prove that “blow-ups” (see (3.1)) of minimizers are homogeneous of degree
s = (1 − a)/2.

- In Section 5, we use the Courant–Fischer maximum–minimum principle to
establish a lower bound for the degree of homogeneity for homogeneous solu-
tions of div(|xn|a∇u) = 0.
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- In Section 6, we use the results from the previous sections to provide a simple
proof of Theorem I.

Notation and terminology. For the remainder of the paper, it will be useful to
use the following notation. Br(x0) := {x ∈ R

n | |x − x0| ≤ r} and Br = Br(0) the
ball centered at the origin with radius r. We denote a point x ∈ R

n by (x′, xn), where
x′ = (x1, . . . , xn−1).

For any set Ω ⊂ R
n, we define

Ω′ def= Ω ∩ (Rn−1 × {0}).
Throughout the paper, we will refer to the plane R

n−1×{0} as the thin space. Likewise,
we will call B′

r the thin ball, whereas Br will be the solid ball. For minimizers of (1.2),
we will call the set

Λ(u) = (Rn−1 × {0}) ∩ {u = 0}
the coincidence set.

We define the following two spaces:

H1(a, D) def= {v ∈ L2(D) | |xn|a/2∇v ∈ L2(D)},
L2(a, D) def= {|xn|a/2v ∈ L2(D)}.

We will also use Lau to denote the operator div(|xn|a∇u). Throughout the paper,
s = (1 − a)/2.

2. p-admissible weights and a-harmonic functions

We begin this section by noting that the measure |xn|adx is a Muckenhoupt A2 weight.
In [11] it is shown that Muckenhoupt Ap weights are p-admissible weights; therefore,
we have the following Sobolev inequality from [11]:

(2.1)
(

1
|B|a

∫
B

|φ|2κ|xn|a dx

) 1
2κ

≤ cr

(
1

|B|a

∫
B

|∇φ|2|xn|a dx

) 1
2

,

whenever B = B(x0, r) is a ball and φ ∈ H1
0 (a, B). κ > 1 and c are two constants

depending on n and a. Here, |B|a =
∫

B
|xn|adx.

The following proposition is a consequence of the compactness theorem for admis-
sible p-weights proven in [13].

Proposition 2.1 (Rellich–Kondrachov compactness). Let uk be a bounded se-
quence in H1

0 (a, D) for D � R
n. Then there exists a convergent subsequence such that

uk → u pointwise a.e. and in norm in Lq(a, D) for all q < 2κ for κ as in (2.1).

We call a function u a-harmonic if Lau = 0. These functions share many properties
with classical harmonic functions. In [10], it is shown that a-harmonic functions are
Hölder continuous. It was also shown that a-harmonic functions have the maximum
principle, Harnack inequality and Boundary Harnack inequality. We also have the
following Almgren’s type monotonicity formula, which was proven in [4].
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Lemma 2.2. Let Lau = 0 in B1. Then

N(r, u) = r

∫
Br

|xn|a|∇u|2∫
∂Br

|xn|au2
= r

D(r)
H(r)

is monotone increasing in r. N(r, u) is constant if and only if u is homogeneous of
degree k.

Our assumptions are slightly different from those given in [4]; namely we do not
assume even symmetry in the xn variable. The modified proof is therefore placed in
the appendix.

Lemma 2.3. Let Lau = 0 in B1 with u not identically zero. Assume also that
u(0) = 0. Then

lim
r→0

N(r, u) = N(0+, u) ≥ min{1, 1 − a}
Proof. It is easy to verify that N(ρ, ur) = N(rρ, u) for the rescalings

ur(x) :=
u(rx)

1
rn−1+a

∫
∂Br

|xn|au2

and ‖ur‖L2(a,∂B1) = 1. Now Laur = 0 in B1/r and from the uniform Hölder continuity
provided in [10] and the Sobolev inequality (2.1), we may extract a subsequence such
that ur → u0 in Cβ(Bρ) and weakly in H1(a, Bρ) for ρ < 1. The strong convergence
in H1(a, Bρ) follows by using the Caccioppoli inequality for a-harmonic functions:∫

Bρ

|∇(ur − u0)|2|xn|a ≤ C

(r − ρ)2

∫
Br

|ur − u0|2|xn|a.

Now
N(ρ, u0) = lim

r→0
N(ρ, ur) = lim

r→0
N(rρ, u) = N(0+, u).

So Lau0 = 0 in B1 and is homogenous of degree k = N(0+, u). u0 is not identically
zero since ‖u0‖L2(a,∂B1) = 1. We now only need to conclude that k ≥ min{1, 1 − a}.
Since u0(0) = 0, this is a direct consequence of Theorem 5.6. Theorem 5.6 has been
placed in Section 5 for purposes of readability of the paper. �

From Almgren’s monotonicity formula, we may prove the following Lemma.

Lemma 2.4. If Lau = 0 in BR(y′, 0) then
1

rn−|a|

∫
Br(y′,0)

|xn|a|∇u|2

is monotone increasing in r.

A few remarks need to be said. First, if we add the additional assumption for even
symmetry, namely that that u(x′, xn) = u(x′,−xn), then

(2.2)
1

rn+a

∫
Br(y′,0)

|xn|a|∇u|2 is monotone increasing in r.

The solution v = xn

|xn|a for a > 0 shows that if there is not even symmetry, then (2.2)
is not true. Second, the hypothesis that that the ball be centered on the R

n−1 × {0}
plane is essential. v as given above with center (y′, yn) with suitably chosen yn �= 0
will be a counterexample. Third, (2.2) is also not true if the ball is not centered on
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the thin space, and a counterexample is much easier to provide: off the thin space
solutions are C1, so if a > 0 and yn �= 0 then

lim
r→0

1
rn+a

∫
Br(y′,yn)

|xn|a|∇u|2 → ∞,

and so it is clear that (2.2) can only be true if yn = 0.

Proof. Following the notation in Lemma 2.2, we have

H ′(r) =
(n − 1 + a)

r
H(r) + 2D(r).

This equality comes from (A.2) and (C.3). This implies that rH ′(r)/H(r) = n − 1 +
a + 2N(r) is also monotone increasing. Hence rH ′(r)/H(r) ≥ n − 1 + a + 2k, where
k = N(0+). Then r−(n−1+a+2k)H(r) is monotone increasing and therefore also

1
rn−2+a+2k

D(r) =
1

rn−1+a+2k
H(r)N(r)

is monotone increasing in r. By subtracting the constant u(0), which is a solution of
La we may use Lemma 2.3 to conclude that k ≥ min{1, 1 − a} and the Lemma is
proven. �

3. Optimal regularity

In studying free boundary problems, it becomes useful to utilize the so called “blow-
up” process. If u is a minimizer of the functional (1.2) in B1(x′

0, 0), then the rescaled
function

(3.1) ur(x) def=
u((x′

0, 0) + rx)
rs

is a minimizer in B1/r. Here, s = (1−a)/2. By taking a sequence rk → 0, we may hope
to find a subsequence urk

→ u0, where u0 is a minimizer in all compact subsets of R
n.

By considering properties of the free boundary of u0, one may gather information on
the free boundary of u close to the point x0. Theorem 3.1 will guarantee that u0 does
exist.

Theorem 3.1. Let u be a minimizer in B1. Then u ∈ C0,s(U) for all U � B1.

For minimizers of (1.2), we follow the method provided in [6] for the one-phase
case.

Proof. Throughout the beginning of the proof C will be any constant depending on
dimension n and a. Let u be a minimizer in B2. For every 0 < r < 1, we consider the
harmonic replacement v of u in Br = Br(x′, 0). That is Lav = 0 and v = u on ∂Br.
Since u is a minimizer, J(u) ≤ J(v) in Br, so∫

Br

|xn|a|∇u|2 ≤
∫

Br

|xn|a|∇v|2 + Crn−1.

We now use that Lav = 0, so∫
Br

|xn|a〈∇v,∇(v − u)〉 = 0
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and this allows us to conclude∫
Br

|xn|a|∇(u − v)|2 ≤ Crn−1.

If we now choose ρ < r < 1∫
Bρ

|xn|a|∇u|2 =
∫

Bρ

|xn|a|∇(u − v + v)|2

≤ 2

(∫
Br

|xn|a|∇(u − v)|2 +
∫

Bρ

|xn|a|∇v|2
)

≤ Crn−1 + 2
(ρ

r

)n−|a| ∫
Br

|xn|a|∇v|2 by Lemma 2.4

≤ Crn−1 + C
(ρ

r

)n−|a| ∫
Br

|xn|a|∇u|2.

We now choose δ < 1/2 with

r = δk, ρ = δk+1, μ ≡ δn−1

to obtain

(3.2)
∫

B
δk+1

|xn|a|∇u|2 ≤ Cμk + Cμδ1−|a|
∫

B
δk

|xn|a|∇u|2.

We now may choose δ such that Cδ1−|a| < 1. Using a simple induction argument, we
conclude ∫

B
δk

|xn|a|∇u|2 ≤ C2

1 − Cδ1−|a| μ
k−1.

Then for all r < 1/2 and a different constant that will also depend on the L2(a, B2)
norm of ∇u

(3.3)
∫

Br(x′,0)
|xn|a|∇u|2 ≤ Crn−1

and so we may conclude as in [6] that

(3.4)
∫

Br(x′,0)
|∇u| ≤ Crn−1+s.

Since the estimate (3.4) is only true for balls centered on the thin space we cannot
use Morrey’s theorem to immediately conclude C0,s regularity for u inside the solid
ball B1/2. However, one may use the proof of Morrey’s theorem (as outlined in [14])
with the estimate (3.4) to conclude

(3.5) |u(x′, 0) − uB | ≤ Crs,

so that u is C0,s on the thin space R
n−1 × {0}. Equation (3.4) and hence also (3.5)

will hold for |u|. We now aim to conclude that we have the same Hölder growth off
the thin space. By optimal Hölder regularity along the thin space, we only need to
show Hölder growth in the pure |xn| direction. For a fixed point (y′, 0), we consider
the rescaled functions

ur(x) ≡ u(y′, 0) + xr) − u(y′, 0)
rs

,
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which have a universal (unweighted) L2 gradient bound in B∗ = B1/2(0, . . . , 0, 1) by
(3.3). Using estimate (3.5) for |ur|, we may deduce that the average value of |ur| over
B3/2(0) is universally bounded; consequently, the average value of |ur| over B∗ will
also be universally bounded. By using the (unweighted) Poincare inequality in B∗ we
obtain

‖ur‖W 1,2(B1/2(0,...,0,1)) ≤ C.

By first variation Laur = 0 if |xn > 0|. By staying away from the thin space, we
may use regularity theory for uniformly elliptic equations and conclude that each ur

is continuous in B∗ and we have the weak Harnack inequality

‖ur‖L∞(B1/4(0,...,0,1)) ≤ C.

This proves the Hölder growth off the thin space. That is,

(3.6)
|u(y′, 0) − u(x)|
|(y′, 0) − x|s ≤ C.

Let now x, y ∈ B1. If |yn| ≤ |x − y|, we may use (3.6) to bound

|u(x) − u(y)|
|x − y|s .

If |yn| > |x − y| then we may rescale with

ur =
u((x′, 0) + rx) − u(x′, 0)

rs

and use interior gradient bounds (in B∗ as defined before) on uniformly elliptic equa-
tions to conclude

|u(x) − u(y)|
|x − y|s ≤ C.

�

The Hölder regularity of minimizers allows us to conclude the following about the
convergence of sequences of minimizers.

Corollary 3.2. Let {uk} be a sequence of minimizers of the functional (1.2) in the
domain D with ‖uk‖L∞(∂D) ≤ M . Then there exists a subsequence and a function u0

such that for every open U � D

(1) u0 ∈ H1(a, U) ∩ Cs(U),

(2) uk → u0 in Cβ(U) for β < s,

(3) uk ⇀ u0 in H1(a, U).

Proof. Properties (1) and (2) follow immediately from the Hölder-regularity proven
in Theorem 3.1. Property (3) follows from the inequalities (3.3) and (2.1). �

Since minimizers are continuous, we may use the first variation to conclude

Proposition 3.3. Let u be a minimizer of (1.2) in Ω. Then

Lau = 0 in Ω \ Λ(u).
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From Proposition 3.3, one expects the following:

Proposition 3.4. Let u be a minimizer in Ω. For any ball B � Ω∫
B

|xn|a|∇u|2 =
∫

∂B

|xn|auuν .

Remark 3.5. Proposition 3.4 holds for more general domains than a ball; however,
the assumption that the domain is a ball will suffice for our purposes.

Proof. We define the following sequence of cutoff functions:

ηk(x) =

⎧⎪⎨
⎪⎩

0, if dx ≤ 1/k,

kdx − 1, if 1/k ≤ dx ≤ 2/k,

1, otherwise,

where dx = dist(x, Λ(u)). Then |∇ηk| = k, when 1/k ≤ dx ≤ 2/k and zero otherwise.
We now use optimal regularity of u to establish that the sequence ηku is bounded in
H1(a, B).∫

B

|xn|a|∇(ηku)|2 ≤
∫

B

2|xn|a
(
η2

k|∇u|2 + u2|∇ηk|2
)

≤
∫

B

2|xn|a|∇u|2 +
∫

B∩{dx≤2/k}
8|xn|aCka−1k2

≤
∫

B

2|xn|a|∇u|2 +
∫

B∩{|xn|≤2/k}
8|xn|aCk1+a

≤
∫

B

2|xn|a|∇u|2 + C for some new constant C.

Then there exists v such that ηku ⇀ v in H1(a, B) and ηku → v pointwise by
Proposition 2.1. Since ηku → u pointwise, then v = u. Now using the divergence
theorem and that Lau = 0 away from the coincidence set Λ(u), we obtain∫

B

|xn|a〈∇(ηku),∇u〉 =
∫

∂B

|xn|aηkuuν .

Then let k → ∞ to obtain the result. �

4. Nondegeneracy and Weiss monotonicity

When we have a blow-up sequence ur → u0, it is not immediately obvious if u0 could
be degenerate, that is, u0 ≡ 0. If u0 ≡ 0, then we would be unable to gather any
information on the free boundary of u near x0. Theorem 4.1 will guarantee that u0

will not be degenerate.

Theorem 4.1 (nondegeneracy). Fix t > 0, and let u be a minimizer of J . There
exists ε > 0 with ε depending only on {λ+, λ−, t}, such that if u|∂Br ≤ εrs (u|∂Br ≥
−εrs) then

u(x) ≤ 0 (u(x) ≥ 0), for x ∈ B′
tr.

The proof of Theorem 4.1 is included in the appendix and only requires slight
modifications from the proof presented in [1].
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Corollary 4.2. If u is a minimizer and 0 ∈ Γ+ (0 ∈ Γ−), then

(4.1) sup
∂Br

u ≥ Crs

(
inf
∂Br

u ≤ −Crs

)
,

where C depends only on λ+, λ− and n.

In [15] Weiss introduced a monotonicity formula for a free boundary problem that
allowed one to conclude that blow-ups were homogeneous. Theorem 4.3 gives a modi-
fied Weiss-type monotonicity formula that allows us to conclude Corollary 4.5 namely,
that all blow-ups are homogeneous of degree s = (1− a)/2. Corollary 4.5 is crucial in
proving Theorem I.

Theorem 4.3. Let Br = Br(x0, 0). Define W (r, u, x0)

(4.2) =
1

rn−1

(∫
Br

|xn|a|∇u|2 +
∫

B′
r

λ+χ{u>0} + λ−χ{u<0}

)
− s

rn

∫
∂Br

|xn|au2,

W (r, u, x0) is finite and monotone increasing in r. Furthermore, if r1 < r2, then
W (r1, u) = W (r2, u) if and only if u is homogeneous of degree s = (1 − a)/2 on the
ring r1 < |x| < r2.

Remark 4.4. If ur(x) = u(rx)
rs , then W (r, u) = W (1, ur).

The proof of Theorem 4.3 requires only slight modifications from the proof pre-
sented in [1] for the case in which a = 0, and therefore the proof is contained in the
appendix.

Corollary 4.5. Let ur → u0 a blow-up at (x0, 0). Then u0 is homogeneous of degree s

Proof. By (3.3) and optimal regularity it is easy to verify that W (0+, u, x0) is bounded
from below, so that

W (2r/3, u, x0) − W (r/3, u, x0) → 0 as r → 0.

From the explicit representation of W ′ provided in the proof of Theorem 4.3, we may
write

W (2r/3) − W (r/3) =
∫ 2r/3

r/3

1
ρn−1

∫
∂Bρ

|xn|a
(

(1 − a)u√
2ρ

−
√

2uν

)2

dρ

=
∫ 2/3

1/3

1
(rt)n−1

∫
∂Brt

|xn|a
(

(1 − a)u√
2rt

−
√

2uν

)2

r dt

=
∫ 2/3

1/3

1
tn−1

∫
∂Bt

(rxn)a

(
(1 − a)u(rx)√

2rt
−

√
2∇u(rx) · ν

)2

r dt

=
∫ 2/3

1/3

1
tn−1

∫
∂Bt

|xn|a
(

(1 − a)ur√
2t

−
√

2∇ur · ν
)2

dt

≥
∫ 2/3

1/3

∫
∂Bt

|xn|a
(

(1 − a)ur√
2t

−
√

2∇ur · ν
)2

dt

=
∫

B2/3\B1/3

|xn|a
(

ur√
2t

−
√

2∇ur · ν
)2

dx.
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Now we use that ur ⇀ u0 in H1(a, B1) and ur → u0 in L2(a, B1) by Corollary 3.2;
so u0 is homogeneous of degree s. �

5. Courant–Fischer maximum–minimum principle

We may decompose the operator La into its radial and spherical parts similar to the
case for the Laplacian. If u ∈ H1(a, Sn−1), then Lθ

au = f is to be interpreted as

−
∫

Sn−1
|xn|a〈∇θu,∇θv〉 =

∫
Sn−1

|xn|afv for all v ∈ H1(a, Sn−1).

Corollary 4.5 shows that all blow-ups are homogeneous. Homogeneous solutions of
Lau = 0 correspond to eigenfunctions on the sphere. Specifically, if Lau = 0 and
u = rαf(θ), then

−Lθ
af = λf,

where λ = α(α + n − 2 + a). We also have the converse.

Lemma 5.1. Suppose −Lθ
af = λf . If u = rαf with λ = α(α+n− 2+ a) > 0, α > 0,

then u is a weak solution to Lau = 0 in R
n.

Proof. Let v ∈ H1
0 (a, BR). Then∫

BR

|xn|a〈∇u,∇v〉 =
∫ R

0

∫
∂Br

|xn|a
( 〈∇θu,∇θv〉

r2
+ uνvν

)

=
∫ R

0

∫
∂Br

|xn|a
(
rα−2λfv + αrα−1fvν

)

=
∫

∂B1

cosa(θn−1)αf

(∫ R

0

d

dr

(
rα+n−2+av(rθ)

)
dr

)
dσ.

Now ∫ R

0

d

dr

(
rα+n−2+av(rθ)

)
dr = 0

for a.e. θ since v ∈ H1
0 (a, BR), and thus the lemma is proven. �

To utilize the Courant–Fischer maximum–minimum principle, we will need the
following lemma.

Lemma 5.2. Let Ω ⊂ Sn−1 be open. The spectrum of

−Lθ
au : H1(a, Ω) ⊂ L2(a, Ω) ↪→ L2(a, Ω)

is a nonnegative sequence that is either finite or increases to infinity.

Proof. From the Reisz representation theorem, for every f ∈ L2(a, Ω), there exists a
unique u ∈ H1(a, Ω), such that for all v ∈ H1(a, Ω) the following identity holds:∫

Ω

|xn|a (〈∇u,∇v〉 + uv) =
∫

Ω

|xn|afv.

We now aim to conclude that the operator K : L2(a, Ω) ↪→ L2(a, Ω) given by K(f) = u
is compact. To obtain a compactness theorem on Sn−1, for any u ∈ H1(a, Ω) we
extend u radially by defining ũ = η(r)u for η a bump function on R. Then for a
sequence uk ∈ H1(a, Ω) we obtain a bounded sequence ũk ∈ H1

0 (a, B2 \ B1/2) and
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by Proposition 2.1, we obtain that for a subsequence ũk → ũ ∈ L2(a, B2 \ B1/2) and
pointwise almost everywhere. Since ũ = η(r)u for some u ∈ H1(a, Ω), we conclude
that uk → u in L2(a, Ω). We may therefore conclude that K is compact.

Now −Lθ
au = λu in Ω if and only if K(u) = 1

λ+1u. From the theory of self-adjoint
nonnegative compact operators we know that the spectrum of K is either finite or a
nonnegative sequence decreasing to zero. Then we obtain that the spectrum of −Lθ

a

is either finite or a nonnegative sequence increasing to infinity. �

If Ω = Sn−1 then the first eigenvalue λ1 = 0. If Ω is a proper subset of Sn−1 such
that Ωc has positive capacity, then the first eigenvalue λ1 > 0 and corresponds to the
principle eigenfunction that is nonnegative. Let Ω ⊂ Sn−1 be open and define W =
H1

0 (a, Ω). To compare the eigenvalues of V = H1(a, Sn−1) to those of the subspace
W = H1

0 (a, Ω) we employ the Courant–Fischer maximum–minimum principle.

Proposition 5.3 (Courant–Fischer). Let Ω ⊂ Sn−1 be open. The kth eigenvalue
of −Lθ

au associated to the domain Ω is determined by

λk = max
S∈Σk−1

min
v∈S⊥

‖v‖L2
a
=1

∫
Sn−1

|xn|a|∇v|2,

where Σk−1 is the collection of all (k − 1)-dimensional subspaces of H1
0 (a, Ω).

Remark 5.4. This principle is proven in [8].

From this principle, we conclude

Proposition 5.5. If 0 = λ1 < λ2 ≤ · · · are the eigenvalues of V and γ1 < γ2 ≤ · · ·
are the eigenvalues of W , then

λk ≤ γk for all k.

Proof. The proof is along the same lines of the proof of the maximum–minimum
principle provided in [8]. The only difference is we take a linear combination of the
first k eigenvectors in W rather than in V . Specifically, let S be any (k−1)-dimensional
subspace of V . Let w1, . . . , wk be the normalized eigenfunctions corresponding to the
first k eigenvalues of the subspace W . We may then construct

w =
k∑

i=1

ciwi with
k∑

i=1

c2
i = 1

and such that w ∈ S⊥. Since the wi are orthogonal to each other, we obtain that
∫

Sn−1
|xn|a|∇w|2 =

k∑
i=1

γic
2
i ≤ γk.

Thus, we have shown that for S any (k − 1)-dimensional subspace of V

min
v∈S⊥

‖v‖L2
a
=1

∫
Sn−1

|xn|a|∇v|2 ≤ γk

Then by the Courant–Fischer maximum–minimum principle, λk ≤ γk, and the propo-
sition is proven. �
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Theorem 5.6. Let Lau = 0 in all of R
n and let u be homogeneous of degree α with

u(0) = 0. If α < min{1, 1 − a}, then u ≡ 0.

Proof. Solutions of Lau = 0 are C1 in any (x′, 0) direction [7]. Since u is homogeneous
of degree α < 1, we may conclude that u(x′, 0) ≡ 0. (We must be differentiable in any
(x′, 0) direction at the origin.) We note that x1−a

n is the principle eigenfunction on
H1

0 (a, Sn−1
+ ) since it is positive. Here, Sn−1

+ = Sn−1∩{xn > 0}. Now u ∈ H1
0 (a, Sn−1

+ )
and α < 1 − a; so the eigenvalue associated to u is strictly less than that of the
eigenvalue associated to that of x1−a

n . Then u ≡ 0. �

Corollary 5.7. Let u be homogeneous of degree α, having nontrivial positive and
negative parts, continuous, and such that

Lau(x) = 0,

whenever x /∈ Λ(u). Then α ≥ min{1, 1 − a}
Proof. Since u is homogeneous, then u is an eigenfunction of Lθ

a on Ω = Sn−1 \
Λ(u). If Ω is not connected, then Λ(u) = B′

1. Then by comparison with the principle
eigenfunction x1−a

n (as in the proof of Theorem 5.6) α ≥ 1 − a. If Ω is connected,
then since u has nontrivial positive and negative parts, u cannot be the principle
eigenfunction. By Proposition 5.5 the eigenvalue γ2 of u is such that

λ2 ≤ γ2

where λ2 is the eigenvalue corresponding to the first free eigenfunction g on Sn−1.
That is Lθ

ag = λ2g on Sn−1. We may then define v = rβg where λ2 = β(β+n−2+a).
Then Lav = 0 in R

n by Lemma 5.1, and so by Theorem 5.6, we know β ≥ min{1, 1−a}.
Since γ2 = α(α + n − 2 + a) and λ2 = β(β + n − 2 + a), we see then that α ≥ β ≥
min{1, 1 − a}. �

6. Separation of the free boundaries

We may now prove the main theorem of the paper. We first show the separation of
the phases.

Theorem 6.1. Let u be a minimizer. Then Γ+ ∩ Γ− = ∅.
Proof. Suppose by way of contradiction that x0 ∈ Γ+ ∩ Γ−. Let ur → u0 be a
blow-up. By nondegeneracy (Corollary 4.2) and Cβ convergence (Corollary 3.2) u0

has nontrivial positive and negative parts. Also it follows from Corollary 3.2 that
Lau0(x) = 0 if x /∈ Λ(u0). By Corollary 4.5, we know that u0 is homogeneous of
degree s = (1 − a)/2. Since (1 − a)/2 < min{1, 1 − a}, we obtain a contradiction to
Corollary 5.7. �

We may now prove the second half of Theorem I. Namely, in a small neighborhood
of each free boundary point a minimizer has a sign in the solid ball.

Theorem 6.2. Let x0 ∈ Γ+ (x0 ∈ Γ−) then there exists r > 0 depending on x0 such
that u ≥ 0 (u ≤ 0) in the solid ball Br(x0).
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Proof. Without loss of generality we may assume x0 = 0. Let urk
→ u0 be a blow-up

of u at the origin. Since u0 is homogeneous of degree s, Corollary 5.7 allows us to
conclude u0 ≥ 0 in all of R

n. Since each urk
(x′, xn) is a-harmonic in the open set

{x ∈ B1/rk
| xn �= 0}, then u0 will be a-harmonic in the open set {x ∈ R

n | xn �= 0}.
We define

δ = inf u0 over the set B1 ∩ {|xn| ≥ 1/2}.
We claim that δ > 0. Indeed, otherwise by the strong minimum principle (or Harnack
inequality) u0 ≡ 0 in R

n
+ or R

n
−, and therefore u0 ≡ 0 on R

n−1×{0}. By nondegeneracy
we know that on either R

n
+ or R

n
− we have u0 > 0. Then by odd reflection we obtain

a homogeneous (of degree s = (1 − a)/2) function ũ0 that is a-harmonic in all of R
n.

This is a contradiction to Theorem 5.6. So δ > 0.
Then, by Cα convergence, for large enough k, urk

(x′, xn) ≥ δ/2 for |xn| ≥ 1/2
in B1. Also by Cα convergence, infB1 urk

→ 0. Now by thin separation, for large
enough k,

urk
(x′, 0) ≥ 0 in B′

1.

Without loss of generality it suffices to show that urk
≥ 0 in B+

1/2. Let vk be the
a-harmonic function such that

vk|B′
1

= 0, and vk|∂B+
1

= urk
.

Then vk ≤ urk
in all of B+

1 . We show for k large enough that vk ≥ 0 in B+
1/2. To this

end, consider two subsets E1 and E2 of ∂(B+
1 ):

E1 = ∂(B+
1 ) ∩ {xn ≥ 1/2}, E2 = ∂(B+

1 ) ∩ {0 < xn < 1/2},

and there a-harmonic measures ω1 and ω2 with respect to the domain B+
1 . The latter

means that ωi are a-harmonic functions in B+
1 satisfying

ωi|∂(B+
1 ) = χEi , i = 1, 2.

By using the boundary Harnack inequality, one then has that

c|xn|1−a ≤ ωi(x) ≤ C|xn|1−a in B+
1/2.

for some positive constants c and C depending on n and a. Now, by using the maxi-
mum principle we then can write that in B+

1/2

vk(x) ≥ (δ/2)ω1(x) + ω2(x) inf
B+

1

vk

≥ |xn|1−a

[
(δ/2)c − C sup

(∂B1)+
u−

rk

]
.

Since u−
rk

→ 0 uniformly on compact subsets of R
n, we obtain that vk(x) ≥ 0 in B+

1/2

for large k. This completes the proof. �
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Appendix A. Proof of Almgren’s formula

Lemma 2.2. The proof of Lemma 2.2 relies on the following equality:

(A.1) D′(r) =
n − 2 + a

r
D(r) +

∫
∂Br

|xn|a2u2
ν .

(A.1) is (C.2) in the case that λ+ = λ− = 0 (a-harmonic functions are minimizers of
(1.2) when λ+ = λ− = 0). We also have

(A.2)
∫

Br

|xn|a|∇u|2 =
∫

∂Br

|xn|auuν .

We obtain (A.2) by recalling that Lau = 0 in B1 and using ηku as a test function
where ηk is defined as in (C.1), then∫

Br

|xn|a〈∇u,∇(uηk)〉 = 0.

By letting k → 0 we obtain (A.2). The monotonicity of N(r) as well as case of equality
then follow from (A.1) and (A.2) exactly as shown in [4]. �

Appendix B. Proof of nondegeneracy

We begin this section with the so called Lattice principle. Since minimizers are not
necessarily unique, we may not necessarily conclude that if u and v are two minimizers
with u ≤ v on ∂D, then u ≤ v in D. Instead, we have the following theorem.

Theorem B.1 (Lattice principle). Let u, v be two minimizers of the functional J
with u|∂D ≤ v. If we define w1 ≡ max{u, v} and w2 ≡ min{u, v}, then w1 and w2 are
minimizers of the functional J .

Proof. It is fairly straightforward to check that

J(w1) + J(w2) = J(u) + J(v)

Since w1|∂D = v and w2|∂D = u, we conclude that w1 and w2 are minimizers of the
functional J . �

Corollary B.2. If the boundary data are symmetric about the line (0, . . . , 0, xn), then
there is a maximal (minimal) minimizer, i.e., there exists a minimizer u∗ such that
v ≤ u∗ (v ≥ u∗) in B for all other minimizers such that v|∂B = u∗. Furthermore, u∗

will be symmetric about the line (0, . . . , 0, xn)

Proof. By Theorem B.1 the maximum (minimum) of rotations will be a minimizer.
u∗ may be obtained by a limiting procedure. �

To prove Theorem 4.1 we will need the following two lemmas.

Lemma B.3. There exists a modulus of continuity σ with σ(0) = 0 such that if uε is
any minimizer such that u|∂B1 ≡ ε, then∫

B′
1

λ+χ{uε>0} ≤ σ(ε).
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Proof. Define

vε =

{
0 for |x| ≤ 1 −√

ε,√
ε(|x| − 1) + ε otherwise.

It is easy to see that J(vε) → 0 as ε → 0. Now since∫
B′

1

λ+χ{uε>0} ≤ J(uε) ≤ J(vε)

the lemma is proven. �

The next lemma will strengthen Corollary B.2 in the case when our boundary
values are identically constant.

Lemma B.4. Let u be a minimizer such that the values of u|∂B = M . Then u is
symmetric about the line (0, . . . , 0, xn), and the coincidence set Λ(u) = B

′
ρ for some

ρ ≥ 0.

Proof. Extend u to be a function on the cube Q with side length 2, by defining
u(x) = M for x /∈ B. We now apply Steiner symmetrization (as defined in [12, page
82]) to the function w = M − u on lines parallel to R

n−1 × {0}. If we only consider
As,t = B ∩ {s < |xn| < t} with 0 < s < t, then w is Lipschitz. Then by [12, p. 82], if
we Steiner symmetrize w to obtain v we obtain:∫

As,t

|xn|a|∇u|2 =
∫

As,t

|xn|a|∇w|2 ≥
∫

As,t

|xn|a|∇v|2

Since w is real analytic away from the thin space, equality is only achieved if w (and
hence u) is already Steiner symmetric along the lines we symmetrize. Furthermore, v
will have the same boundary values as w on ∂B. It follows that∫

B

|xn|a|∇u|2 =
∫

B

|xn|a|∇w|2 ≥
∫

B

|xn|a|∇v|2.

Finally, we note that Hn−1({u = 0}) is invariant under Steiner symmetrization. Then
u must be Steiner symmetric in each direction parallel to the thin space, so u is
symmetric about the line (0, . . . , 0, xn) and {u = 0} is a connected thin ball and
centered at the origin. �

We are now able to prove the nondegeneracy result.

Theorem 4.1. First we note that by rescaling we only need to prove Theorem 4.1 on
the unit ball B. Also, Theorem B.1 and Corollary B.2 reduce Theorem 4.1 to proving
the theorem for the maximal minimizer u∗

ε , where u∗
ε |∂B = ε. Lemma B.4 proves that

Λ(u∗
ε ) = B

′
ρ

for some ρ < 1. Lemma B.3 shows∫
B′

1

λ+χ{u∗
ε >0} → 0 as ε → 0.
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Then there exists ε depending only on {t, λ+} such that if u|∂B = ε then

u|B′
t
≡ 0.

The case for which u ≥ −ε is proven similarly. �

Appendix C. Proof of Weiss monotonicity formula

Theorem 4.3. The proof is a slight modification of the proof for the case a = 0 given
in [1]. Since u is not necessarily differentiable we follow the ideas of using domain
variation given by Weiss in [15]. Since our formula is defined for a ball centered on
the R

n−1 × {0} plane, we may assume without loss of generality that x0 = 0. Let
τε(x) = x + εηkx, where

(C.1) ηk(x) = max
(

0, min
(

1,
r − |x|

k

))
.

Then ηk(x) = 0 outside of Br(0), and

ηk(x) → χ{Br(0)} as k → 0.

Note that τε(x) = x(1 + εηk(x)) leaves R
n−1 × {0} invariant. Now

∇ηk(x) =
−x

|x|kχ{Br\Br−k}

and

Dτε(x) = I + ε (ηk(x)I + x∇ηk(x)) + o(ε).

Now let uε (τε(x)) = u(x) and y = τε(x). Then

1
ε

(J(uε) − J(u)) ≥ 0

and

J(uε) − J(u) =
∫

D

|yn|a|∇uε(y)|2 +
∫

D′
λ+χ{uε>0} + λ−χ{uε<0}

−
∫

D

|xn|a|∇u(x)|2 −
∫

D′
λ+χ{u>0} + λ−χ{u<0}.

Now

det Dτε(x) = 1 + ε trace D(ηk(x)x) + o(ε),

trace D(ηk(x)x) = div (ηk(x)x),

Dτ−1
ε = I − εD(ηk(x)x) + o(ε).
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Then substituting these into the equality above, we obtain that J(uε) − J(u)

=
∫

D

|xn + εηk(x)xn|a|∇u(x)(Dτε(x))−1|2 det Dτε + o(ε)

+
∫

D′

(
λ+χ{u>0} + λ−χ{u<0}

)
det Dτ ′

ε(x) + o(ε)

−
∫

D

|xn|a|∇u|2 −
∫

D′
λ+χ{u>0} + λ−χ{u<0}

=
∫

D

|xn + εηk(x)xn|a
(|∇u|2 − 2ε∇uD(ηk(x)x)∇u

)
(1 + ε div ηk(x)x)

+
∫

D′

(
λ+χ{u>0} + λ−χ{u<0}

)
(1 + ε div η′

k(x′, 0)x′) + o(ε)

−
∫

D

|xn|a|∇u|2 −
∫

D′
λ+χ{u>0} + λ−χ{u<0}

=
∫

D

|xn + εηk(x)xn|a|∇u|2 − |xn|a|∇u|2

+ ε

∫
D

|xn + εηk(x)xn|a
(|∇u|2 div ηk(x)x − 2∇uD(ηk(x)x)∇u

)
+ o(ε)

+ ε

∫
D′

(
λ+χ{u>0} + λ−χ{u<0}

)
(div η′

k(x′, 0)x′) + o(ε).

Now we may let ε be both positive and negative and the limit is the same, so

lim
ε→0

1
ε

[J(uε) − J(u)] = 0.

Then we obtain the following equality:

0 =
∫

D

a|xn|a|∇u|2ηk(x) +
∫

D

|xn|a
(|∇u|2 div ηk(x)x − 2∇uD(ηk(x)x)∇u

)

+
∫

D′

(
λ+χ{u>0} + λ−χ{u<0}

)
(div η′

k(x′, 0)x′ ).

We have

div ηk(x)x = nηk(x) − |x|
k

χBr\Br−k
,

div(ηk(x′, 0)x′) = (n − 1)η′
k − |x′|

k
χB′

r\B′
r−k.

Then

0 = (n − 2 + a)
∫

Br

|xn|a|∇u|2ηk − 1
k

∫
Br\Br−k

|x||xn|a
(
|∇u|2 − 2

∣∣∣∣
〈
∇u,

x

|x|
〉∣∣∣∣

2
)

+ (n − 1)
∫

B′
r

(λ+χ{u>0} + λ−χ{u<0})η′
k

− 1
k

∫
B′

r\B′
r−k

|x′|(λ+χ{u>0} + λ−χ{u<0}),
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so as k → 0

0 = (n − 2 + a)
∫

Br

|xn|a|∇u|2 − r

∫
∂Br

|xn|a
(|∇u|2 − 2u2

ν

)
(C.2)

+ (n − 1)
∫

B′
r

λ+χ{u>0} + λ−χ{u<0} − r

∫
∂B′

r

λ+χ{u>0} + λ−χ{u<0}.

By Proposition 3.4 ∫
Br

|xn|a|∇u|2 =
∫

∂Br

|xn|auuν .

so

0 = (n − 1)
∫

Br

|xn|a|∇u|2 − r

∫
∂Br

|xn|a|∇u|2

+ (n − 1)
∫

B′
r

λ+χ{u>0} + λ−χ{u<0} − r

∫
∂B′

r

λ+χ{u>0} + λ−χ{u<0}

− (1 − a)
∫

∂Br

|xn|au · uν + 2r

∫
∂Br

|xn|au2
ν .

Now multiply both sides of the equation by −r−n to obtain that for almost every r

0 =
[

1
rn−1

∫
Br

|xn|a|∇u|2
]′

+

[
1

rn−1

∫
B′

r

λ+χ{u>0} + λ−χ{u<0}

]′

− 1
rn−1

∫
∂Br

|xn|a
(

(1 − a)uuν

r
− 2u2

ν

)
.

For ε < r, we may integrate and use Fubini’s theorem to obtain∫ r

ε

1
ρn−1+a

∫
∂Bρ

|xn|a2uuνdσ dρ =
∫

∂B1

∫ r

ε

|xn|a2u(ρx)uν(ρx)dρdσ

=
∫

∂B1

|xn|a
(
u2(rx) − u2(εx)

)
dσ

= −c +
1

rn−1+a

∫
∂Br

|xn|au2dσ.

So for almost every r

(C.3)
d
dr

[
1 − a

2rn

∫
∂Br

|xn|au2

]
=

1
rn−1

∫
∂Br

|xn|a
(

(1 − a)uuν

r
− (1 − a)2u2

2r2

)
.

We then add and subtract the piece from (C.3) to obtain for almost every r

0 =
[

1
rn−1

∫
Br

|xn|a|∇u|2
]′

+

[
1

rn−1

∫
B′

r

λ+χ{u>0} + λ−χ{u<0}

]′

−
[
1 − a

2rn

∫
∂Br

|xn|au2

]′
− 1

rn−1

∫
∂Br

|xn|a
(

(1 − a)u√
2r

−
√

2uν

)2

.

Thus, W ′ ≥ 0, and W ′ = 0 on the interval r1 < r < r2 if and only if u is
homogeneous of degree s = (1 − a)/2 on the ring r1 < |x| < r2. �
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