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RESONANT STATES FOR THE STATIC
KLEIN-GORDON-MAXWELL-PROCA SYSTEM

EMMANUEL HEBEY AND JUNCHENG WEI

ABSTRACT. We prove the existence of resonant states for the critical static
Klein—Gordon—Maxwell-Proca system in the case of closed manifolds. Standing waves
solutions with arbitarilly large multi-spikes amplitudes and unstable phases are
constructed.

We investigate in this paper the existence of resonant states for the electrostatic
Klein-Gordon—-Maxwell-Proca system in closed manifolds, a massive version of the
more traditional electrostatic Klein-Gordon-Maxwell system. The system provides a
dualistic model for the description of the interaction between a charged relativistic
matter scalar field and the electromagnetic field that it generates. The external vector
field (¢, A) in the system inherits a mass and is governed by the Proca action which
generalizes that of Maxwell. Let (M, g) be a closed three-dimensional Riemannian
manifold. Writing the matter scalar field in polar form as 9 (x,t) = u(z, t)e'¥(® the
full Klein—-Gordon—Maxwell-Proca system is written as

Gt o Dgu -+ miu =’ ((%f +qp)” — VS - qA|2) u
(0.1) 2 (28 + qp) u?) = V. ((VS - qA)u?) =0
V. (24 1 Vo) +mie+q (2 + gp)u? =0

NgA+ L (22 + V) +m3A=q(VS —qA)u?,

where Ay, = —div,V is the Laplace-Beltrami operator, Zg = dd is half the Laplacian
acting on forms, and § is the codifferential. In its electrostatic form we assume A
and ¢ do not depend on the time variable. Looking for standing waves solutions
P(x,t) = u(r)el“?, letting ¢ = wv, there necessarily holds that A = 0 and the system
reduces to the two following equations:

(0.2) {Agwmau — 0+ w2 (v — 1) 0,

Agv+ (m} + ¢*u?) v = qu.

In the above, mg, m; > 0 are masses (mg is the mass of the particle, m; is the Proca
mass), and ¢ > 0 is the electric charge of the particle. The Proca formalism comes with
the assumption my > 0. We refer to Section 1 for a discussion on the physics origin of
the system. The system (0.2), in Proca form in closed manifolds, has been investigated
in Druet and Hebey [5] and Hebey and Truong [8]. Existence of variational solutions
and a priori bounds, which guarantee phase stability, were established in these papers.
The existence of resonant states was left open. We answer the question in this paper.
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As a remark, (0.2) is critical from the Sobolev viewpoint since 5 = 2* — 1 when
the dimension is 3, where 2* is the usual notation for the critical Sobolev exponent
associated with H'. We consider in this paper the case of the unit 3-sphere. Our
theorem is stated as follows. The 6;’s in the theorem are referred to as resonant
states.

Theorem. Let (S3,g) be the unit 3-sphere, mg,m1 > 0, and q > 0. There ezists a
sequence (0x)r of positive real numbers, satisfying that 6 = ?, 0r > 01 when k > 2,
and 0, — +0o as k — 400, and there exists a sequence (cx(m1))k, satisfying that
c1(my) =0, cg(my) > 0 for k > 2, and cx(m1) — +o0 as k — +oo, such that any
wi € (—mo,mg) given by 02 = m3 — w?, which satisfy that ¢*w? # cx(ma1), is an
unstable phase for (0.2) associated with a k-spikes configuration.

The 6’s in the theorem are independent of mg, mq, and ¢, while the ¢, (mq)’s, as
indicated by the notation, depend only on m and k. Concerning terminology, a phase
w € (—mg, mo) is said to be unstable (or resonant) for (0.2) if there exist a sequence
(wa)a of phases, and sequences (g )a, (Va)a Of positive solutions of

0.3) Agug + miug = ud + w2 (qua — 1)*uq,
Agva + (mi + ¢*uf Jva = qui,

for all @ € N, such that w, — w as & — 400, and such that ||ua||c2+||vallcz — +0o0 as
a — +00. By elliptic theory, because of the structure of the equation (see Section 2),
the latest turns out to be equivalent to [uq|[r~ — +00 as & — 400. In case the u,’s
blow up with precisely k singularities (see Struwe [16]), the unstable phase w is said
to be associated with a k-spikes configuration. An unstable phase may be associated
of course with different k-spikes configurations for different k, but the more k is large,
the reacher is the blowing-up structure. Conversely, a phase w is said to be stable if for
any sequence (wq)q of phases, and any sequences (tq)q, (V) Of positive solutions of
(0.3), the convergence w, — w in R as a — +o0 implies that, up to a subsequence,
the u,’s and v,’s converge in C?(S%) as a — +o0.

By the analysis in Druet and Hebey [5], any phase in (—mqg, mg) is stable when
m3 < K, where k > 0 is such that Ay + k has a nonnegative mass at each point in
the manifold. The result in Druet and Hebey [5] was stated with x = %min M Sy, for
which we have the positive mass theorem of Schoen and Yau [14]. It holds with any
such k. More generally, phase compensation was established in Druet and Hebey [5],
and we get that any phase w € (—mg,mg) such that m — w? < k is stable (thus
allowing situations where mg can be large). In the case of S®, the best s possible is
K= % Our main result states that there are resonant states for the system when we
do not assume the bound on mg. The result is sharp since these appear precisely when
the Druet and Hebey [5] result stops to apply. As a remark, it is often the case in the
literature that blowing-up solutions of critical equations are constructed with the help
of an additional, somehow artificial, parameter which breaks the original structure of
the equation. The parameter usually affects the nonlinearity, replacing 2* by 2* +¢ in
a pure power nonlinearity, or the potential term, replacing h in a Schrédinger operator
Ay + h by h £ ey, where ¥ > 0 is a suitable positive function. A main feature in the
above theorem is that we do not need to add any such parameter. The multi-spikes
blowing-up solutions we construct are pure solutions of our systems. They all satisfy
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(0.3). The phase, which is part of the system, plays the role of the parameter. Two
basic consequences of our theorem are as follows:

(i) When mg > @, wi = y/m2—2 and —w; are unstable phases for (0.2)

associated with a single spike configuration, and

(ii) There exists g = €g(m1), €0 > 0, such that if gmg < &, then for any &k > 2
satisfying that m3 — 9% >0, wp = \/m§ — 92 and —wj, are unstable phases
for (0.2) associated with a k-spikes configuration.

In particular, the larger my is, as long as gmg remains small, the more we find unstable
phases. Point (i) corresponds to & = 1 in the theorem. Point (ii) is obtained by letting
e? = infy>o cx(mq). When m2 = 02, k > 2, wy, = 0 is an unstable phase for (0.2). The
same holds for £ = 1 by taking w, = 0 for all o in (0.3) and thanks to the existence
of exact solutions U, , of the equations which blow up as ¢ — 0, see (2.5).

In terms of (0.1) the theorem rephrases as the existence of a sequence u,, (z)el“=!
of standing waves solutions of (0.1) with purely electrostatic fields ¢, = wv, such
that w,, — wy as @ — 400, (Vy)a converges in L as a — +00, and ||uq ||~ — 400
as a — +oo with k-spikes. The convergence of the v,’s directly follows from elliptic
theory and the second equation in (0.2).

The theorem and its consequence in terms of (0.1) hold true in quotients of S for
specific values of k, like on the projective space P3(R) when k is even.

We discuss the physics origin of the system in Section 1. We prove our theorem
in Section 2 by using the so-called localized energy method which goes through the
choice of suitable approximate solutions and the use of finite-dimensional reduction.

1. The physics origin of the system

The Klein-Gordon-Maxwell-Proca system discussed in this work describes an inter-
acting field theory model in theoretical physics. Most electromagnetic phenomena
are described by conventional electrodynamics, which is a theory of the coupling
of electromagnetic fields to matter fields. Of prime importance for particle physics
is fermion electrodynamics in which matter is represented by spinor fields. However,
one may have also boson electrodynamics in which matter is described by integer spin
or bosonic fields. The simplest one is of course the complex scalar field, describing
spinless particles having electric charges +¢q. It gives rise to scalar electrodynamics,
which describes in the nonrelativistic limit the superconductivity of metals at very
low temperatures. In the more general context of particle physics, a complex scalar
field v may serve to describe scalar mesons in nuclear matter interacting via a massive
vector boson field (¢, A).
The interaction in this model is described by the minimum substitution rule

Oy — 0y +igp and V — V —igA,

in a nonlinear Klein-Gordon Lagrangian. As for the external massive vector field it is
governed by the Maxwell-Proca Lagrangian. The constructions in this section follow
the lines of the massless case addressed in Benci and Fortunato [2] (see also Benci
and Fortunato [3]). Assuming for short that the manifold is orientable, we define the
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Lagrangian densities Lnkg and Lyp of ¥, ¢, and A by
2

1 0 1 2 1
Lt p.4) = 5 '(aﬁlq*")%f’ 7 gy = o 4 L,

2

- 7|V x Al? +

(1.1) »

N 5 Lyl
where Vx = %d, % is the Hodge dual, ¢ represents the matter complex scalar field,

myg its mass, ¢ its charge, (p, A) the electromagnetic vector field, and m; its mass. It
can be noted that

m% 2
Lyp (o, A) = + Vo 7|A\ ,

1o, DT = lol* — AP

is the square of the Lorentz norm of (p, A) with respect to the Lorentz metric
diag(1,—1,...,—1). The total action functional for 1, ¢, and A is then given by

(1.2) S, p, A // (Lnka + Lvp) dvg dt.

Writing ¢ in polar form as 9 (z,t) = u(z,t)e’¥® taking the variation of S with
respect to u, S, ¢, and A, we get four equations, which are written as

atz ¥+ Agu+ miu =u’ +<(%‘§+q<p)2—|VS—qA|2)u

1o} —
(13) o (5 +a0)v®) = V. (VS = gA)u?) =0

—V. (% + Vo) +mio+q (% +ap)u? =0

AgA+ 2 (2 + V) + miA=q(VS —qA)u?
where A, = —div,V is the Laplace-Beltrami operator, A, = dd is half the Laplacian
acting on forms, and ¢ is the codifferential. We refer to this system as a nonlinear
Klein-Gordon-Maxwell-Proca system. There holds that AjA = V x (V x A). The
above system consists in the nonlinear Klein—Gordon matter equation, the charge

continuity equation and the massive modified Maxwell equations in SI units, which
are hereafter explicitly written down:

V.E = p/eq — pi*e,

oF
(1.4) V X H = po (J-I-Eo 8t> — 1?4,
H
VxE+aa—t:0 and V.H =0.
Indeed, if we let £ = —(%+th), H=VxA p= —(%+qs0)qu2, and J =

(VS — qA) qu?, then the two last equations in (1.3) give rise to the first pair of the
Maxwell-Proca equations (1.4) with ¢y = po = 1 (units are chosen such that ¢ = 1)
and p? = m?, while the second pair of the Maxwell-Proca equations, as usual, is given
for free because of the expressions of E and H. The first equation in (1.3) gives rise to
the nonlinear Klein—-Gordon matter equation. The second equation in (1.3) gives rise
to the charge continuity equation % +V.J = 0 which, thanks to (1.4), is equivalent to

the Lorentz condition V.A+ ‘%f = 0. The massive Maxwell equations (1.4), as modified
to Proca form, appear to have been first written in modern format by Schrodinger [15].
The Proca formalism a priori breaks Gauge invariance. Gauge invariance can be
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restaured by the Stueckelberg trick, as pointed out by Pauli [11], and then by the
Higgs mechanism. We refer to Goldhaber and Nieto [6,7], Luo et al. [10], and Ruegg
and Ruiz—Altaba [13] for very complete references on the Proca approach.

We assume in what follows that u(x,t) = u(x) does not depend on ¢, S(z,t) = wt
does not depend on z, and ¢(x,t) = ¢(z), A(x,t) = A(z) do not depend on ¢. In
other words, we look for standing waves solutions of (1.3) and assume that we are in
the static case of the system where (¢, A) depends on the sole spatial variable. By
the fourth equation in (1.3) we then obtain that

AyA+ (¢Pu? +mi)A =0.

This clearly implies that, and is equivalent to, A = 0 since [(AjA, A) = [|dA|*. Asa
remark, assuming that A = 0, the Lorentz condition for the external Proca field (¢, A)
would make ¢ dependent on the sole spatial variables. As for the second equation in
(1.3) it reduces to atQ = 0. It is automatically satisfied when S(t) = wt, and we are

thus left with the first and third equations in (1.3). Letting S = —wt, and ¢ = wv,
we recover our original system

Agu+miu = u® + w? (qu —1)%u

Agv + (mi + ¢*u?) v = qu.
In other words, our original system (0.2) corresponds to looking for standing waves
solutions of the Klein-Gordon-Maxwell-Proca system (1.3) in static form. The

theorem we prove then provide the existence of resonant states for the static
Klein—Gordon—-Maxwell-Proca system (1.3).

2. Proof of the theorem

Formally, solutions of (0.2) are critical points of the functional S defined by

(2.1) / |Vu|2dvg— / |Vo|2dv, + / u?dv,
_w'm
21/M 2dvg—p/Mupdv —/ (1 — qu)3do,.

The functional S is strongly indefinite because of the competition between u and
v. Following a very nice idea going back to Benci-Fortunato [2], we introduce the
auxiliary functional ® given by

(2.2) Ag®(u) + (mf + ¢*u?) @ (u) = qu’,

and then consider that u in (0.2) can be seen as a critical point of

(2.3) /|Vu|2d —I—/ u?dv, — / (ut)bdo,
-2 [ - avw) i,

where u™ = max(u,0) is the nonnegative part of u. Let Fp : H' — R be defined
by Fo(u) = 5 [,,(1 — q®(u))u?dv,. As is easily checked, ® : H' — H' is uniquely
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defined, it satisfies that 0 < ®(u) < % for all w € H!, ® and Fy are C!, and

DFy(u).(¢) = /M<1 — 4@ (u)) ugpdy,,

for all u,p € H'. Now the goal is to construct blowing-up multi-spikes solutions to
(0.2) when w is close to resonant frequencies wy. To each wy, is associated a sequence of
ng-spikes solutions with n; — 400 as k — +o0o. This can be considered as bifurcation
from infinity (see Bahri [1]). More precisely we use here the so-called localized energy
method (see Del Pino et al. [4], Rey and Wei [12], and Wei [17]) which goes through the
choice of suitable approximate solutions and the use of finite-dimensional reduction.
The proof we present here follows closely the lines of Hebey and Wei [9].

Let P, = (1,0,0,0) in S® and k € N, k > 1. We define the P;’s, i = 1,...,k, by
P, = (eiei, 0) € $3 C R? x R2, where 0; = w Let Gj be the maximal isometry
group of (53, g), which leaves globally invariant the set { P, ..., Py }. Let also ¥ C S?
be the slice

(2.4) i = {(reie,z) ,r>02€Cr? 42 = 1,—% <6< %}
The Yamabe equation in S? is written as
3
Agu + Zu =u’.

Its solutions are given by

1/2
31/4 €
25 UE$ = 9
(2:5) M /2 \e2cos? L +sin® 4

where ¢ € (0,1), r = dy(o,-), and zg € S* is arbitrary. Given 6 > 0, we let Gy be
the Green’s function of A, + 62. Then

(2.6) Gol@,y) = 4?2?rf}lf(9;5:w;s23r

for all z,y € S3, x # y, where r = dy(z,y) and py = V02 — 1. We define Ry to be
given by
(2.7) Go =G5 + Ry.
2
The following lemma holds true.

Lemma 2.1. Let Gy and Ry be as above. Given k € N, k > 1, define

k
(2:8) ne(0) = Ro(Py, 1)+ Go(Pr, Py),

=2

where the second term in the right hand side of (2.8) is zero, if k = 1. There exists a
unique Oy, > 0 such that ng(0;) = 0. There holds ni(0) > 0, when 0 < Ok, nx(0) < 0

when9>9k,01:§,9k—>+oo as k — 400, and O > 1 > 01 for all k > 2.
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Proof of Lemma 2.1. There holds that
1
R@(Pl, Pl) = —Eug COth(um‘r),

so that n1(d) = 0 if and only if #% = 2, while 171(‘/3) < 0. It is easily checked
that n(0) — —oo as 62 — +oo, while 77k( ) > 0 for k > 2. There also holds that
%(u coth(um)) > 0 while, by the maximum principle, Gy < Gy,, if 62 > 62. Hence
there exists a unique 0, > 0 such that ng(0x) = 0. Then n,(0) > 0 if § < ), and
ne(0) < 0 if @ > 6. Since sinh(tz)/sin(x) > t for x € (—m, ), there holds that
0 — +o0o as k — 4o00. There also holds that 6, > 1 for k& > 2 since (1) > 0 for

k > 2, and we have that 6; = @ < 1. This ends the proof of the lemma. O

Letting Rg p, = Ro(P1,-), where Ry is given by (2.7), we can check

(2.9) Ry p, = R ST COZ};(MW) + 8i7r (92 — i) r+0(r?),
where 7 = dy(Py,-). Given € > 0, we define the projections U p,, i =1,...,k, by
(2.10) AglUe p, + 0*Ue p, = U p,
and we define ¢, p, and W, to be given by
k
(2.11) Uep, =Uecp,+@ep, and We=> U p,
i=1

where U, p, is as in (2.5). The W,’s are G-invariant. As shown in Hebey and Wei [9],
the following lemma holds true.

Lemma 2.2 (Hebey and Wei [9]). There holds that

pe,p, = AVERg p, + Bge®*y (g) +o (53/2) and

(2.12) k .
We = Ue p, + AVE <R97p1 + ZG97P1> + By (g) To (53/2)
=2

mn Xy, where r = dg(P1, ), Go p, = Go(P;,-), A= 477'31/4\/5, By = ﬁ (% - 92), and

' ' Ap=——=A—_ — L inR3,
1 is the solution of Ay JireE Tl m
As a remark, there holds that [¢(z)| < Clnﬁﬁfl) and |Vi(z)| < CT&T;‘?Q as

|z| — +o0. In the equation for 1), A = — 3. 82. Now we prove the following.

Lemma 2.3. Let k € N, k > 1. Let W be as in (2.11), and ® : H* — H" be as in
(2.2). Then %@(WE) — q®p g in H', where @ solves

Ay®p g +midy g = A2G?,

G = Zle Go.p,, Gop, = Go(P;, ) for alli, and Gy is the Green’s function of Ag+92
given by (2.6).



960 EMMANUEL HEBEY AND JUNCHENG WEI

Proof of Lemma 2.3. Let v. = 1®(W,). By the definition of ®(.) there holds that

We )
(2.13) Agve + (mi + @W:)v: = g (f) '
By (2.12) in Lemma 2.2,
Wg . Ty -1
M i
N ¢ (Sm 2)

around P;, while V\‘//g < C when standing far from the P;’s, where r; = dg,(F;, ).
Hence, the family (W-/+/€). is bounded in LP for all p < 3. It clearly follows, when
multiplying (2.13) by v. and integrating over S®, that (v.). is bounded in H'. We
use for this Holder’s inequality and note that 1—52 < 3. There also holds that (vae)s
is bounded in L? for p < 2. By (2.13), we then obtain that

2
Agvs + mijve = fsa

where (fz). is bounded in L? for all p < % By elliptic theory this implies that (v.). is
bounded in H%? for all p < 2. In particular, since H*? C H' is compact for p close
to %, there exists ® such that, up to a subsequence, v. — ® in H! as ¢ — 0. As is
easily checked, it follows from Holder’s inequality and (2.12) that [ W2u.p — 0 as
e — 0 for all p € H'. By (2.12) and (2.13), ® solves

A,®+mid = qA%G>.
In particular, ® is unique. This ends the proof of the lemma. O

It follows from Lemma 2.3 that ®(W.) = O(e?) for all o € (0,1). Indeed there
holds that for any d € (0,1),

(2.14) Ay (2R (WL)) + mi (2L d(WL)) = qT(W.)e® < )2 :

R

where 0 < ¥ < 1 is given by ¥(u) =1 — ¢®(u). We have that

(WY e
VE) S eaa?

around P;, while 65(W; )2 < Ce? when standing far from the P;’s. Then

2\ P 1 5 P
[ CR)) wer ] () e
S3 0
+oo 1 P
< 0153_(2_5)1”/ <1 n 7'2) r2dr + Cy < Cs,
0

for p = ps = 325 > 3. By (2.14) we then obtain that (¢°~'®(W.)). is bounded
in H! since ps > %. Then the family is also bounded in H?P5, and since by Sobolev
H?P5 C L, we obtain that ®(W.) < Cse'=%, 6 € (0,1). Letting o = §—1, this proves
the bound. Now we prove that the following asymptotic development for (W) holds
true.

5
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Lemma 2.4. Let I be given by (2.3) and W be given by (2.11). There holds that

(2.15) IOW:) = Aok + Av keni(0) + Az i (w)g%e®
+ A3 1 (0)® + O(mie(0)%€?) + o(e ),
where 602 = mg —w?, Aoy, = £(3)3/2 [, USdz, Ay = —E2(3)%/4 [, Uddz,
_ ‘LQ 2 242
Az p(w) = (IV®r0|* +mi®f o) dug,
2 g3 ’
(2.16) o\ e g
A -1 2_° o
3,]@((9) 67Tk5\/§ <9 4) A 4—|—7‘27

2\ —1/2
the function Uy is given by Ug(z) = (1 + %) for x € R®, and Py is as in
Lemma 2.3.

Proof of Lemma 2.4. We proceed as in Hebey and Wei [9]. By (2.12) in Lemma 2.2
we have that

(2.17) / |VW€|2dvg+t92/ W2dv,
S3 S3

3 3/2 3 5/4
=k(> /Ugdx+k = Asnk(e)/ Ugdx
4 R 4 R
N A (2 3\ o[ s
+k<4> 87r(9 4)5 /RSUordx
3\ 5/4
—I—k<> B952/ U051/)d1:+0(52),
4 RS

where By and 1 are as in (2.12). Still by (2.12), we have that

3 3/2 3 5/4
(2.18) WSdv, =k (4) U0 dx + 6k ( > Aenk(G)/ Ugdx
S3 R3

5/4
+ 6k (3) ( 3) 52/ Ugrdx
4 -

5/4
+ 6k (4) Bga—: U0 Ydx
+ O (w)?) + 0(5 )

Now we use the equation satisfied by ®(WV;.) to write that

LW W~

quw®

2
o [ 20vowzdu, =% [ (VBN + miBON. ),
S3 S3
wQ

2

By (2.12), [ W? = O(e), while we have seen that ®(W.) = O(e?) for all o € (0,1).
Picking o < 1 sufficiently close to 1, it follows that [ WZ2®(W.)? = o(e?), and by

+=¢* [ W2B(W.)%dv,.
S3
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Lemma 2.3 we obtain that
2

(2.19) % (W) W2du,
S3
2.2 2 2
_we / (‘v@(wg) +m%<<1>(wg)> )dvg
2 Jgs € €
w2q252

1 [ (IVR0V)? + e W0)?) doy + ofe?).
S3

Combining (2.17)—(2.19), the lemma follows with

k(3\"* /A [, 3 . s
k(3\*?/, 3 .

Integrating by parts, since AUy = %Ug, we obtain that
3 teo dr
Az (0) = —167kV3 (0% — = —.
34(0) Wf( 4)/0 142
This ends the proof of Lemma 2.4. O
Let us write that Asj(w) = w?Bak(6). Then, B x(6) > 0. Let ) be given by

Lemma 2.1. The function ®; ¢ in Lemma 2.3 is Gy-invariant. By Hélder’s inequalities
we can write that

k
/53(|vq>kﬂ2 +mi®f 5)dv, < C’Z /S G} p, @y odvg
=1

< Ck‘/ Giyl;&(pk,gdvg < CkHGG,Pl||L12/5H(pk,9”L6~
53

By the maximum principle, Go p, < Gy, p, for all 8’ > 6. Since 6, — +o0, it follows
that B (0r) < Ck?, where C' > 0 is independent of k. On the other hand, by the
definition of Oy, p coth(purm) > CGy, p, (P2), where p, < Cy, and we thus obtain
that 6, > Ck, where C' > 0 is independent of k. As a consequence we obtain that
|A3,k(9k)| Z Ck‘B2’k(9k). Then

(2.20) lim ———— = —o0.

While gz’zgz:g = 0 when k = 1, the quotient can be made arbitrarily large in absolute
value and negative in specific situations. Now we turn our attention to the finite-

dimensional reduction part of the proof. We let O be given by

(2.21) Ok = ¢* Ag i (wr) + Ak (0k),

where As i (w), A3 (0) are as in Lemma 2.4, 67 = m2 — w?, and the 6;’s are as in

Lemma 2.1. Then we let ¢ = A&, where % < A < C for C > 1, and we define
€ =ni(0) for 6 € (0 — 9,0;) with 6 > 0 small in case O, > 0, and € = —n,(0) for
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0 € (Ok, 0k + 0) with § > 0 small in case O < 0. In the above constructions, & > 0
and € — 0 as 0 — 0. We let

foolst g8
13
be the map given by fz(z) = &z. If g is the standard metric on %SS , induced from

the Euclidean metric, then fZg = &2gz. Given u : S — R, we define the ~-procedure
which, to u, associate @ : 5% — R, where

We let ¥ = 8(;/;\\)57 where W. is obtained from W. in (2.11) by the ~-procedure, and
we define

(2.22) Z=A,Y +&(mi—-uw?Y.

There holds that (Y, Z) = v + o(1), where 7o > 0 and (-,-) is the L?-scalar product
with respect to gz. We say in what follows that a function @ in %53 is Gp-invariant
if u is Gy-invariant in S, In particular Y and Z are Gj-invariant. Let ¥ be given by
U(u) = w?®(u)(2 — ¢®(u)). By the ~-procedure, the equation

Agu+ (mg — wu+ q¥(u)u = u°

in S3, which is the equation associated to I, is equivalent to

Ayt + E(mf — whi + ¢&2V (u)i = @

in 19%, where ¥(u) = ¥(u) o fz. Now we define the norms || - ||+,c and || - [[x,c by
fulloo = sup (min, (144 (7)) uta)
zeigs \i=lok
(2.23) :

- 240

|l sx,0 = sup ( min (1 —I—dgé(Pi7x)) ) lu(z)|
seisa \i=l..

for u € LOO(%S?’), where 0 < 0 < 1 and f«(P,)) = P;, i = 1,...,k. Given a function

h € L* (15%) we consider the problem

Ag.d+E2(m3 — w)p — 5Wi¢ = h+ coZ
f%s?’ Z¢d?)g€ = 07

where ¢y € R, and Z is as in (2.22). Following Hebey and Wei [9], Del Pino et al. [4],
and Rey and Wei [12], we obtain that there exist £ > 0 and C' > 0 such that for
any £ € (0,&0) and any Gj-invariant function h € L>(15%), (2.24) has a unique
G-invariant solution ¢ = Lz(h) with ||¢|«c < C||h|wx,0. Moreover, the map L: is

Ct wart. A and || DaLz(h)|+,0 < C|lh]/sx,0. Now we prove the following estimates on
the ¥ functional.

(2.24)

Lemma 2.5. Let W, be as in (2.11). Let ¥(u) = w?®(u)(2 — ¢®(u)) be as above.
There exists C > 0, independent of €, such that for any w,u1,us in the €-ball B =
{u€e H*NL>® s.t. ||i|+, < &}, there holds that

1We(u)|lixo < CE7+ ) llvo, and
1We(uz) = Ve(ur)|ane < CE7 +E77) |tz — @ lu0

(2.25)
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where Wz(u) = E2(V(W:. + u)(WE—i—ﬂ)—\II(Wg)WE), and the norms || ||l and |||l sx,o
are as in (2.23).

Proof of Lemma 2.5. Let F(u) = q(1 — q®(u)). There holds
Ay®(u) +mid(u) = Flu)u?
and we can write that
(2.26) Ag(POWe +uz) — @We + w1)) + mi (PO + ug) — PWe + u1))
= —*(P(W: + uz) — W + u1))W: + uz)?
+ FWe 4+ up)(ug + ug + 2W: ) (uz — uq).

Since [|@i|xs < & implies ||ul|L~ < V/Z, we have by (2.12) that |[W. + ua||zs = o(1).
Hence,

(2.27) [(@OV: 4 ug) = WV + ur)) Ve + u2)?|| .
=0 (PWV: +u2) — (W= +w)).

Since |F| <1, and [ W? = O(e), there also holds that
(2.28) [ F(OWe + u1) (ur + uz + 2Wo) (ug — uy)| 2 < OVE|lug — up || 1o

Combining (2.26)—(2.28), by standard elliptic theory, and since H? C L, we obtain
that

(2.29) | OV +u2) =@ (We +u1)| 0o < CVE||ug — uy| g

Noting that vVZ[ulz~ < [illo, [l < &2l and [Welluno < C2717, we
obtain by (2.29) that

(2.30) H@(m T un) W + i) — BOV. + ur) (WE +a1)

*k,0

<C (57170 + 572“’) llae — @1 |lx,0-

Since |®| < %, we easily deduce (2.25) from (2.29) and (2.30). This ends the proof of
the Lemma. O

At this point we define R; ¢z, R2 s, and Rz by
(2.31) Riz=W? - AW, — (md — wHEW,,

and we consider the problem
Ay (We + @) + E2(mf — w?)(We + )
(2.32) +qE2YW. + K. + o) (We + ¢) = (W + ¢)° + ¢ Z,
féss Zpdvg. =0,
where W. = W. + Lz(Rs), co € R,
@(WE +K6 +¢) = (ID(Ws +K€ +¢) Of€>
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and K. = Lz(Rz). Thanks to Lemma 2.5 we can apply the fixed point argument as
in Del Pino et al. [4], and Rey and Wei [12]. Noting that

HRz’,én**,o < Cé and HDARi,éH**,U < Cé,

for all ¢ = 1,2, we obtain that there exist &g > 0 and C' > 0 such that for any
€ € (0,&p), (2.32) has a unique Gy-invariant solution ¢ = ¢z with ||¢z||«,» < C€ and
| Dadzllx,o < CE. Now we let

(2.33) U. = W. + Lz(Rz) + o=
There holds that ||Lz(R:)||«,- < CE. Thus U. > 0. We define p : Rt — R by

1 . 2 2\x2 .
(2.34) o) =5 [V, + T gz,
298 150

222

. 1 R
I / SU2dv,, — ¢ / USdv,.,
5 =

where U, is such that Z;IE = Z]s, namely such that I;IE is obtained from U. by the
~-procedure. In other words, U. = W. + K. + ¢z. The following holds true.

Lemma 2.6. The function U- > 0 is a solution of

(2.35) AU + (m — AU + q¥(U)U = U®
in S® if and only if A is a critical point of p.

Proof of Lemma 2.6. We define Iz by

- 1 - - 222 .
1:(0) = § /S (|VU|2 + (m2 - w2)52U2> dv,, + q“f /S B(0)0%dv,,
1 .
L (U+)6dvga"
6 és:ﬂ

Then I:(U) = I(U), where I is as in (2.3), and there holds that /. is a solution of
(2.35) if and only if U, is a solution of

AU+ E2(md — WU + ¢V (UU = UP.
This is in turn equivalent to co = 0, where ¢ is as in (2 32) which is again equivalent

to IL(U.).(Y) = 0 since ILU.).(Y) = co(Y, Z) and (Y, Z) = vo + o(1), where o > 0.
Independently, there holds that p’(A) = 0, if and only if|

. - 0V,
I;(us).( 8A>:0’
where U, = K, + ¢z, while if we let yo = aA , then ||yoll«,o < Ce. We write that
Yo = yh + aY, where (y),Y)z = 0 and (-,-)¢ is the scalar product associated to
A, +E%(m3 —w?). Then p/(A) = 0 if and only if (1+a)IL(U.).(Y) = 0 since (y}, Z) =
(Y, Y )s. There holds that (yo,Y)6 = o(1) and this implies that a = o(1). Hence

p'(A) = 0 if and only if IL(.).(Y) = 0, and thus, if and only if, U, solves (2.35). This
ends the proof of the lemma. O

Now we are in position to prove our theorem.
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Proof of the theorem. We compute p(A) = I(W:) + o(¢?). Assume now that O > 0,
where Oy is as in (2.21). Then, by Lemma 2.4,

p(A) = Ao + A1 kE°A + ©,8°A% 4 0(E%)A?

and since Ay, < 0 and Oy > 0, p has an absolute minimum Ay in (&, C) for C > 1
when 6 € (0, — §,0;) and 0 < § < 1. Let wy, € (—mg, mg) be given by 07 = mg — w?.
Pick any sequence (wq)q of phases such that w, — wi as & — 400 and 6, < 6, for
all o, where 6, > 0 is given by 02 = m2 — w?2. By Lemma 2.6 we then obtain that
there is an associated sequence (U,, (U, )) of solutions of (0.2) with w = w,, where
Uy =U., and g, = A, ni(0s), such that (U, ). is a k-spikes type solution of the first
equation in (0.2). In particular, ||Uy||Le~ — 400 as o« — +o0. Similarly, if we assume
that © < 0, then by Lemma 2.4,
p(A) = Agj — Ay kE%A 4+ 0,82A% + 0(8%)A?

and p has an absolute maximum in (4,C) for C > 1 when 6 € (0,0 + 6) and
0 < § < 1. Here again let wy, € (—mg,mg) be given by 67 = m3 — w?. Pick any
sequence (we)q of phases such that w, — wy as & — 400 and 6, > 0 for all «,
where 0, > 0 is given by §2 = m3 — w?. By Lemma 2.6 we then obtain that there is
an associated sequence (Uy, (U, )) of solutions of (0.2) with w = w,, where U, = U,
and g, = —A,,_ Nk (we ), such that (U, ), is a k-spikes type solution of the first equation
in (0.2). In particular, ||[Uy,| L= — +00 as @ — +o00. Let Ay (w) = w?Bs 1 (). Then

1

Bas(0) = 5 [ (V®iof? + miof i,

where @y ¢ is as in Lemma 2.3, and there holds that

Az 1 (0r)]
01 = Bos(y) (2w — 2x00)
k 2»k< k) <q Wi BZ,k<9k)

Letting c(my) = |A3.1(0k)| B2k (0x) "', we obtain that cx(m1) depends only on k and
myq, that ¢1(mq) = 0, that ¢, (mq) > 0 for k > 2, and that cx(m1) — +oo as k — +o0.
Obviously, Oy # 0 when ¢?w? # c,(m1). This ends the proof of the theorem. O
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