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ON THE C2,α-REGULARITY OF THE COMPLEX
MONGE–AMPÈRE EQUATION

Yu Wang

Abstract. We prove the C2,α-regularity of the solution u to the equation

det(uk̄j) = f, f1/n ∈ Cα, f1/n ≥ λ,

under the assumption that Δu is bounded from above. Our result settles one of the
regularity problems left open in the paper [12] (see also [13]). The proof is based on a

reduction of the complex Monge–Ampère equation to a Bellman-type equation, to which
the regularity theory of fully nonlinear uniformly elliptic equations can be applied.

1. Introduction

Schauder estimates for solutions to fully nonlinear elliptic equations with Cα right-
hand side are of considerable interest in both geometry and partial differential equa-
tions theory (PDEs). In his classic paper [6], Caffarelli established sharp interior
C2,α-estimates for the solutions to the real Monge–Ampère equation det(uij) = f
for f ∈Cα. Sharp boundary estimates were subsequently obtained by Trudinger and
Wang [15]. However, neither type of estimates is available at the present time for the
complex Monge–Ampère equation det(uk̄j) = f for f ∈Cα. Some important partial
results are the interior C2,α-estimates of Evans and Krylov [8, 11] (see also Siu [14])
when f is of class C2 and of Blocki [2] when f is Lipschitz. The difficulty with f ∈ Cα

resides in the fact that we cannot differentiate the equation. In particular, the well-
known techniques of Yau [18] cannot be applied.

In this note, we prove

Theorem 1.1. Let u∈C2(B1) be a plurisubharmonic function that solves the equation

(1.1) det(uk̄j) = f in B1.

Suppose that for some 0 < α < 1, f1/n ∈ Cα(B1) and

(1.2) sup
B1

Δu ≤ Λ, inf
B1

f1/n ≥ λ > 0.

Then, there exists a constant β ∈ (0, α) depending only on α, λ, Λ and n such that
u ∈ C2,β(B1/2) and

‖u‖C2,β(B1/2)
≤ C,

where C depends only on n, λ, Λ, α, ‖f‖Cα(B1)
and ‖u‖L∞(B1).

Combining a recent result of Dinew et al. [13], one can improve the Hölder exponent
of D2u to that of f1/n. Precisely speaking,
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Theorem 1.2. Let u ∈ C2(B1) be a plurisubharmonic function that solves equation
(1.1). Suppose that for some 0 < α < 1, f1/n ∈ Cα(B1) and

(1.3) sup
B1

Δu ≤ Λ, inf
B1

f1/n ≥ λ > 0.

Then u ∈ C2,α(B1/2) and

‖u‖C2,α(B1/2)
≤ C,

where C depends only on n, λ, Λ, α, ‖f‖Cα(B1)
and ‖u‖L∞(B1).

The above theorems provides one of the key estimates left open in the paper of
Chen and Tian [12]. In that work, under certain geometric conditions, a Kähler matric
with Hölder potential u has been constructed and Δu has been proved to be bounded
in L∞ (see page 98–100 of [12]). Theorem 1.2 then can be applied to conclude that u
is C2,α.

Before the present work, several authors had considered this problem. The best
previous result was obtained recently by Dinew et al. [13]. Following the techniques
developed by Trudinger and Wang [15, 16], they proved the C2,α-estimate with con-
stants depending on the norm ‖D2u‖L∞ instead of the norm ‖Δu‖L∞ . The depen-
dence on ‖D2u‖L∞ instead of ‖Δu‖L∞ is a significant restriction, since ‖Δu‖L∞ can
often be controlled by the techniques of Yau’s C2-estimates [18], while it is not the
case for ‖D2u‖L∞ .

Our approach to the problem is rather different from the method employed in [13]
and many other earlier works in the study of complex Monge–Ampère equations.
Indeed, we shall convert the complex Monge–Ampère equation to a fully nonlinear
elliptic Bellman-type equation with respect to the real Hessian of u.

By the standard nonlinear elliptic theory (see Section 2), Theorem 1.1 is a direct
consequence of the following theorem.

Theorem 1.3. Let u ∈ C2(B1) be a plurisubharmonic function that solves equation
(1.1). Denote by Sym(2n) the space of 2n × 2n real symmetric matrices and by ‖M‖
the standard spectral norm of the matrix M . Suppose that

(1.4) inf
B1

f1/n ≥ λ > 0 and sup
B1

Δu ≤ Λ.

Then there exists a concave function ˜F on Sym(2n) such that

(i) ˜F is θ-uniformly elliptic, i.e.,

θ‖P‖ ≤ ˜F (M + P ) − ˜F (M) ≤ θ−1‖P‖, ∀ M, P ∈ Sym(2n) and P ≥ 0,

where θ only depends on λ, Λ and n.
(ii) u satisfies the equation

˜F (D2u) = f1/n in B1.

Remark 1.4. We have stated Theorems 1.1–1.3 as a priori estimates, that is, we
have assumed that u is a C2-solution of equation (1.1). In fact, as pointed by a
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referee of this paper, it suffices to assume that u is a weak solution to the equation
(viscosity solution or pluripotential solution, see [9, 17] for the definition of viscosity
solution to the complex Monge–Ampère) and ‖Δu‖L∞ < Λ. Δu being bounded in L∞

is sufficient to conclude that u is a viscosity solution of the uniform elliptic equation
given in Theorem 1.3. The arguments of this paper can be carried through without
much changes if one only assumes that u is a weak solution. In order to illustrate the
idea in a more transparent fashion, we shall remain in the case that u is C2.

The idea of this note was suggested to the author by Professor Ovidiu Savin.
After the note had been posted on the ArXiv, the author learned from Professor
Pengfei Guan that the technique of reducing a complex Monge–Ampère equation to
a Bellman-type equation had been used in the late 1980s by Krylov [11] in order to
obtain C2 solutions to the Dirichlet problem for the homogeneous complex Monge–
Ampère equation with C3 boundary data. Theorem 1.2 is pointed out by a referee of
this paper.

Besides establishing Theorem 1.1, another important purpose of this note is to
provide a different point of view on complex Monge–Ampère equations. Up until now,
major studies of complex Monge–Ampère equations have been based on a priori esti-
mates [4,18] or pluripotential theory and complex analysis (e.g., [1,10] and references
therein). On the other hand, our approach here mainly focuses on the nonlinear PDE
structure of the equation. Each approach has its own advantage. We hope that the
approach employed in this note will give further insight on the study of complex
Monge–Ampère equations.

2. Preliminaries

In this section, we recall two important theorems from regularity theory of fully
nonlinear uniformly elliptic equations. For more details, one may refer to [3].

First, we recall a result of Evans (see Section 6 of [3]).

Theorem 2.1. [3, Theorem 6.2]. Let F be a concave θ-uniformly elliptic function
on Sym(n). If u is a viscosity solution to F (D2u) = 0 in B1, then u ∈ C2,β̄(B1/2)
and

‖u‖C2,β̄(B1/2)
≤ C {‖u‖L∞ + F (0)} ,

where β̄ and C are constants only depending on θ and n.

Next, we recall a result of Caffarelli (see [5] or Section 8 of [3]). Consider an equation
of the form

(2.1) F (D2u, x) = f(x)

and denote

ωF (x) := sup
M∈Sym(n)

|F (M, x) − F (M, 0)|
‖M‖ + 1

.

Theorem 2.2. [3, Theorem 8.1]. Let u be a viscosity solution to equation (2.1)
in B1(0). Assume that F and f are continuous in x, F is θ-uniformly elliptic and
F (0, 0) = f(0) = 0. Suppose that the following hypotheses hold:
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Hypothesis 1: there are constants 0 < β̄ < 1 and cε > 0 such that for every
symmetric matrix M with F (M, 0) = 0 and and w0 ∈ C(∂B1), there exists a w ∈
C2(B1) ∩ C(B1) ∩ C2,β̄(B1/2) which satisfies

{

F (D2w(x) + M, 0) = 0 in B1,

w = w0 on ∂B1

and

(2.2) ‖w‖C,β̄(B3/4)
≤ cε‖w‖L∞(B1).

Hypothesis 2: F and f satisfy

(2.3)
(�

Br

ωn
F

)1/n

≤ C1r
−β
0 rβ , ∀r ≤ r0

and

(2.4)
(�

Br

|f |n
)1/n

≤ C2r
−β
0 rβ , ∀r ≤ r0,

for some 0 < β < β̄, r0 > 0, C1 > 0, C2 > 0.
Then u is C2,β at origin; that is, there is a polynomial P of degree 2 such that

‖u − P‖L∞(Br(0)) ≤ C3r
−(2+β)
0 r2+β , ∀r ≤ r1,(2.5)

r0 |DP (0)| + r2
0‖D2P‖ ≤ C3,(2.6)

C3 ≤ C0(‖u‖L∞(Br0 (0)) + r2
0(C2 + 1)),(2.7)

and

(2.8) r1 = C−1
0 r0,

where C0 > 1 depends only on n, θ, cε, β̄, β and C1.

The above theorem is the nonlinear version of the classical Schauder estimate. The-
orem 2.2 states that: given a fully nonlinear uniformly elliptic equation F (D2u, x) =
f(x) with continuous coefficients, by freezing the coefficients of the equation, one
obtains fully nonlinear equation of the form F (D2u, x0) = f(x0). If one has the C2,β-
estimates for the equation F (D2u, x0) = f(x0), then under mild restriction one can
obtain corresponding estimates for F (D2u, x) = f(x).

For our discussion, the following corollary is sufficient.

Corollary 2.3. Let F be a concave and θ-uniformly elliptic function on Sym(n) and
f ∈ Cα(B1). If u ∈ C2(B1) satisfies F (D2u) = f(x) in B1, then there is a constant
β ∈ (0, α) depending only on n, θ, α such that u ∈ C2,β(B1/2) and

‖u‖C2,β(B1/2)
≤ C,

where C depends only on n, θ, α, |F (0)| , ‖f‖Cα(B1)
and ‖u‖L∞(B1).

Proof. Without lose of generality, we may assume F (0) = f(0) = 0. Since otherwise,
we may replace F and f by

G(M) := F (M + t0I) − f(0), and g := f − f(0),



O THE C2,α -REGULARITY OF THE COMPLEX MONGE–AMPÈRE EQUATION 943

where I is the n× n identity matrix and t0 ∈ R is chosen so that G(0) = 0. Then the
function v := u − t |x|2 /2 satisfies

G(D2v) = g in B1.

By uniform ellipticity, we have

|t| ≤ |F (0) − f(0)| /θ.

Thus, it suffices to estimate v.
Since F is uniformly elliptic, the existence of viscosity solution to the equation

F (D2w + M) = 0 is given by Perron’s method (see [7]). Since F is concave, Theo-
rem 2.1 implies that every solution w of F (D2w + M) = 0 satisfies the estimate (2.2)
with β̄ and cε depending only on n, θ. Thus, Hypothesis 1 of Theorem 2.2 is satisfied.

Since F does not depend on x, (2.3) of Hypothesis 2 is automatically satisfied. Since
f(0) = 0 and f is Hölder, (2.4) of Hypothesis 2 is satisfied with C2 = ‖f‖Cα(B1)

/n,
r0 = 1/2 and β = min{β/2, α}.

Thus, we may apply Theorem 2.2 to conclude that the solution u is C2,β at 0 with
bounds given by (2.5)–(2.8). By a translation of coordinates, we can conclude that u
is C2,α at every x ∈ B1/2 with bounds given by (2.5)–(2.8).

By a standard covering argument, one can show that a function u that is C2,α at
all points x ∈ B1/2 with bounds given by (2.5)–(2.8) belongs to C2,α(B1/2) and

‖u‖C2,βB1/2
≤ C,

where C depends on θ, C0, C2, r0 (see Remark 3 on page 74 of [3]).
Recalling that in our case, r0 = 1/2, C2 = ‖f‖Cα(B1)

/n, we complete the proof. �

Theorem 1.1 follows immediately from Corollary 2.3 and Theorem 1.3.

3. The proof of Theorem 1.3

Let Sym(2n) be the space of 2n × 2n real symmetric matrices and Herm(n) be the
space of n × n complex Hermitian matrices.

On R
2n we fix the following canonical complex structure:

J =
(

0 −In

In 0

)

, In is the n × n identity matrix.

Then Herm(n) can be identified with the subspace

{M ∈ Sym(2n)|[M, J ] = MJ − JM = 0},
by the map

ı : H = A + iB �→
(

A −B
B A

)

.

In the rest of this note, we always view Herm(n) as a subspace of Sym(2n) through
ı. There is also a canonical projection

p : Sym(2n) → Herm(n), M �→ M + J tMJ

2
.
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The following diagram summarizes the above relations:

Herm(n) ı ��

∼
��������������������� Sym(2n)

p

��

{M ∈ Sym(2n) : [M, J ] = MJ − JM = 0}
The complex determinant detC on Herm(n) is related to the real determinant

detR by

det1/2n
R

[M ] = det1/n
C

[H] if ı(H) = M, H ∈ Herm(n), M ∈ Sym(2n).

Let F : Sym(2n) → R be defined by

(3.1) F (M) := det1/2n
R

[p(M)].

By the Minkowski inequality, F is a concave function on the set

{M ∈ Sym(2n) : p(M) > 0}.
Now we give the construction of ˜F .

Definition 3.1. Given θ ∈ (0, 1], let Eθ ⊂ Sym(2n) consist of matrices N such that

θI2n ≤ p(N) ≤ θ−1I2n.

The function ˜F : Sym(2n) → R is defined as follows: for M ∈ Sym(2n),

˜F (M) := inf
{

1
2n

tr[p(N)M ] + c | N ∈ Eθ, c ∈ R s.t.

1
2n

tr[p(N)X] + c ≥ F (X) for all X ∈ Eθ

}

.

Remark 3.2. ˜F is the concave envelope of F over the set Eθ. Moreover, ˜F has the
same invariant property as the complex determinant, i.e.,

˜F (M + Z) = ˜F (M) for all Z ∈ Sym(n) s.t. p(Z) = 0.

Remark 3.3. The above construction is suggested by Prof. Ovidiu Savin. The au-
thor’s original approach is to extend the level sets of F outside Eθ. Although it gives
essentially the same function as above, the construction in Definition.3.1 is more direct
and more transparent.

The following lemma is the main ingredient in proving Theorem 1.3.

Lemma 3.4. ˜F is concave and uniformly elliptic in Sym(2n), i.e., there exists θ̃ > 0
only depending on θ and n such that

(3.2) θ̃‖P‖ ≤ F̃ (M + P ) − F̃ (M) ≤ θ̃−1‖P‖, ∀M, P ∈ Sym(2n) and P ≥ 0.

Moreover, ˜F (M) = F (M) for all M ∈ Eθ.

Proof. The concavity of ˜F and the equality that ˜F (M) = F (M) on Eθ follow directly
from the construction. We only need to check the ellipticity of ˜F . Given M, P ∈
Sym(2n), P ≥ 0, by definition, there exists N1, N2 ∈ Eθ such that

˜F (M + P ) =
1
2n

tr[p(N1)(M + P )] + c1
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and
˜F (M) =

1
2n

tr[p(N2)(M)] + c2.

By the minimality, we have

1
2n

tr[p(N1)M ] + c1 ≥ 1
2n

tr[p(N2)M ] + c2

and
1
2n

tr[p(N1)(M + P )] + c1 ≤ 1
2n

tr[p(N2)(M + P )] + c2.

Then combine the above inequalities, we have

˜F (M + P ) − ˜F (M) ≥ 1
2n

tr[p(N1)(M + P )] − 1
2n

tr[p(N1)(M)] ≥ θ

2n
‖P‖

and

˜F (M + P ) − ˜F (M) ≤ 1
2n

tr[p(N2)(M + P )] − 1
2n

tr[p(N2)M ] ≤ θ−1‖P‖.

This completes the proof of the lemma. �

Proof of Theorem 1.3. Since u ∈ C2(B1) satisfies (1.4), we have

λn

Λn−1
I ≤ p(D2u)(x) ≤ ΛI, ∀ x ∈ B1.

In turn, by taking θ = min{λn/Λn−1, Λ−1, 1}, we have

(3.3) D2u(x) ∈ Eθ, ∀ x ∈ B1.

Now consider ˜F given by Definition 3.1 with respect to Eθ. By (3.1), (3.3) and
Lemma 3.4

˜F (D2u(x)) = F (D2u(x)) = f1/n(x), x ∈ B1/2.

The uniform ellipticity and the concavity of ˜F have been proved in Lemma 3.4. This
completes the proof of Theorem 1.3. �
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