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A MASS-DECREASING FLOW IN DIMENSION THREE

ROBERT HASLHOFER

ABSTRACT. In this paper, we introduce a mass-decreasing flow for asymptotically flat
three-manifolds with nonnegative scalar curvature. This flow is defined by iterating a
suitable Ricci flow with surgery and conformal rescalings and has a number of nice
properties. In particular, wormholes pinch off and nontrivial spherical space forms bubble
off in finite time. Moreover, a noncompact variant of the Perelman-energy is monotone
along the flow. Assuming a certain inequality between the mass and this Perelman-energy
a priori, we can prove that the flow squeezes out all the initial mass.

1. Introduction

Let (M, g;;) be an asymptotically flat three-manifold with nonnegative integrable
scalar curvature. The ADM-mass [1,2] from general relativity is defined as

T—00

(11) m(g) = lim o (8],91] —61‘9”)61141

r

By the positve mass theorem, the mass is always nonnegative and vanishes only for
flat space. Beautiful proofs employing a variety of techniques have been discovered
[18,30,33]. The first one, due to Schoen and Yau, is based on a very nice argument
by contradiction using the stability inequality for minimal surfaces. The second one,
discovered by Witten, utilizes beautiful identities for Dirac spinors. A third remarkable
proof of the positive mass theorem (and in fact of the Penrose inequality), due to
Huisken and Ilmanen, is based on the inverse mean curvature flow.

It is of great analytic, geometric, and physical interest to investigate how Hamilton’s
Ricci flow [15] interacts with the positive mass theorem. This relationship has been
studied in [11,13,16,25]. In particular, asymptotic flatness and nonnegative integrable
scalar curvature are preserved, and the Ricci flow can be used to prove the rigid-
ity statement in the positive mass theorem. However, the mass (although not the
quasilocal mass) is constant along the Ricci flow and this leads to Bray’s intriguing
question whether there exists a geometric flow that decreases the mass. Some hope
that such a flow might exist comes from the deep relationship between the mass and
geometric flows in the proofs of the Penrose inequality by Huisken—Ilmanen, Bray and
Bray-Lee [5,6,18].

The purpose of this article is to confirm this hope, and to introduce and investigate
a mass-decreasing flow in dimension three. We have announced the discovery of this
flow in [16], where we also sketched some concepts and ideas showing an intriguing
relationship between the mass, the Perelman-energy, and the stability of Ricci-flat
spaces. Motivated by that, our mass-decreasing flow is defined by iterating a suitable

Received by the editors November 21, 2011.

927



928 ROBERT HASLHOFER

Ricci flow with surgery and conformal rescalings. The point is, that conformal rescal-
ings to scalar flat metrics squeeze out of the manifold as much mass as possible.
However, unless the manifold is flat, the scalar curvature becomes strictly positive
again under the Ricci flow and thus the mass can be decreased even more by another
conformal rescaling. This process can be iterated forever.

The idea that conformal transformations can be used to decrease the mass and
that deformations in direction of the Ricci curvature can be used to increase the
scalar curvature again goes back to the fundamental work of Schoen and Yau [30].
What is more recent, is the precise geometric-analytic understanding of the Ricci flow
in dimension three due to the revolutionary work of Perelman [26-28]; see [4,8,20,24]
for detailed expositions. In particular, we use Perelman’s existence theorem for the
Ricci flow with surgery, or more precisely a very nice variant for noncompact manifolds
due to Bessiere et al. [3].

In Section 2, we give the precise definition of our flow. We prove that it exists
for all times, and preserves asymptotic flatness and nonnegative integrable scalar
curvature (Theorem 2.3). Most importantly, the mass m(g(t)) is strictly decreasing
along the flow. Since it is also bounded below by zero, it has a nonnegative limit for
t — oo. We conjecture that the flow always squeezes out all the initial mass, i.e.,
lim; oo m(g(t)) = 0. Support for this conjecture comes from the analysis of the long-
time behavior of the mass-decreasing flow, which we carry out in the following two
sections.

In Section 3, we treat the toplogical aspects of the long-time behavior. We prove
that nontrivial topology becomes extinct in finite time, analogous to the extinction
theorem for closed manifolds admitting a metric of positive scalar curvature due to
Perelman [27] and Colding and Minicozzi [9,10]. The manifolds in consideration are
diffeomorphic to R? with finitely many S* x S? and S3/I" pieces attached (see e.g.,
Corollary 3.2). Thus, the extinction result can be rephrased in more physical words
saying that wormholes pinch off and nontrivial spherical space forms bubble off in
finite time. In fact, this happens in time at most T' = Ag /47, where Ay is the area of
the largest outermost minimal two-sphere in the initial manifold (Theorem 3.1).

In Section 4, we make partial progress toward understanding the geometric-analytic
aspects of the long-time behavior. Following the general principle that monotonicity
formulas are a crucial tool, we encounter the problem that Perelman’s A-energy is
in fact identically zero in the case of asymptotically flat manifolds with nonnegative
scalar curvature. We overcome this difficulty by using a suitable noncompact variant
of the Perelman-energy, an energy-functional Axp that we recently introduced in [16].
This energy Aar is nontrivial in the asymptotically flat setting, and we prove that it
satisfies a Perelman-like monotonicity formula (Theorem 4.1, Remark 4.3). Assuming
a certain inequality between the mass and Aap a priori, we can prove that the mass-
decreasing flow indeed squeezes out all the initial mass (Theorem 4.5).

In Section 5, we derive the limiting equations that formally arise when our iteration
parameter ¢ is sent to zero.! However, we actually prefer to avoid to really take the

1Shortly after the author posted the first version of this paper on arXiv, Peng Lu, Jie Qing and
Yu Zheng posted a very interesting note where they proved short-time existence for the nonlocal
limiting equation [22]. We have now added Section 5 in this new version of our paper to clarify
the relationship with their paper and also to indicate the possible relevance for the analysis of the
long-time behavior.
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limit ¢ — 0, since we want to use our long-time existence result that relies on the

theory of Ricci flow with surgery. Nevertheless, taking £ small enough one is still

close to the limiting equations and therefore the limiting equations might be useful

to analyze the long-time behavior in the general case without a priori assumptions.
Finally, in Section 6, we collect some open problems and questions.

2. Definition of the flow and long-time existence

We will use the following existence theorem for surgical Ricci flow solutions due to
Bessieres et al. [3], which relies heavily on the work of Perelman [26, 28].

Theorem 2.1 (Bessieres et al. [3, Theorem 5.5]). For every ¢t > 0, K < oo
and T < oo, there exist r,6,k > 0 such that for any oriented complete Riemannian
three-manifold (Mo, go) with |[Rm| < K and injectivity radius at least v, there exists an
(r,0, k)-surgical Ricci flow solution defined on [0,T| with initial conditions (Mo, go).

For full details about surgical Ricci flow, please see [3], but let us give a quick
overview here and collect some facts that we will use later.

A surgical Ricci flow solution is a sequence of Ricci flows (M, g;(t))se[t, t,,,] With
0=ty <ty <---,such that M, is obtained from M; by splitting along embed-
ded two-spheres, gluing in standard caps, and throwing away connected components
covered entirely by canonical neighborhoods.

The main difference with Perelman’s original surgery procedure is that this one
is done before the singular time, namely when the supremum of the scalar curvature
reaches a certain threshold ©.

Since the curvature is pinched toward positive and R < © by construction, we have
uniform curvature bounds along the flow. Moreover, the surgeries are done in such a
way that the supremum of the scalar curvature drops by at least a factor 1/2. This
ensures that the surgery times do not accumulate. Also, the infimum of the scalar
curvature is nondecreasing.

The most important parameters in the construction are the canonical neighborhood
scale r, the noncollapsing parameter x, the surgery parameter §, and the threshold
©. These parameters have the following significance: First, if R(x,t) > r~2 at some
point (z,t) in a surgical solution, then there exists a canonical neighborhood of (z,t).
Second, the solution is k-noncollapsed at scales less than one. Third, the surgeries are
performed inside very small d-necks. Fourth and finally, R < © along the flow and
the surgeries are done when the scalar curvature reaches the treshold ©.

Having completed this very quick overview, we can now define a new geometric
flow as follows:

Definition 2.2 (mass-decreasing flow). Let (M, go) be an (oriented, smooth, com-
plete, connected) asymptotically flat three manifold of order one, with nonnegative
integrable scalar curvature, and fix a parameter € > 0.

o Let (M(t),g(t))tcjo,e) be the surgical Ricci flow solution of Theorem 2.1 start-
ing at gg, with all connected components except the one containing the asymp-
totically flat end thrown away.



930 ROBERT HASLHOFER

e As a second step, solve the elliptic equation
(2.1) (—8Ag(5) + Rg(s)) w; =0, w; —1 atoo,

and set g1 := wig(e).
e Finally, let (M(g), g1) be the new initial condition and iterate the above pro-
cedure.

The concatenation “flow, conformal rescaling, flow, conformal rescaling, ...” gives an
evolution (M (t), g(t))¢cjo,00) Which we call the mass-decreasing flow.

Essentially, the first part of the definition means that we run a suitable Ricci
flow with surgery for one unit of time (throwing away the pieces that bubble off).
The second part of the definition means that we conformally rescale to a scalar flat
metric. Finally, this process is iterated forever.

For definiteness, if ¢ is a surgery or rescaling time we denote by (M(t),g(t)) the
presurgery, prerescaling manifold.

The following theorem shows that the mass-decreasing flow exists for all times and
that it has the desired properties.

Theorem 2.3. The mass-decreasing flow exists for all times, and preserves asymp-
totic flatness and nonnegative integrable scalar curvature. The mass is constant in the
time intervals t € ((k — 1)e, ke) and jumps down by

(2.2) dmy, = —/ (8| Vw|? + Rwi)dV
M

at the conformal rescaling times t,, = ke, where wy, is the solution of
(2.3) (*8Ag(tk) + Rg(tk)) wp =0, wp—1 atoo.

The monotonicity of the mass is strict as long as the metric is nonflat.

Proof. The surgical Ricci flow exists by Theorem 2.1. As we recalled above, there are
only finitely many surgeries in finite-time intervals and nonnegative scalar curvature
is preserved.

The asymptotic flatness, the mass, and the integrable scalar curvature are all pre-
served along a nonsurgical Ricci flow with bounded curvature; see [11,25]. Since
R < © and since the surgeries only occur in regions with high curvature (i.e., in
particular inside a compact region), these properties are also preserved along the
surgical Ricci flow.

For the conformal rescaling part, writing wy = 1 + ug, we have to solve

(2.4) (_SAg(tk) + Rg(tk)) U = _Rg(tk)a up — 0 at oo.

Since R > 0, the operator (—8A + R) is positive and thus invertible (viewed as
operator between suitable weighted function spaces). In fact, we can solve (2.4) with
the estimate uy = O(r~!) at infinity. Consider the conformal metric g, = wjg(t).
Note that (M (tx), gr) is an asymptotically flat manifold of order one with vanishing
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scalar curvature. Using the definition of the mass, the asymptotics wy — 1 = O(r—1)
and g;; — 6;; = O(r™'), and writing g;; = g(tx):; we compute

: 4 i
(2.5) m(gx) = lim : wi |:(8jgij — 0i955) + . (9i505wk — g5 0iwr) | dA

(2.6) = TILngO g [(0j9:i5 — Di9;) + 4(8:;0jwy — §;;0;wy)] dA”

(2.7) =m(g(tx)) — 8}er()10 g OrwidA.

Furthermore, using partial integration a;ld the asymptotics from above we compute
(2.8) /M (8|Vwg|? + Rwyp) dV = TILIEOL (8| Vwg|* + Rw}) dV

(2.9) = TILH;O ; (8wk(—Awy) + Rwy) dV + rlggo g 8wy OpwidA
(2.10) =8 lim OrwidA,

T— 00 S
r

where we also used equation (2.3) in the last step. Putting everything together this
implies

(2.11) omy = m(gr) —m(g(ty)) = — /M (8|Vwy|* + Rwy) dV.

Finally, if gr_1 is nonflat, then the scalar curvature becomes strictly positive under
the Ricci flow (with surgery), and thus we conclude that dmy < 0. d

Remark 2.4. In fact, it is not really necessary to assume that the scalar curvature
of the initial metric is integrable. If [, RdV = oo initially, then the mass is infinite
initially, but it becomes finite after one conformal rescaling.

3. Long-time behavior I

Recall that the Ricci flow with surgery on a closed manifold that admits a metric
with positive scalar curvature becomes extinct in finite time [9,10,27]. In a similar
spirit, along the mass-decreasing flow wormholes pinch off and nontrivial spherical
space forms bubble off in finite time.

Theorem 3.1. There exists a T < oo, such that M(t) = R3 fort > T. In fact, one

can take T = %, where Ag is the area of the largest outermost minimal two-sphere

in (M7 gO)

Proof. The idea is that minimal two-spheres shrink at rate at least 47. So for t > T =
4o the manifold M (t) is diffeomorphic to R.

Let us now go through the details. Outermost minimal two-spheres exist by a result
of Meeks et al. [23]. Instead of the area of the largest outermost two-sphere we actually
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consider the slightly different function

(3.1) A(t) := inf sup|S;|,
Q g,

where  C M(t) is a manifold with boundary 02 = S; U- - -US), that contains infinity
and has the topology of a large disk with finitely many small disks removed. Along
the mass-decreasing flow A(t) satisfies the differential inequality,

d
2 —A<—4
(32) CA< —ar

in the sense of the limsup of forward difference quotients, compare with [9, Lemma
2.1]. Indeed, this follows from a nice computation using the Gauss—Codazzi equation
and the Gauss—Bonnet formula (note that the computation and the result simplify
since R > 0). The surgeries and the conformal rescalings only help (since wy < 1 by
the maximum principle). Note that A(0) < Ag. The result follows. O

Corollary 3.2. The initial manifold had the diffeomorphism type
(3.3) M = R3HS3 T 1 # - #83 )Tp#(S! x S2)#--- #(S' x §?).

Conversely, any such manifold admits an asymptotically flat metric of order one with
nonnegative integrable scalar curvature (in fact there exists an asymptotically flat
metric on M with vanishing scalar curvature).

Proof. The proof is along the lines of Perelman [28] and Bessieres et al. [3]. When
flowing from M (0) to M (t), the topology can only change for the following two reasons.
First, it can happen that compact components with positive scalar curvature are
removed. These components are diffeomorphic to a connected sum of spherical space
forms and S* x S? pieces [28]. Second, the surgery can change the topology by pinching
off wormholes. This can be seen by moving from the center of the J-neck to the left
and to the right until arriving in regions with lower curvature, the swept out manifold
being diffeomorphic to S? x R. Therefore, the initial manifold has the topology as
stated in (3.3).

Conversely, as proved by Schoen and Yau [31] and Gromov and Lawson [12], one
can construct a metric of positive scalar curvature on

(3.4) S3 T 4 #S3 JTp# (S x S2)# - #(S* x S?).

One can then obtain an asymptotically flat metric of order one with vanishing scalar
curvature on

(3.5) R34S /T - #5° JTu# (S x SP)# - #(S" x §?),

by “stereographic projection” using the Greens-function of the conformal Laplacian,
—8A + R, see e.g., Lee and Parker [21]. O
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Remark 3.3. There are two other ways how the assertion of Corollary 3.2 can be
proved. The first one is to compactify the initial manifold to a closed manifold with
positive scalar curvature and to use Perelman’s result for closed manifolds with posi-
tive scalar curvature [26,28]. The second one is to combine the result of Schoen and
Yau [31] with a lot of three-manifold topology. One needs the spherical space form
conjecture proved by Perelman [26, 28], and also the solution of the surface subgroup
conjecture. The proof of the surface subgroup conjecture is obtained by combining
Perelman’s solution of the geometrization conjecture [26,28], and the recent work of
Kahn and Markovic [19].

4. Long-time behavior II

To investigate the geometric-analytic aspects of the long-time behavior we will follow
the general principle that monotonicity formulas are a very useful tool. However,
when trying to follow this principle one encounters the fundamental problem that
Perelman’s A-energy [26] adapted as it stands,

(4.1) Ag) == inf /M (4| Vw|* + Rw?) dV,

w: [ w2=1

is monotone only in a very trivial way. Namely, minimizing sequences w; escape to
infinity and the value of ) is identically zero along the flow. We overcome this difficulty
by considering instead the following variant of Perelman’s A-functional,
(4.2) Aar(g) = inf / (4| Vw|* + Rw?) dV,
ww—1 Jar

where the infimum is now taken over all w € C*(M) such that w = 1+ O(r~!) at
infinity. Unless the scalar curvature vanishes identically, the value of Aap is strictly
positive in our setting of asymptotically flat manifolds with nonnegative scalar cur-
vature.

We have introduced the energy-functional Aap in our recent work [16], where we
also observed that Aar gives a lower bound for the mass, i.e., we have the inequality

(4.3) m(g) > Aar(9)-

Furthermore, the (renormalized) Perelman-energy also plays an important role in
questions concerning the stability of Ricci-flat spaces, see e.g., [7,14, 16,17, 29, 32]
for more information on this aspect. Finally, the Perelman-energy and its variant
X = sup A\V?/3 numerically characterize the long-time behavior of the Ricci flow with
surgery on closed three-manifolds [28].

Having completed this short overview and motivation, we will now prove that Aap
satisfies a Perelman-type monotonicity formula.

Theorem 4.1. Away from the conformal rescaling and surgery times, we have the
monotonicity formula

(4.4) %)\Ap(g(t)) = 2/ [Ric + V2f|?e~/dV >0,
M
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where f is the unique solution of
(4.5) (m4A+R)e /2 =0, f—0 ato.

Remark 4.2. To avoid problems with modifying the Ricci flow by a family of dif-
feomorphisms in the noncompact setting, we will prove our monotonicity formula by
a direct computation. This computation is quite different than Perelman’s original
computation in the compact setting (note however, that the Bianchi identity used
below is of course just another manifestation of diffecomorphism invariance).

Proof. Substituting w = e~f/2 the definition of Aap can be rewritten as
(4.6) Aar(g) = inf / (Rg + |Vf|§) efdeg,
f:f—=0 Jar

where the infimum is taken over all f € C°°(M) such that f = O(r~!) at infinity. By
a similar argument as in the proof of Theorem 2.3, there exists a unique minimizer.
The time derivative of Aar along the Ricci flow equals

(4.7) %/\Ap(g(t)) :/ [AR + 2[Ric|® + 2Ric(Vf, V) — (R+ |[Vf|*)R] e aV,
M

where f is the minimizer (at the time in consideration). Here, the first two terms come
from the evolution of the scalar curvature, the third term comes from the evolution
of the inverse metric, and the last term comes from the evolution of the volume
element. The monotonicity formula will now follow from a computation using partial
integrations, the Bianchi identity, and the equation (4.5) for the minimizer, which can
be rewritten as

(4.8) 2Af — |[Vf* +R=0.
The partial integrations can be justified using the decay estimates g;; — d;; = O(r=1),

f=0(r"1), and the computation consists of the following pieces. First, we have the
Bochner-type identity

/ |V2f|2eTdV

M

(4.9) :/ [—(Vf,VAF) = Ric(Vf, Vf) + V2A(VF, V)] e~ T dV.
M

Second, using the Bianchi identity we obtain

1
(4.10) / (Ric, V2f)e TdV = / [Ric(v £,V = 5(VR, V) e~ fdv.
M M
Third, using (4.8) we get the pointwise identity

(111) V2f(VF,V) ~ (V. VAf) = 5(VF,VR).
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Fourth, we have the partial integration formula

(4.12) /M ARe 1dV = /M<VR, Ve ldv = /M(Vf|2 — Af)Re TdV.

Fifth and finally, equation (4.8) can be rewritten as
(4.13) 2V - Af) = R+|VSP

Putting everything together (starting from the right-hand side of (4.4) for conve-
nience), the monotonicity formula follows. 0

Remark 4.3. Choosing the surgery parameter § small enough, Ayr can be made
almost monotone at the surgery times (compare with [20, 28]).

Remark 4.4. Immediately after the conformal rescaling we have f = 0 for the
minimizer, and thus

d .
(4.14) ahﬁ)\AF(g(t)) :2/ |Ric|?dV.
M

Moreover, looking at the expression for a Schwarzschild-end suggests that
(4.15) / [Ric|?dV ~ m?,
M

and thus Aap ~ em? after time ¢, i.e., we expect that Aap is proportional to the
square of the mass at the time t;11 = (k + 1)e.

Under an a priori assumption, an inequality between Azr and the mass that is
motivated by the above remark and complements the inequality (4.3), we can prove
that the flow indeed squeezes out all the initial mass.

Theorem 4.5. Let (M(t),g(t))ie[0,00) be a solution of the mass-decreasing flow and
assume a priori there erist a constant ¢ > 0, such that A ap(g(ty)) > em(g(ty))?
for all positive integers k. Then there exists a constant C' < oo such that m(g(t)) <
C/t. In particular, the mass-decreasing flow squeezes out all the initial mass, i.e.,
lim;_. oo m(g(t)) = 0.

Proof. Using Theorem 2.3, the definition of Asr, the inequality 4 < 8, and the a priori
assumption, a computation gives

(4.16) m(g(ths)) — mlg(tn)) = — /M<8|Vwk|2 + Rup)dv
< —ar(g(ty)) < —em(g(t))?.

This implies that there exists a constant C' < oo such that m(g(t)) < C/t. Using this
and the positive mass theorem, we conclude that the flow indeed squeezes out all the
initial mass. ]
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5. The continuum limit

We now derive the limiting equations that formally arise when the iteration parameter
€ is sent to zero. In the following, the symbol = denotes equality modulo terms of
order €2 and higher (assuming curvature bounds a priori, the error terms could be
estimated explicitly).

From the evolution equation 9;R = AR + 2|Ric|? and R,, , = 0, we get

(5.1) Rg(tk) = 25|Ricg(t;€71)’2'

Then, solving (=8A,) + Ry(t,))wr = 0 with wy, — 1 at infinity gives
€ .

(5.2) w =1+ ZAgék)|R1C9(tk71)|2'

To first order the metric gr = w}g(t) equals

(53) gk = (1 + 5Ag_ék) |Ricg(tk—1) |2) g(tk)v
and using also g(t;) = gr—1 — 2¢Ricy, , this becomes
(5.4) g = gk—1 — 2€Ricgk71 + €A;k1_1 |Rngk71 |zgk_1,

where we also approximated the inverse Laplacian and the Ricci curvature dropping
terms of higher order. Thus, the limiting evolution equation is

(5.5) Org = —2Ric + A7 Ric|%g,

which is the Ricci flow modified by a nonlocal conformal factor which has the effect
of projecting to the space of scalar flat metrics. Short-time existence for this nonlocal
flow was proved in [22, Thm. 1.3].

Furthermore, note that the quantity m — Aar is monotone at all times (i.e., at the
conformal rescaling times and also in between). In the formal limit ¢ — 0 the quantity
Aar vanishes identically and our monotonicity formulas boil down to the formula

(5.6) oym = 2/ |Ric|?dV.
M

This monotonicity formula also appear in [22, Thm. 1.4].

6. Problems and questions

We conclude this article with a list of open problems and questions. Some of them
came up in discussions with Lars Andersson, Hugh Bray, Gerhard Huisken and Tom
Ilmanen.

e Can one get rid of the a priori assumption relating the mass and the Perelman-
energy?
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Can the mass-decreasing flow be used to give an independent proof of the
positive mass theorem?

Is there some clever argument in higher dimensions?

e [s there some relationship with the Penrose inequality?

Let us comment on the first two questions. Assuming the positive mass theorem
instead of proving it for the moment, motivated by (5.6) we expect a space-time
integral bound

(6.1) / / |Ric|? dV dt < C,
0 M

for the mass-decreasing flow, at least when ¢ is chosen small enough. Thus the limit
for t — oo is flat in some integral sense. To answer the first question, one has to
improve this into a convergence sufficiently strong to conclude that the mass limits
to zero. To answer the second question, one could try to couple this argument with
the derivation of (6.1).
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