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LEFSCHETZ PROPERTIES AND THE VERONESE
CONSTRUCTION

Martina Kubitzke and Satoshi Murai

Abstract. In this paper, we investigate Lefschetz properties of Veronese subalgebras.
We show that, for a sufficiently large r, the rth Veronese subalgebra of a Cohen–Macaulay
standard graded K-algebra has properties similar to the weak and strong Lefschetz

properties, which we call the ‘quasi-weak’ and ‘almost strong’ Lefschetz properties. By
using this result, we obtain new results on h- and g-polynomials of Veronese subalgebras.

1. Introduction

Let K be a field of characteristic 0. For a standard graded (commutative) K-algebra
A =

⊕
i≥0 Ai and for an integer r ≥ 1, the K-algebra A〈r〉 :=

⊕
i≥0 Air, which is

again standard graded, is called the rth Veronese subalgebra of A. Quite recently,
h-polynomials of Veronese subalgebras [1, 2, 10] have been studied in different con-
texts. The focus of [2] lies on the analysis of the h-vector transformation and its
asymptotics when passing from an algebra to its rth Veronese subalgebra. More pre-
cisely, it is shown [2, Corollary 1.6] that if the h-polynomial of A has non-negative
integral coefficients, then, for sufficiently large r, the h-polynomial of A〈r〉 has only
real zeros. In particular, this implies that the coefficient sequence of the h-polynomial
of A〈r〉 is unimodal and log-concave. In [1], the asymptotic behavior of the h-vector
transformation is worked out in greater detail and, in addition, an application to
Ehrhart series is provided. Starting from the results in [2], it was proved in [10] that
if the h-polynomial of A has non-negative integral coefficients and if r is larger than
or equal to both the dimension of A and the degree of the h-polynomial of A, then
the g-polynomial of A〈r〉 is the f -polynomial of a simplicial complex and in partic-
ular its coefficient sequence is the Hilbert function of a standard graded K-algebra.
Algebraically, the unimodality of the h-polynomial of a graded K-algebra is closely
related to Lefschetz properties of Artinian graded K-algebras and in [10] the authors
already raised the question of finding an algebraic proof of their results. This was the
starting point for the work in this paper and one of its main purposes is to find a con-
nection between Lefschetz properties and the Veronese construction. More precisely,
we investigate Lefschetz properties of Veronese subalgebras of Cohen–Macaulay stan-
dard graded K-algebras and obtain new results on h- and g-polynomials of Veronese
subalgebras.

We recall some basics on Hilbert series and h-polynomials. The Hilbert series of a
standard graded K-algebra A =

⊕
i≥0 Ai is the formal power series Hilb(A, t) :=

∑
i≥0(dimK Ai)ti. It is known that Hilb(A, t) is a rational function of the form
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Hilb(A, t) = (h0 + h1t + · · · + hpt
p)/(1 − t)d, where each hi is an integer and where

d = dim A is the Krull dimension of A (see, e.g., [3, Section 4.1]). The polynomial

hA(t) := h0 + h1t + · · · + hpt
p

and the polynomial

gA(t) := h0 + (h1 − h0)t + · · · + (h� p
2 � − h� p

2 �−1)t�
p
2 �

are called the h-polynomial of A and the g-polynomial of A, respectively. Here, �x�
denotes the integer part of x.

We first study the k-Lefschetz property and almost strong Lefschetz property,
introduced in [9]. Let A =

⊕p
i=0 Ai be a standard graded Artinian K-algebra, where

dimK Ap > 0. For an integer k ≥ 1, we say that A has the k-Lefschetz property if there
is a linear form w ∈ A1 such that the multiplication wk−2i : Ai → Ak−i : f �→ wk−2if
is injective for 0 ≤ i ≤ �k−1

2 �. The linear form w is referred to as a k-Lefschetz
element for A. If A has the (p − 1)-Lefschetz property, then we call it almost strong
Lefschetz. An important consequence of the almost strong Lefschetz property is that
if A is almost strong Lefschetz, then the multiplication w : Ai → Ai+1 is injective for
0 ≤ i ≤ �p

2�−1 and the coefficient sequence of gA(t) becomes an M -sequence, namely,
there is a standard graded Artinian K-algebra B such that gA(t) = Hilb(B, t). Indeed,
it is easy to see that one can choose B = A/(wA + m� p

2 �+1), where m denotes the
maximal homogeneous ideal of A.

We use Lefschetz properties to study h-polynomials of A〈r〉 in the following way.
Let A be a Cohen–Macaulay standard graded K-algebra of dimension d. A linear
system of parameters (l.s.o.p. for short) for A is a sequence Θ = θ1, . . . , θd of linear
forms such that dimK A/ΘA < ∞. Note that a l.s.o.p. for A exists if K is infinite,
see, e.g., [12, p. 34]. For a l.s.o.p. Θ = θ1, . . . , θd for A and for an integer r ≥ 1, we
write

A
〈r〉
Θ := A〈r〉/(θr

1A
〈r〉 + · · · + θr

dA
〈r〉).

We will see in Section 2, that θr
1, . . . , θ

r
d is a l.s.o.p. for A〈r〉. In particular, since A〈r〉

is Cohen–Macaulay (cf. [8, Chapter 3]), the Hilbert series of A
〈r〉
Θ is equal to the

h-polynomial of A〈r〉. As a consequence, the h-polynomial of A〈r〉 can be analyzed via
Lefschetz properties for A

〈r〉
Θ . Our first result is the following.

Theorem 1.1. Let A be a Cohen–Macaulay standard graded K-algebra of dimension
d and let Θ = θ1, . . . , θd be a l.s.o.p. for A. Let r ≥ 1 be an integer and s = � (r−1)d

r �.
Then A

〈r〉
Θ has the s-Lefschetz property. Moreover, if r ≥ deg hA(t), then A

〈r〉
Θ is almost

strong Lefschetz.

In commutative algebra, the study of the weak Lefschetz property of Artinian
graded K-algebras has shown to be of great interest. Recall, that a standard graded
Artinian K-algebra A =

⊕p
i=0 Ai is said to have the weak Lefschetz property if there

is a linear form w ∈ A1 such that the multiplication map w : Ai → Ai+1 is either
injective or surjective for all i ≥ 0. Also, we say that A is quasi-weak Lefschetz if
there is a 1 ≤ g < p and a linear form w ∈ A1 such that the multiplication map
w : Ai → Ai+1 is injective for 0 ≤ i ≤ g − 1 and is surjective for i ≥ g + 1. Note
that we do not set any condition on the multiplication map w : Ag → Ag+1. If the
multiplication map w : Ag → Ag+1 is neither injective nor surjective, then the integer
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g will be referred to as the gap of A (w.r.t. w). We obtain the following result for the
quasi-weak and the weak Lefschetz property.

Theorem 1.2. Let A be a Cohen–Macaulay standard graded K-algebra of dimension
d and let Θ = θ1, . . . , θd be a l.s.o.p. for A.

(i) If r ≥ deg hA(t), then A
〈r〉
Θ is quasi-weak Lefschetz.

(ii) If d is even and r ≥ max{d, 2 deg hA(t)−d}, then A
〈r〉
Θ has the weak Lefschetz

property.
(iii) If d is odd, r ≥ d

2 and deg hA(t) ≤ d
2 , then A

〈r〉
Θ has the weak Lefschetz

property.

In Section 2, for the quasi-weak Lefschetz property, we will provide a result that is
somewhat stronger, showing in particular that for d ≤ deg hA(t) a weaker assumption
on r is sufficient for guaranteeing the quasi-weak Lefschetz property.

We say that a polynomial h0 + h1t + · · · + hpt
p ∈ Z≥0[t] is unimodal if there is a

1 ≤ m ≤ p such that h0 ≤ h1 ≤ · · · ≤ hm ≥ hm+1 ≥ · · · ≥ hp. Clearly, if a standard
graded Artinian K-algebra A is quasi-weak Lefschetz, then the h-polynomial of A is
unimodal. By combining Theorem 1.1 and Theorem 1.2 with some results on Gröbner
basis for Veronese subalgebras due to Eisenbud, Reeves and Totaro [6], we also prove
the following result on h-polynomials.

Theorem 1.3. Let A be a Cohen–Macaulay standard graded K-algebra of dimension
d. Let r ≥ 1 be an integer and s = � (r−1)d

r �.
(i) If r ≥ 1

2 (deg hA(t) + 1), then hA〈r〉(t) is the f-polynomial of a flag simplicial
complex.

(ii) If r ≥ deg hA(t), then hA〈r〉(t) is unimodal and gA〈r〉(t) is the f-polynomial
of a simplicial complex.

(iii) Let hA〈r〉(t) =
∑

i≥0 h
〈r〉
i ti. Then h

〈r〉
i ≤ h

〈r〉
s−i for all i ≤ � s−1

2 �.

2. Lefschetz properties

In this section, we study Lefschetz properties of A
〈r〉
Θ . In particular, we will provide

the proofs of Theorem 1.1 and Theorem 1.2.
We start to fix some notation, which we will use throughout this section. In the

following, we consider a Cohen–Macaulay standard graded K-algebra A of dimen-
sion d together with a l.s.o.p. Θ = θ1, . . . , θd for A. To prove Theorem 1.1 and
Theorem 1.2, we use the following observation, which relates the Hilbert series of A

〈r〉
Θ

to the h-polynomial of the rth Veronese subalgebra of A: By Cohen–Macaulayness of
A, Θ is not only a l.s.o.p. but also a regular sequence for A. Hence, A is a finitely gen-
erated and free K[θ1, . . . , θd]-module. In particular, there exist homogeneous elements
u1, . . . , um of A such that we have the decomposition

(2.1) A =
m⊕

j=1

uj · K[θ1, . . . , θd]

as K[θ1, . . . , θd]-modules (see, e.g., [12, Chapter 1]). Note that u1, . . . , um is a K-basis
of A/ΘA. Moreover, since the Hilbert series of A/ΘA is equal to the h-polynomial of
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A (cf., [3, Remark 4.1.11]), we have

deg uj ≤ deg hA(t)

for all 1 ≤ j ≤ m. Let r ≥ 1 be an integer. We will show that θr
1, . . . , θ

r
d is a l.s.o.p. for

A〈r〉. We include this proof since we could not find any reference to this fact in the
literature. From (2.1) we infer that the rth Veronese subalgebra A〈r〉 decomposes as

A〈r〉 =
m⊕

j=1

uj ·
⎛

⎝
⊕

i≥0

K[θ1, . . . , θd]ir−deg uj

⎞

⎠ ,

where we set K[θ1, . . . , θd]k := {0} if k < 0.
And for the quotient A

〈r〉
Θ = A〈r〉/(θr

1A
〈r〉 + · · · + θr

dA
〈r〉), we obtain

A
〈r〉
Θ =

m⊕

j=1

uj ·
⎛

⎝
⊕

i≥0

(
K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d)

)
ir−deg uj

⎞

⎠ = (A/(θr
1, . . . , θ

r
d))

〈r〉

(2.2)

as K[θ1, . . . , θd]〈r〉-modules. Being the grading of A
〈r〉
Θ induced by the usual Z-grading

of K[θ1, . . . , θd], we know that the homogeneous component (A〈r〉
Θ )i of A

〈r〉
Θ of degree

i is given by

(2.3) (A〈r〉
Θ )i =

m⊕

j=1

uj ·
(
K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d)

)
ir−deg uj

.

Moreover, since A is integral over A〈r〉, both algebras have the same Krull dimension
(see [8, Chapter 3] and [4, Proposition 3.3]). Since the right-hand side of (2.2) has finite
length, we conclude that θr

1, . . . , θ
r
d is a l.s.o.p. for A〈r〉. This together with the fact

that the Cohen–Macaulay property is preserved under taking Veronese subalgebras
(cf. [8, Chapter 3]) implies that the Hilbert series of A

〈r〉
Θ equals the h-polynomial

of A〈r〉. In particular, since max{deg uj | 1 ≤ j ≤ m} = deg hA(t) and since the
maximum degree in K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d) is (r−1)d, it follows directly from (2.3)

that

(2.4) deg hA〈r〉(t) =
⌊

d(r − 1) + deg hA(t)
r

⌋

.

Note that the above equation (2.4) holds for any standard graded K-algebra A whose
h-polynomial has non-negative coefficients (e.g., use [2, Corollary 1.2]).

For the proof of Theorem 1.1 and Theorem 1.2, we need the following fact proved
by Stanley [11] and Watanabe [14].

Lemma 2.1. Let K be a field of characteristic 0 and let r ≥ 1 be an integer. For
integers 0 ≤ i < j, the multiplication map

×(x1 + · · · + xd)j−i : (K[x1, . . . , xd]/(xr
1, . . . , x

r
d))i → (K[x1, . . . , xd]/(xr

1, . . . , x
r
d))j

p �→ (x1 + · · · + xd)j−i · p
is injective if i + j ≤ (r − 1)d and is surjective if i + j ≥ (r − 1)d.
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We have now laid the necessary foundations for giving the proof of Theorem 1.1.

Proof of Theorem 1.1. Let w = (θ1 + · · · + θd)r. We prove that w is an s-Lefschetz
element of A

〈r〉
Θ , namely, we will show that the multiplication

×ws−2i : (A〈r〉
Θ )i → (A〈r〉

Θ )s−i

is injective for 0 ≤ i ≤ � s−1
2 �. By decomposition (2.2), it is enough to prove that, for

1 ≤ j ≤ m, the multiplication

× ws−2i :
(
K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d)

)
ir−deg uj

→ (
K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d)

)
(s−i)r−deg uj

is injective for 0 ≤ i ≤ � s−1
2 �. The desired injectivity follows from Lemma 2.1 since

ir − deg uj + (s − i)r − deg uj ≤ sr ≤ (r − 1)d.
Finally, if r ≥ deg hA(t), then deg Hilb(A〈r〉

Θ , t) = deg hA〈r〉(t) ≤ s + 1 by (2.4),
which implies that A

〈r〉
Θ is almost strong Lefschetz. �

We now proceed to the proof of Theorem 1.2. Part (i), i.e., the statement concerning
the quasi-weak Lefschetz property, follows from the following stronger result.

Theorem 2.2. Let A be a Cohen–Macaulay standard graded K-algebra of dimension
d and let Θ = θ1, . . . , θd be a l.s.o.p. for A. Then A

〈r〉
Θ is quasi-weak Lefschetz if

(a) d is even and one of the following conditions holds:
(i) d ≤ 1

2 deg hA(t) and r ≥ 2 deg hA(t)−d
3 ,

(ii) 1
2 deg hA(t) ≤ d ≤ deg hA(t) and r ≥ d,

(iii) deg hA(t) ≤ d ≤ 3
2 deg hA(t) and r ≥ 2 deg hA(t) − d,

(iv) 3
2 deg hA(t) ≤ d ≤ 3 deg hA(t) and r ≥ d

3 ,
(v) d ≥ 3 deg hA(t) and r ≥ deg hA(t), or,

(b) d is odd and one of the following conditions holds:
(i) d ≤ deg hA(t) and r ≥ deg hA(t) − d

2 ,

(ii) deg hA(t) ≤ d ≤ 2 deg hA(t) and r ≥ d
2 ,

(iii) d ≥ 2 deg hA(t) and r ≥ deg hA(t).

Proof. Before providing the proofs for each set of conditions separately, we start with
a general discussion that can be used in all cases. Let w := (θ1 + · · · + θd)r. Our aim
is to show that in all parts of the theorem, w is a quasi-weak Lefschetz element for
A

〈r〉
Θ . Using the same notations as at the beginning of this section, we know from (2.2)

that as K[θ1, . . . , θd]〈r〉-modules, we have the decomposition:

A
〈r〉
Θ =

m⊕

j=1

uj

⎛

⎝
⊕

i≥0

(
K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d)

)
ir−deg uj

⎞

⎠ .

Thus, in order to show that the multiplication

×w : (A〈r〉
Θ )i → (A〈r〉

Θ )i+1
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is injective and surjective for a certain i ≥ 0, it suffices to show that for all 1 ≤ j ≤ m
the multiplication

×w :
(
K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d)

)
ir−deg uj

→ (
K[θ1, . . . , θd]/(θr

1, . . . , θ
r
d)

)
(i+1)r−deg uj

(2.5)

is injective and surjective, respectively, for the same i.
We first consider case (a) (i). Suppose that d is even, d ≤ 1

2 deg hA(t) and r ≥
2 deg hA(t)−d

3 . Combining the latter two conditions in particular yields r ≥ d. Our aim
is to use Lemma 2.1. We first show that the multiplication in (2.5) is injective for
0 ≤ i ≤ d

2 − 1 and for all 1 ≤ j ≤ m. For all 1 ≤ j ≤ m it holds that

2ir + r − 2 deg uj ≤ dr − r ≤ (r − 1)d + d − r ≤ (r − 1)d,

where the first and the last inequality follow from deg uj ≥ 0 for 1 ≤ j ≤ m and
r ≥ d, respectively. Hence, Lemma 2.1 implies the desired injectivity.

Next, we show that the multiplication in (2.5) is surjective for i ≥ d
2 + 1. As in the

previous case, for 1 ≤ j ≤ m, we compute

2ir + r − 2 deg uj ≥ dr + 3r − 2 deg hA(t) ≥ (r − 1)d,

where for the first inequality we use that deg uj ≤ deg hA(t) for 1 ≤ j ≤ m, and the
last inequality holds since r ≥ 2 deg hA(t)−d

3 . Surjectivity now follows from Lemma 2.1.
The cases (a) (ii)–(iv) and (b) (i)–(ii) follow from almost literally the same argu-

ments, taking into account the different ranges and bounds for d and r, respectively,
as well as the different location of the gap. Indeed, if there is a gap, then it is at
position d

2 in the cases (a) (i)–(ii), and at position d
2 − 1 in the cases (iii)–(iv). In the

situation of (b) (i)–(ii), the gap — if existing — lies at position d−1
2 .

The cases (a) (v) and (b) (iii) have to be treated slightly differently. Let s =
� (r−1)d

r �. By an analogous reasoning as for the other cases one infers that the mul-
tiplication in (2.5) is surjective for i ≥ s

2 + 1. On the other hand, Theorem 1.1 says
that A

〈r〉
Θ is s-Lefschetz. In particular, the multiplication map in (2.5) is injective for

i ≤ s−1
2 . Hence, we conclude that A

〈r〉
Θ is quasi-weak Lefschetz with a possible gap at

position � s+1
2 �. �

Remark 2.3. We want to remark that the arguments in the above proof do only
depend on the effective size of r and not on the precise relation between d and
deg hA(t). Moreover, the proofs of (a) (iv) and (b) (iii) do not use the fact that
d ≤ 3 deg hA(t) and d ≤ 2 deg hA(t), respectively. We only include these restrictions
since for d > deg hA(t) part (a) (v) and part (b) (iii) provide better, i.e., smaller
bounds for r. In particular, this allows us to conclude, that if d is even, the gap —
if existing — is at position d

2 if r ≥ max{d, 2 deg hA(t)−d
3 } and at position d

2 + 1 if
r ≥ max{d

3 , 2 deg hA(t)− d}. If d is odd and r ≥ max{d
2 , deg hA(t)− d

2}, the gap is at
position d−1

2 . This will be relevant for the proof of Theorem 1.2 (ii) and (iii).

Proof of Theorem 1.2. Part (i) can readily be deduced from Theorem 2.2. To show
part (ii), note that — independent of d — it follows from Theorem 2.2 (a) (i)–(iv)
and Remark 2.3 that A

〈r〉
Θ is quasi-weak Lefschetz. Since there can exist at most one

gap, we infer from Remark 2.3 that A
〈r〉
Θ is indeed weak Lefschetz.
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For part (iii), let r ≥ max{d
2 , deg hA(t) − d

2}. By Theorem 2.2 and Remark 2.3,
we know that A

〈r〉
Θ is quasi-weak Lefschetz with a possible gap being at position d−1

2 .
Assume, in addition, that deg hA(t) ≤ d

2 . We claim that the multiplication map

×w : (A〈r〉
Θ ) d−1

2
→ (A〈r〉

Θ ) d−1
2 +1

is surjective. The desired surjectivity follows from Lemma 2.1 since for all 1 ≤ j ≤ m
it holds that

r

(
d − 1

2
+

d − 1
2

+ 1
)

− 2 deg uj ≥ rd − 2 deg hA(t) ≥ (r − 1)d.

We conclude that A
〈r〉
Θ has the weak Lefschetz property. �

Remark 2.4. Theorem 1.2 (ii) says that, for any even dimensional Cohen–Macaulay
graded K-algebra A, the algebra A

〈r〉
Θ has the weak Lefschetz property for r 
 0.

Unfortunately, this fact does not hold for odd dimensional Cohen–Macaulay graded
K-algebras. Let A = K[x1, . . . , x8]/((x2

1, x1x2, x1x3, x1x4, x1x5) + (x2, x3, x4, x5)3).
Then A is a Cohen–Macaulay graded K-algebra of dimension 3 with the h-polynomial
hA(t) = 1+5t+10t2 and Θ = x6, x7, x8 is a l.s.o.p. for A, but A

〈r〉
Θ does not have the

weak Lefschetz property for any r ≥ 3.
If r ≥ 3, then the h-polynomial hA〈r〉(t) = h

〈r〉
0 +h

〈r〉
1 t+h

〈r〉
2 t2 of A〈r〉 satisfies h

〈r〉
0 <

h
〈r〉
1 < h

〈r〉
2 . However, there are no linear forms w such that ×w : (A〈r〉

Θ )1 → (A〈r〉
Θ )2

is injective. Consider the K-vector spaces V = x1(K[x6, x7, x8]/(xr
6, x

r
7, x

r
8))r−1 ⊂

(A〈r〉
Θ )1 and W = x1(K[x6, x7, x8]/(xr

6, x
r
7, x

r
8))2r−1 ⊂ (A〈r〉

Θ )2. Then, for any linear
form w ∈ A

〈r〉
Θ we have wV ⊂ W , since x1xi = 0 in A for i = 1, 2, . . . , 5, but

dimK V = dimK(K[x6, x7, x8]/(xr
6, x

r
7, x

r
8))r−1

> dimK(K[x6, x7, x8]/(xr
6, x

r
7, x

r
8))2r−1 = dimK W,

where the inequality follows since dimK(K[x6, x7, x8]/(xr
6, x

r
7, x

r
8))r−1 =

(
r+1
r−1

)
and

dimK(K[x6, x7, x8]/(xr
6, x

r
7, x

r
8))2r−1 = dimK(K[x6, x7, x8]/(xr

6, x
r
7, x

r
8))r−2 =

(
r

r−2

)
.

This fact implies that the multiplication ×w : V → W is not injective.

3. Consequences on h-vectors

In this section, we prove Theorem 1.3. Throughout this section, we let S = K[x1, . . . ,
xn] be a standard graded polynomial ring over a field K. For an integer r ≥ 1, let

T〈r〉 = K[zm : m is a monomial in S of degree r],

where each zm is a variable. Then there is a ring homomorphism

φr : T〈r〉 −→ S〈r〉

zm �→ m.

For a homogeneous ideal I ⊂ S, let I〈r〉 :=
⊕

j≥0 Ijr. Then I〈r〉 is a graded ideal of
S〈r〉 and (S/I)〈r〉 = S〈r〉/I〈r〉. Also, the ring (S/I)〈r〉 is isomorphic to T〈r〉/φ−1

r (I〈r〉).
To prove the main result, we need a few known results on Gröbner bases of φ−1(I〈r〉)

proved by Eisenbud et al. [6]. We refer the readers to [5] for the basics on Gröbner
basis theory.
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Let >rev be the reverse lexicographic order on S induced by x1 > · · · > xn, and let
�rev be the reverse lexicographic order on T〈r〉 such that the ordering of the variables
is defined by zm �rev zm′ if m >rev m′. For a monomial m ∈ S, we write max(m)
(resp. min(m)) for the largest (resp. smallest) integer i such that xi divides m. We
say that a monomial

u = zm1zm2 · · · zmk
∈ T〈r〉,

where m1 >rev · · · >rev mk, is standard if max(mi) ≤ min(mi+1) for 1 ≤ i ≤ k − 1.
The following fact was shown in the proof of [6, Proposition 6]. See also [13, Theorem
14.2].

Lemma 3.1. A monomial u ∈ T〈r〉 is standard if and only if u ∈ in�rev(ker φr).

The above lemma implies the next result.

Lemma 3.2. Let r ≥ 1 and 1 ≤ � ≤ n be integers. Let I ⊂ S be a monomial ideal
and J = I + (xr

n, xr
n−1, . . . , x

r
�). Then

in�revφ
−1
r (J〈r〉) = in�revφ

−1
r (I〈r〉) + (zxr

n
, . . . , zxr

�
) + (zmzm′ : mm′ ∈ (xr

n, . . . , xr
�)).

Proof. It is clear that the left-hand side contains the right-hand side. We show that
also the reverse inclusion holds. Let

u = zm1zm2 · · · zmk
∈ in�revφ

−1
r (J〈r〉)

be a monomial with m1 >rev · · · >rev mk. Further assume that u ∈ in�revφ
−1
r (I〈r〉).

We need to show that u ∈ (zxr
n
, . . . , zxr

�
) + (zmzm′ : mm′ ∈ (xr

n, . . . , xr
�)) in this case.

Since u ∈ in�revφ
−1
r (I〈r〉), we have u ∈ in�rev ker(φr). Thus, u is standard by

Lemma 3.1. We claim φr(u) ∈ J〈r〉. Let f = u+λ1v1 + · · ·+λmvm +g ∈ φ−1
r (J〈r〉) be

such that in�rev(f) = u, g ∈ ker(φr), u, v1, . . . , vm are distinct standard monomials
and λ1, . . . , λm ∈ K. Then φr(f) = φr(u) + λ1φr(v1) + · · · + λmφr(vm) ∈ J〈r〉. Since
J is a monomial ideal and φr(u), φr(v1), . . . , φr(vm) are distinct monomials, we have
φr(u) ∈ J〈r〉.

Since, by assumption, u ∈ φ−1
r (I〈r〉), we have

φr(u) = m1m2 · · ·mk ∈ (xr
n, . . . , xr

�).

Thus, there is an � ≤ i ≤ n such that xr
i divides φr(u). If deg u = 1, then u must be

equal to zxr
i
. If deg u > 1, then, by the definition of a standard monomial, there is a

1 ≤ j ≤ k − 1 such that xr
i divides mjmj+1. This proves the desired statement. �

A monomial ideal I ⊂ S is called stable if, for any monomial m ∈ I, one has
m(xi/xmax(m)) ∈ I for any i < max(m). The following facts are known.

Lemma 3.3.
(i) For any Cohen–Macaulay standard graded K-algebra A with dimK A1 ≤ n,

there is a strongly stable monomial ideal J ⊂ S such that S/J is Cohen–
Macaulay and S/J has the same Hilbert series as A.

(ii) Let I ⊂ S be a stable monomial ideal such that S/I is a Cohen–Macaulay
graded K-algebra of dimension d. Then xn, xn−1, . . . , xn−d+1 is a linear sys-
tem of parameters for S/I and I is generated by monomials of degree ≤
deg hS/I(t) + 1.
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Proof. We only sketch the proof since the statements are well known in commutative
algebra. By Macaulay’s Theorem on Hilbert functions (see [3, Theorem 4.2.10]) there
exists a lexsegment ideal I in a polynomial ring K[x1, . . . , xn−d] such that the Hilbert
series of K[x1, . . . , xn−d]/I equals the h-polynomial of A. Moreover, the algebra S/IS
is a d-dimensional Cohen–Macaulay algebra and in particular, it has the same Hilbert
series as A. Part (i) follows since any lexsegment ideal is stable and it is easy to see
that then also IS has to be stable.

Suppose that I is a stable monomial ideal such that S/I is Cohen–Macaulay.
A result of Eliahou and Kervaire [7] shows that I is generated by monomials in
K[x1, . . . , xn−d]. This shows that xn, xn−1, . . . , xn−d+1 is a regular sequence of S/I
and, therefore, is a l.s.o.p. for S/I. Also, since the h-polynomial of S/I is equal
to the Hilbert series of S/(I + (xn, xn−1, . . . , xn−d+1)), I contains all monomials
in K[x1, . . . , xn−d] of degree deg hS/I(t) + 1. Since I is generated by monomials in
K[x1, . . . , xn−d], I is generated by monomials of degree ≤ deg hS/I(t) + 1. �

For the proof of Theorem 1.3 we will use the following result for Veronese algebras
of the quotient of a stable monomial ideal, which was proven by Eisenbud, Reeves
and Totaro [6, Theorem 8].

Lemma 3.4 (Eisenbud–Reeves–Totaro). Let I ⊂ S be a stable monomial ideal
generated by monomials of degree ≤ s. If r ≥ s

2 , then in�revφ
−1
r (I〈r〉) is generated by

monomials of degree ≤ 2.

Now we are in the position to prove Theorem 1.3. Recall that a simplicial complex
Δ on [n] := {1, 2, . . . , n} is a collection of subsets of [n], called faces, satisfying that
if F ∈ Δ and G ⊂ F , then G ∈ Δ. A simplicial complex is said to be flag if every
minimal non-face of Δ has cardinality ≤ 2. For a simplicial complex Δ, we write fi(Δ)
for the number of elements F ∈ Δ with |F | = i + 1. The f-polynomial of Δ is the
polynomial f(Δ, t) =

∑
i≥0 fi−1(Δ)ti, where f−1(Δ) := 1. The f -polynomial of Δ can

be expressed in an algebraic way. Indeed, the f -polynomial of a simplicial complex
Δ on [n] is equal to the Hilbert series of S/((xF : F ∈ Δ) + (x2

1, . . . , x
2
n)), where

xF :=
∏

i∈F xi. Moreover, Δ is flag if and only if the ideal (xF : F ∈ Δ)+(x2
1, . . . , x

2
n)

is generated by monomials of degree ≤ 2.

Proof of Theorem 1.3. Part (iii) immediately follows from Theorem 1.1. The unimodal-
ity of (ii) is a direct consequence of Theorem 1.2. We prove (i) and the remaining part
of (ii).

Fix r ≥ 1. Since the Hilbert series of A〈r〉 only depends on r and the Hilbert
series of A, by Lemma 3.3 (i), we may assume that A = S/I, where I is a stable
monomial ideal. Let Θ = xn, xn−1, . . . , xn−d+1 and J = I + (xr

n, . . . , xr
n−d+1). Then,

by Lemma 3.3 (ii), Θ is a l.s.o.p. for A = S/I and

A
〈r〉
Θ = S〈r〉/J〈r〉 ∼= T〈r〉/φ−1

r (J〈r〉).

We now prove (i). Suppose r ≥ 1
2 (deg hA(t) + 1). Let Δ be the set of monomials

in T〈r〉, which are not contained in in�rev(φ
−1
r (J〈r〉)). By Lemma 3.3 (ii), I is gen-

erated by monomials of degree ≤ deg hA(t) + 1. Then Lemma 3.2 and Lemma 3.4
say that in�rev(φ

−1
r (J〈r〉)) is generated by monomials of degree ≤ 2. This fact shows

that in�rev(φ
−1
r (J〈r〉)) contains z2

m for any variable zm of T〈r〉 since T〈r〉/φ−1
r (J〈r〉) is
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Artinian. This implies that Δ is a set of square-free monomials. Thus, we may regard
Δ as a simplicial complex. Moreover, since

in�rev(φ
−1
r (J〈r〉)) = (u : u is a monomial in T〈r〉 with u ∈ Δ)

is generated by monomials of degree ≤ 2, Δ is a flag simplicial complex. Also, by the
construction of Δ, we have

f(Δ, t) = Hilb(T〈r〉/φ−1
r (J〈r〉), t) = Hilb(A〈r〉

Θ , t) = hA〈r〉(t),

which proves (i).
Finally, we prove the second part of (ii). Let λ = deg hA〈r〉(t). Suppose r ≥

deg hA(t). Note that in this case it follows from (2.4) that λ ≤ d. By Theorem 1.2,
the proof of Theorem 2.2 and Remark 2.3 concerning the location of the gap, there
is a linear form w ∈ (S〈r〉)1 = Sr such that

(3.1) gA〈r〉(t) =
�λ

2 �∑

i=0

(
dimK(A〈r〉

Θ /wA
〈r〉
Θ )i

)
ti.

Observe

(3.2) A
〈r〉
Θ /wA

〈r〉
Θ

∼= T〈r〉/φ−1
r (J〈r〉 + (w)〈r〉).

Let Γ be the set of monomials of degree ≤ �λ
2 � which are not in in�revφ

−1
r (J〈r〉 +

(w)〈r〉). As we have already seen in the proof of (i), in�revφ
−1
r (J〈r〉) contains z2

m for
any variable zm of T〈r〉. Thus Γ can be regarded as a simplicial complex. Then, (3.1)
and (3.2) say that gA〈r〉(t) is equal to the f -polynomial of Γ, as desired. �
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