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HEIGHT AND GIT WEIGHT

Xiaowei Wang

Abstract. In this paper, we first establish a connection between the weight in the
geometric invariant theory and the height introduced by Cornalba and Harris [CH] and
Zhang [Z]. Then we give two applications. First, it provides a converse of Cornalba and

Harris’s result, which can be treated as a function field analog of Zhang’s theorem over
number field. In particular, this connection gives a numerical interpretation of the moral
stability = positivity that was advocated by Viehweg [Vi]. Second, we relate these to the

study the positivity of CM -line bundle introduced by Tian [PT] and the determinant
line bundle introduced by Donaldson [Do0].

1. Introduction

In 1987, Harris and Cornalba [CH] proved the following result:

Theorem. Let X be separated scheme of dimension n+1 and B be a smooth projective
curve. Let

π : X −→ B

be a flat proper morphism. Let L → X be a line bundle such that E := π∗L is locally
free of rank N + 1. Suppose that the following conditions are satisfied: (1) If b ∈ B be
generic point, then E|b∈B ⊂ H0(Xb,L|Xb

) is base point free, very ample and yields a
semi-stable embedding of Xb; (2) L is relatively ample. Then

(1.1) (N + 1)π∗c1(L)n+1 − (n + 1) degXbc1(E) ≥ 0,

that is, it is semi-positive.

A natural question is that if the positivity of (1.1) is also sufficient to guarantee
the semi-stability. More precisely, whether or not the positivity of any flat family
(e.g., coming from a test configuration introduced by Donaldson [Do0]) containing X
as the general fiber would guarantee the semi-stability of the corresponding Hilbert
point. For arithmetic varieties over a number field, Zhang has proved a converse to
the Cornalba and Harris’s result in [Z] using Arakelov intersection theory. Our first
main result is a converse to the above theorem, which can also be viewed as a function
field analogue of Zhang’s result.

Theorem (Corollary 14). Let (X,OX(1)) be a n-dimensional projective manifold
polarized by a very ample line bundle OX(1). Suppose that for any flat proper family
π : (X ,L) → B over a smooth curve B containing (X,OX(1)) as a general fiber, that
is (Xb,L|Xb

) ∼= (X,OX(1)) for all b ∈ B\S, where S ⊂ B is a set of finite number of
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points and L → X is a relatively very ample line bundle with E := π∗L being locally
free of rank N + 1, we always have

deg π∗
{
((N + 1)c1(L) − π∗c1(E))n+1 ∩ [X ]

} ≥ 0.

Then X is Chow semi-stable with respect to the polarization L.

The rationale behind this Theorem is the localization formula for equivariant coho-
mology, which equates the intersection number to the weight. The simplest toy model
is the following:

Example 1. Let OP1(1) → P
1 be the hyperplane bundle and ω ∈ H2(P1, Z) be

the first Chern class of OP1(1). Consider a C
×-action on C

2 given by t · [z0, z1] =
[tλz0, t

μz1], this induces an action on total space of OP1(1) covering a C
×-action on

P
1. Then the localization formula reads

∫

P1
ω =

μ

μ − λ
− λ

μ − λ
,

where the LHS is the intersection number and RHS are weights contribution from
0,∞ ∈ P

1. In particular, if λ = 0 and μ = 1 then the weight μ is exactly the
intersection number [ω] · [P1].

Now let us turn to the second motivation of this paper, let X → B be a flat family
as introduced above, Paul and Tian [PT] introduced the CM -line bundle ΛCM (X ) →
B (cf. Section 3) for a proper flat family in their study of K-stability of polarized
manifold. The notion K-stability of a polarized manifold, first introduced by Tian [T]
and generalized by Donaldson in [Do0] is conjecturally to be a necessary and sufficient
condition to the existence of the constant scalar curvature Kähler (cscK) metric [Do0].
This was originally motivated by Yau’s [SY] conjecture that the existence of cscK
metric should be related to certain geometric invariant theory (GIT) stability. In
[PT], Paul and Tian have shown that K-stability can be interpreted as GIT stability
provided the “polarization” over the Hilbert scheme was CM -line. However, this is
NOT a real polarization in the sense that the ampleness of CM -line bundle is not
guaranteed. So it has been a major concern to determine the positive locus of the
CM -line inside the Hilbert scheme. Fine and Ross made the first step toward this
problem [FR], they found that CM -line is semi-positive over the asymptotic Hilbert
semi-stable locus, and at the same time they were able to construct examples such that
the CM -line fails to be non-negative for some Hilbert unstable family. A consequence
of the our theorem above is the following (cf. Section 3).

Proposition 17. Suppose (X,OX(1)) is K-unstable (cf. [Do0] and [PT]), then there
is a flat family (X ,L) → P

1 containing X as a general fiber such that CM -line bundle
ΛCM (X ) → P

1 is negative.

Now we outline the organization of the paper. In Section 2, we will associate to
any family GIT problem with a line bundle called height over the base and prove
its positivity under the assumption of semi-stability. Moreover, we will show that
there is a natural proper family such that the height is identified with the GIT weight
(Theorem 7). This is the heart of the paper. In the following two sections, applications
of the theory developed in Section 2 are presented. In Section 3, we apply Section 2
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to Chow scheme, and in particular, we are able to extend the result of [FR] by given a
more precise description of the positivity of CM -line for general families. In Section 4,
we apply the theory to the study of vector bundles and establish a connection between
height and Donaldson’s determinant line bundle introduced in [Do1].

2. GIT height

In this section, we will first introduce a notion called height for a family of GIT
problem. Then we establish a precise relationship between the height and the weight
in the sense of GIT.

First, let us review some basics of GIT. Let (Z,OZ(1)) be a projective manifold
with an action of a reductive algebraic group G, and the polarization OZ(1) is a
G-linearized ample line bundle on Z, that is, there is a G-action on the total space of
OZ(1) that covers its action on Z.

Definition 2. Let z ∈ Z and λ : C
× → G be a one parameter subgroup. Let

z0 := lim
t→0

λ(t) · z.

Then the λ-weight of z, which will be denoted by wz(λ) ∈ Z, is the weight of
C

×-action on OZ(1)|z0
∼= C. A point z is called (semi-)stable with respect to the

G-linearization of OZ(1) if wz(λ)(≥) > 0 for all one parameter subgroups λ : C
× → G.

A family GIT problem over a smooth curve B consists of the following data:

• Let (Z,OZ(1)) be a polarized projective manifold with an action of a con-
nected reductive algebraic group G̃, and OZ(1) is very ample and also
G̃-linearized. We assume the induced representation

(2.1) ρ : G̃ −→ GL(H0(Z,OZ(1)))

satisfying

(2.2) Imρ ⊃ C
× · I,

where I is the identity in GL(H0(Z,OZ(1))). Let

(2.3) G := ker(det ◦ρ),

we study the GIT problem for the G-action on (Z,OZ(1)).
• Let

G̃ −→ FrG̃

π ↓
B

be a principal G̃-bundle over B.

We introduce a locally trivial fibration associated to FrG̃

πZ : Z : =FrG̃ ×G̃ Z −→ B.

By our assumption that OZ(1) is very ample and G̃-linearized, we have

(2.4) OZ(1) := FrG̃ ×G̃ OZ(1)
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is π-relative very ample. And for a fixed b ∈ B, there is an isomorphism ιb : (Zb =
π−1
Z (b),OZ(1)|Zb

) ∼= (Z,OZ(1)). Moreover, there is a bundle morphism

Z −→ PE
πZ ↓ ↓ π

B
id−→ B

.

with E = (πZ)∗OZ(1) = FrG̃ ×G̃ H0(Z,OZ(1))∨ → B. Over Z, there is a natural
vector bundle π∗

ZE∨(1) = π∗
ZE∨ ⊗OZ(1) = Hom(π∗

ZE ,OPE(1)|Z).

Definition 3. We define the height h(Z,OZ(1)) for the family (Z,OZ(1)) to be the
determinant line bundle detπ∗

ZE∨(1) ∈ Pic(Z), where Pic(Z) is the Picard variety
of Z. For any cross-section s of the fibration π : (Z,OZ(1)) → B, we define height
of s to be

h(Z,OZ(1))(s) := c1(s∗ detπ∗
ZE∨(1)) ∈ NS(B),

where NS(B) is the Neron–Severi group of B. In particular,

h(Z,OZ(1))(s)[B] = (N + 1)s∗c1(OZ(1))[B] − deg((πZ)∗OZ(1)),

with N + 1 being the rank of E = (πZ)∗OZ(1) → B.

Remark 4. The name height is borrowed from [Z], and as we will see later that
h(Z,OZ(1))(s) can be thought as a cohomological invariant for the section s of the
family (Z,OZ(1)).

Let s be a section of the fibration πZ : (Z,OZ(1)) → B, it can be viewed as a
G̃-equivariant Z-valued function of FrG̃, i.e.,

s ∈ Maphol.(FrG̃, Z)G̃ :=
{

s : FrG̃ → Z|∂̄s = 0 and s(·g) = g−1 · s(·),∀g ∈ G̃
}

.

For any k ≥ 1, suppose that σ ∈ H0(Z,OZ(k))G is a G-invariant section, then it
induces a map

σ ◦ s : FrG̃ s−→ Z
σ−→ OZ(k).

By our assumption (2.2), for any g ∈ G̃, there is a h ∈ G̃ such that ρ(h) = λI and
h−1 · g ∈ G. These imply

det ρ(g) = det ρ(h) = λN+1 and ρk(g) · σ = ρk(h) · σ = λkσ,

where ρk : G̃ → GL(H0(Z,OZ(k))) induced from the linearization of G̃ on OZ(1).
Hence for any x ∈ FrG̃,

σ ◦ s(x · g) = σ(g−1 · s(x)) = ρk(g)−1(σ ◦ s)(x) = λ−kσ ◦ s(x) ∈ OZ(k)|s(x)
∼= C.

In particular, if k = (N + 1)k′ then σ ◦ s(x · g) = (det ρ(g))−k′ · σ ◦ s(x). So
σ ◦ s defines a holomorphic section of the line bundle (det E)⊗(−k′) ⊗ s∗OZ(k) =
det(s∗(π∗

ZE))⊗(−k′) ⊗ s∗OZ(k) since πZ ◦ s = id, that is,

(2.5) σ◦s ∈ H0
(
B, s∗ (det (π∗

ZE∨ ⊗OZ(1)))⊗k′)
= H0

(
B, s∗ (det (π∗

ZE∨(1)))⊗k′)
,

from which we deduce
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Theorem 5. Let B be a smooth projective curve. Suppose that for a general b ∈ B
(in the sense of analytic topology), s(b) ∈ Zb is semi-stable. Then h(Z,OZ(1))(s) ≥ 0.

Proof. It follows from GIT[MFK] that if s(b) ∈ (Zb,OZ(1)|Zb
) ∼= (Z,OZ(1)) is semi-

stable with respect the G-action then there is a σ ∈ H0(Z,OZ(k))G for some k � 1
such that σ(s(b)) �= 0. Without loss of generality, we may assume that k = (N +1)k′.

By the construction above (c.f. (2.5)), we have

σ ◦ s ∈ H0
(
B, s∗ (det(π∗E∨(1)))⊗k′)

;

such that σ ◦ s(b) �= 0, this implies

0 ≤ c1

(
s∗ (det (π∗E∨(1)))⊗k′)

= k′ ((N + 1)c1 (s∗OZ(1)) − c1 (E))

= k′ [(N + 1)c1 (s∗OZ(1)) − c1 (detπ∗OZ(1))] ,

which is exactly what we want to prove. �

Remark 6. The proof above is essentially due to Cornalba and Harris [CH].

To get the necessity of positivity in the above theorem, let

C
× −→ Fr(OP1(1))

↓
P

1

be the frame bundle associated to OP1(1). For any one parameter subgroup λ : C
× →

G, where G is defined in the first we introduce an associated locally trivial fibration
as follows

Zλ := Fr (OP1(1)) ×λ Z =
{(p, z) ∈ Fr (OP1(1) × Z)}

(p, z) ∼ (pt, λ(t−1)z) ∀t ∈ C× ,

so we have
z ∈ Z = π−1(1) ⊂ Zλ

↓ π ↓
{1} ∈ P

1
.

Since OZ(1) is G-linearized, this allows us to define the line bundle

OZλ
(1) := Fr(OP1(1)) ×λ OZ(1) −→ Zλ.

To fit the family Zλ into the framework we developed in the beginning of this section,
we let G0 = λ ⊂ G and G̃0 = λ × C

×. We define the G̃0-action on OZ(1) as follows,
for (t, s) ∈ G̃0 and ẑ ∈ OZ(1)|z∈Z , we define (t, s) · ẑ = s(λ(t) · ẑ), that is, the action
of λ followed by a rescaling. Then it is easy to see that the family Zλ satisfies the
assumptions since ρ(G) ⊂ SL(H0(OZ(1))) by (2.3).

Next we introduce a C
×-action on Fr(OP1(1)) as follows. Let Δ0 := {|t| < 10} ⊂

C and Δ∞ := {|1/t|< 10} ⊂ C be the chart of P
1 at 0 and ∞ respectively, then

Fr(OP1(1)) = C
× × Δ0

⋃
f C

× × Δ∞ with the transition function given by

f : C
× × Δ0 −→ C

× × Δ∞
(t · z, t) �−→ (z, 1/t) ,
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so
Zλ = Z × Δ0

⋃

λ◦f

Z × Δ∞.

Now for any one parameter subgroup μ : C
× → G commuting with λ, it induces an

action on Zλ as follows

τ · (z, t) := (μ(τ) · z, τt) ∈ Z × Δ0 and τ ·
(

z,
1
t

)
:=

(
μ(τ) · z,

1
τt

)
∈ Z × Δ∞,

this action has a natural lifting to OZλ
(1) → Zλ since OZ(1) is G-linearized. Moreover,

we have C
×-equivariant bundle morphism

Z −→ PE
πZ ↓ ↓ π

P
1 id−→ P

1

with E =π∗OZ(1). Let sμ(z) ⊂ Zλ be the closure of the μ-orbit through the point
z ∈ π−1(1) ∼= Z; hence it is a section over P

1 with

lim
t→0

μ(t) · z = sμ(z)(0) ∈ Z and lim
t→∞μ(t) · z = sμ(z)(∞) ∈ Z.

Then our main result of this section is the following formula.

Theorem 7. Let z ∈ Z and λ, μ : C
× → G be two commuting one parameter sub-

groups. Then we have

(2.6) wz(μ ◦ λ) + wz(μ−1) =
1

rk(π∗OZλ
(1))

h(Zλ,OZλ
(1))(sμ(z)).

In particular, if μ = λ−1 then

wz(λ) =
1

rk(π∗OZλ
(1))

h(Zλ,OZλ
(1))(sλ−1(z)).

Proof. First, by our assumption det ρ ◦ λ = 1, this implies c1(det E) = 0. So to prove
(2.6) all we need is

1
rk(π∗OZλ

(1))
h(Zλ,OZλ

(1))(sμ(z)) =
∫

sμ(z)

c1(OZλ
(1)) = wz(μ ◦ λ) + wz(μ−1).

The section sμ(z) give rise to an C
×-equivariant morphism i : P

1 −→ sμ(z) ⊂ Z ⊂PE ,
which implies ∫

sμ(z)

c1(OZλ
(1)) =

∫

P1
i∗c1(OZλ

(1)).

By equivariant localization formula, we have
∫

P1
i∗c1(OZλ

(1)) =
∫

P1
i∗c̃1(OZλ

(1)) =
w0(μ)

ẽ(N{0}/P1)
+

w∞(μ)
ẽ(N{∞}/P1)

,

with ẽ(N{0}/P1) and ẽ(N{∞}/P1) being the equivariant Euler classes of normal bundle
of the fixed point at 0 and ∞, respectively, c̃1(OZλ

(1)) being the equivariant extension
of c1(OZλ

(1)), and w0(μ) and w∞(μ) being the weights of μ acting on OZλ
(1)|0 and
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OZλ
(1)|∞. To find the weight, we notice that PE is obtained by gluing P

N × Δ0 and
P

N × Δ∞ via transition function

fλ : P
N × Δ0 −→ P

N × Δ∞,
(λ(t) · [x0, . . . , xN ], t) �−→ ([x0, . . . , xN ], 1/t). .

Then the μ-action on PE is given by

τ ◦ (λ(t) · z, t) := (μ(τ) · λ(τt) · z, τt) ∈ P
N × Δ0,

and

τ ◦
(

z,
1
t

)
:=

(
μ(τ) · z,

1
τt

)
∈ P

N × Δ∞,

and the section sμ(z) is obtained via gluing

fλ : P
N × Δ0 −→ P

N × Δ∞,
(μ(τ) · λ(τ) · z, τ) �−→ (μ(τ) · z, 1/τ). .

So we have
w0(μ) = wz(μ ◦ λ), w∞(μ) = −wz(μ−1),

since limτ→∞ μ(τ) · z = limτ→0 μ(τ−1) · z = limτ→0 μ−1(τ) · z. Our statement follows
from the fact the μ-action on P

1 has ẽ(N{0}/P1) = 1, ẽ(N{∞}/P1) = −1. �

Example 8. Let Z = P
N with C

×-action defined by

t · [x0, . . . , xn] := [tw0x0, . . . , t
wN xN ] with

N∑

i=0

wi = 0.

Then Zw = PE with E =
⊕N

i=0 O(wi) and H∗(PE) = Z[ξ, η]/(ξN+1, ξNη − 1, η2),

where ξ = c1(OPE(1)) and η = [π−1(1)]. Let ei := [0, . . . ,
ith
1 , . . . , 0], then

[s(ei)] =
∏

k 
=i

(ξ − wkη) ∈ H2N (PE)

and ∫

s(ei)

ξ = ξ
∏

k 
=i

(ξ − wkη) = −
∑

k 
=i

wk = wi.

On the other hand, if we apply the above proposition we obtain
∫

s(ei)

ξ = wei(μ) + wei(λ) + wei(μ
−1)

= wei(μ) + wei(λ) − wei(μ)

= wei(λ).

Corollary 9. If z ∈ (Z,OZ(1)) be a un-stable point and λ : C
× → G be the destabliz-

ing one parameter subgroup, that is wz(λ) < 0. Then

wz(λ) =
1

rk(π∗OZλ
(1))

h(Zλ,OZλ
(1))(sλ−1(z)) < 0.



916 XIAOWEI WANG

3. Geometric height and positivity of CM-line

Our first application of the result in the previous section is to the study a proper flat
family of varieties.

3.1. Geometric height. First, let us briefly summarize the construction of Chow
section due to Mumford (for details please see [MFK] Section 5.4, [Z] Section 1.3 or
[BGS] Section 4.3). Let B be an integral scheme E be a locally free sheaf of rank N +1
over B, and X be an effective cycle of PE := Proj(Sym∗E), the projective space over
B, whose components are flat and of dimension n over B. Thus, we have diagram

X −→ PE
π ↓ ↓ π

B −→ B
.

Let OPE(1) and OPE∨(1) denote the hyperplane line bundle of PE and PE∨ respec-
tively. Then the canonical section of E ⊗ E∨, which is dual to the canonical pairing
E∨ ⊗ E → OB , gives a section Δ of OPE(1)�OPE∨(1) over PE×PE∨. Let πi denote the
ith projection

πi : (PE∨)n+1 −→ PE∨,

and Δi’s be the corresponding sections of OPE(1)⊗π∗
iOPE∨(1) on PE⊗(PE∨)n+1. Let

Γ :=
n⋂

i=0

Δ−1
i (0).

If we regard the points of PE∨ as hyperplanes of PE then

Γ =
{
(x, H0, . . . , Hn) ∈ PE ⊗ (PE∨)n+1| x ∈ Hi,∀i

}
.

And if we regard Γ as a correspondence from PE to (PE∨)n+1

Γ ⊂ PE⊗(PE∨)n+1

p1 ↙ ↘ p2

PE (PE∨)n+1
,

then
Y (X ) = Γ∗(X ) := p2∗(p∗1(X ) ∩ Γ) ⊂ (PE∨)n+1

will be a divisor of degree (d, . . . , d) of (PE∨)n+1 whose components are flat (cf. [BGS]
Lemma 4.3.1) over B, where d is the degree of Xb ⊂ PEb := π−1(b) for general b ∈ B.

Let OPKd (1) be the hyperplane bundle of

PKd := P[(SymdE)⊗(n+1)] −→ B

with
Kd + 1 := dim(Symd

C
N+1)⊗(n+1).

Then the canonical pairing of (SymdE)⊗(n+1) ⊗ (SymdE∨)⊗(n+1) give rise to a section
Δ′ of the line bundle OPKd (1)⊗π∗

0OPE∨(d)⊗· · ·⊗π∗
nOPE∨(d) on P[(SymdE)⊗(n+1)]×

(PE∨)n+1. By viewing points of P[(SymdE)⊗(n+1)] as hypersurface of (PE∨)n+1 of
degree (d, . . . , d), we can regard

Γ′ = {Δ′ = 0} = {(H, y0, . . . , yn)|(y0, . . . , yn) ∈ H}.
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as a correspondence

Γ′ ⊂ PKd⊗(PE∨)n+1

p1 ↙ ↘ p2

PKd (PE∨)n+1
,

and section

(3.1) sX = p1∗(p∗2Y (X ) ∩ Γ′)

of PKd over B corresponds to Y (X ) via Γ′ is the Chow section for X . Furthermore,
Zhang have show in [Z] the following:

Proposition 10.

L〈n+1〉(X/B) := 〈L, . . . ,L〉(X/B) � s∗X (OPKd (1)) ∈ Pic(B),

where L〈n+1〉 = 〈L, . . . ,L〉 is the Deligne pairing (c.f. [De]) of L over B. In particular,
c1(L〈n+1〉) = π∗c1(L)n+1.

Now suppose that X is a separated scheme of dimension n + 1 and B is a smooth
curve. Let

π : X −→ B

be a flat proper morphism. Let L → X be a line bundle such that E := π∗L is locally
free of rank N + 1. Suppose that the following conditions are satisfied:

(1) L is relative very ample and H0(Xb,Lb) = Eb for every b ∈ B,
(2) There is a b ∈ B such that H0(Xb,Lb) yields a Chow semi-stable embedding

of Xb.

From the above assumption, we may view X as an effective cycle of PE
X −→ PE
↓ ↓
B

id−→ B

whose components are flat and of dimension n over B. Applying Mumford’s construc-
tion of Chow section outlined above, we obtain section sX

PKd

sX ↗ ↓ Π,

B
id−→ B

in particular, for general point b ∈ B, sX (b) maps to the Chow point of (Xb,L|Xb
).

By Theorem 5, we deduce

c1(s∗X det((Π∗OPKd (1))∨(1))) ≥ 0.

To unwind its meaning in terms of the geometry of L and X , we need the following

Proposition 11. For the family (PKd ,OPKd (1)) → B with section sX we have
(1)

ΛChow(L) :=
(
det

(
s∗X (Π∗OPKd (1))∨(1)

))⊗N+1

=
{

(L〈n+1〉)⊗(N+1) ⊗ (det E∨)⊗(n+1)d
}⊗(Kd+1)

.
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(2)

h(PKd,O
PKd (1))(sX ) =

Kd + 1
(N + 1)n

π∗ {(N + 1)c1(L) − π∗c1(π∗L)}n+1
,

and we call

hE(X ) :=
1

(N + 1)n+1
π∗ {(N + 1)c1(L) − π∗c1(π∗L)}n+1 ∈ NS(B),

the geometric height.

Proof. For the first identity, we notice that the natural embedding

ρ : GL(N + 1) −→ GL

((
Symd

C
N+1

)⊗n+1
)

= GL(Kd + 1),

implies
det(ρ(g))N+1 = (det g)d(n+1)(Kd+1).

This together with the fact s∗XOPKd (1) ∼= L〈n+1〉 (by Proposition 10) and

s∗X (Π∗OPKd (1)) ∼= (SymdE)⊗n+1

imply
[
s∗X det

(
Π∗OPKd (1)

)∨ (1)
]⊗(N+1)

= detHom
((

SymdE
)⊗(n+1)

, s∗XOPKd (1)
)⊗(Kd+1)

=
{
Hom

(
(det E)⊗d(n+1)

,
(
L〈n+1〉

)⊗(N+1)
)}⊗(Kd+1)

=
{(

L〈n+1〉
)⊗(N+1)

⊗ (det E∨)⊗d(n+1)
}⊗(Kd+1)

.

For the second identity, we have

(N + 1)h(PKd ,O
PKd

(1))(sX )(3.2)

= (N + 1)c1(s∗X det(Π∗OPKd (1))∨(1))

= (Kd + 1){(N + 1)c1(L〈n+1〉) − (n + 1)dc1(E)}
= (Kd + 1)

{
(N + 1)π∗c1(L)n+1 − (n + 1)dc1(E)

}

=
Kd + 1

(N + 1)n
π∗ ((N + 1)c1 (L) − π∗c1(E))n+1

,

where we have used formula c1(L〈n+1〉) = π∗c1(L)n+1 in the third identity. �

Remark 12. Note that the second part of the above Proposition together with The-
orem 5 imply Theorem 1. And the approach we adapt here is slightly different from
[CH] in the sense that we use the Chow scheme instead of Hilbert scheme, the advan-
tage here is the geometric height is exactly the GIT weight (cf. Proposition 13)



HEIGHT AND GIT WEIGHT 919

Now Theorem 1 is a direct consequence of Theorem 5. To get the converse, let

λ(t) =

⎡

⎢
⎣

tλ0

. . .
tλN

⎤

⎥
⎦ ⊂ SL(N + 1) with λi ∈ Z

be a 1-parameter subgroup and

Eλ =
N⊕

i=0

O(λi) −→ P
1.

Then there is a natural lifting of the C
×-action on P

1 to PEλ as explained in Section 2.
If we embed X ⊂ π−1(1) ∼= P

N as a subvariety of PEλ lying over 1 ∈ P
1, and let

Xλ ⊂ PEλ be the effective C
×-invariant cycle obtained via taking the closure of the

λ−1-orbit through X ⊂ π−1(1), i.e.,

(3.3)
Xλ −→ PEλ

↓ ↓ ρ

P
1 id−→ P

1

.

Then the family Xλ → B is flat over P
1 (cf. [Mum] Section 2) and by the construction

in the beginning of this subsection (cf. (3.1)) we obtain the Chow section sXλ
of

PKd := P

[(
SymdEλ

)⊗(n+1)
]
→ P

1.

Note that it follows from Mumford’s construction that sXλ
: P

1 → PKd is C
×-

equivariant, since Γ and Γ′ both are C
×-invariant cycle (see also [MFK] Section 5.4).

As a consequence of Proposition 7, we have the following:

Proposition 13. Let X ⊂ P
N be a n-dimensional subvariety of degree d and

λ(t) =

⎡

⎢
⎣

tλ0

. . .
tλN

⎤

⎥
⎦ ⊂ SL(N + 1)

be a one parameter subgroup. Then we have

hEλ
(Xλ) =

1
(N + 1)n+1

π∗ {(N + 1)c1(OPE(1)) − π∗c1(E)}n+1 = wChow(X)(λ),

for Eλ :=
⊕N

i=0 O(λi).

In particular, it implies the following converse to Cornalba–Harris’s result.

Corollary 14. Let (X,OX(1)) be a projective variety polarized by a very ample line
bundle OX(1). Suppose that for any flat proper family (X ,L) → B over a smooth
curve B with generic (Xb,L|Xb

) ∼= (X,OPN (1)|X) for all but finite b ∈ B and L → X
be a relative very ample line bundle such that E := π∗L is locally free of rank N + 1,
we always have

π∗
{

((N + 1)c1(L) − π∗c1(E))n+1 ∩ [X ]
}
≥ 0.

Then X is Chow semi-stable.
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Now to relate the geometric height with the CM -line bundle introduced by Tian,
we need to replace L by Lk and then let k → ∞. First we shall note that the one
parameter subgroup

λk : C
× −→ GL(H0(X0,OX0(k)))

induced from λ might not lie in SL(Nk + 1) with Nk + 1 := dimH0(X0,OX0(k)). So
we introduce the normalization

λ̃k := t−wk/(Nk+1)

⎡

⎢
⎣

tλ0

. . .
tλNk

⎤

⎥
⎦ ⊂ SL(Nk + 1)

with wk being the λ-weight of ∧topH0(X0,OX0(k)). Let us define vector bundle

Eλk
:=

Nk⊕

i=0

O(λi) −→ P
1

and Q-bundle

Eλ̃k
:= Eλk

⊗O(−wk/(Nk + 1)) =
N⊕

i=0

O
(

λi − wk

Nk + 1

)
−→ P

1.

By following the construction in the previous subsection, we obtain a flat family
Xλ̃k

→ P
1 with corresponding Chow section sXλ̃k

of PKd,k := P((SymdknE)⊗n+1)
over P

1. Then Proposition 13 implies the following:

Corollary 15. Let λ̃k be as above and Xk → P
1 be the induced family, then

(3.4) wChowk(X)(λ̃k) =
1

(Nk + 1)n+1
π∗

(
(Nk + 1)c1

(
OPEλk

(1)
)
− π∗c1(Eλk

)
)n+1

.

Proof. We only need to notice the fact that

hEλ̃k
(Xλ̃k

) = hEλk
(Xλk

)

since OPEλ̃k
(1) = OPEλk

(1) ⊗ π∗O(−wk/(Nk + 1)). �

3.2. Positivity of CM-line bundle. Now we are ready to address our applica-
tion to K-stability introduced by Tian and Donaldson. To set the scene, let X be a
separated scheme of pure dimension n + 1 and B be a smooth curve. Let

π : X −→ B

be a flat proper morphism and suppose that X over B has a relative canonical line
bundle KX/B whose first Chern class will be denoted by −c1(X/B). Let L → X be a
line bundle such that E := π∗L is locally free and relatively very ample. The CM -line
ΛCM (X ) → B for the family X → B was introduced by Paul and Tian [PT] in order to
give a GIT interpretation of K-stability defined by Tian and extended by Donaldson
[T, Do0]. We are referring to [PT, RT] for the precise definition of the K-stability,
as the definition itself is not used in the following discussion. One important fact we
need is that

c1(ΛCM (X )) := π∗
(
nc1(L)n+1μ − (n + 1)c1(L)nc1(X/B)

) ∈ H2(B)
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with

μ =
π∗

(
c1(L)n−1c1(X/B)

)

π∗c1(L)n
.

The introduction of CM -line is motivated by the fact that the distortion of the metric
on the CM -line is directly related to the Mabuchi functional, which play an essential
role in the problem of finding cscK metric.

As was observed by Zhang [Z1], and Fine and Ross [FR] independently that the
leading term of height resulting from the re-embedding is proportional to ΛCM. More
precisely, we have following asymptotic formula:

Proposition 16. (Zhang, Fine and Ross, cf. [FR] Section 4) For k � 1, there is a
constant a0 > 0 such that

ΛChow(Lk) = (ΛCM )⊗a0k2n ⊗ · · · (terms with lower exponents on k)

and

(Nk + 1)hFλ
(X ) =

1
(Nk + 1)n

π∗
{
(Nk + 1)c1(Lk) − π∗c1(π∗Lk)

}n+1

=
π∗c1(L)n

2n!
π∗

{
nc1(L)n+1μ − (n + 1)c1(L)nc1(X/B)

}
k2n + O(k2n−1)

with

μ =
π∗(c1(L)n−1c1(X/B))

π∗c1(L)n
.

With those understood, we have the following:

Proposition 17. Let λk, Fλk
be as in the previous subsection,

(1) Let π : Xλ → B be the flat family we constructed in (3.3). Then

−F (λ) = lim
k→∞

hFλk
(Xλ)

Nk + 1
,

where F (λ) is the generalized Futaki invariant defined in [Do0, RT] and
deg X :=

∫
X

c1(L)n. In particular, if we assume KX/B is Q-Cartier then

−F (λ) =
n!

2 deg X
π∗

{
nc1(L)n+1μ − (n + 1)c1(L)nc1(Xλ/P

1)
}

[P1].

(2) Suppose Xn ⊂ P
N is K-unstable (for the definition see [Do0, PT]), then

there is a flat family X → P
1 such that the CM line bundle ΛCM (X ) → P

1 is
negative.

Proof. 1. First, it follows from Corollary 15 that

lim
k→∞

hFλk
(X)

Nk + 1
= lim

k→∞

hFλ̃k
(X)

Nk + 1
= lim

k→∞
wChowk(X)(λ̃k)

Nk + 1
= −F (λ),

where the last identity follows from Theorem 38 in [W] or Proposition 4.2 in [R].
For the second identity, we have

lim
k→∞

hFλk
(X)

Nk + 1
= lim

k→∞
(Nk + 1)hFλk

(X)
(Nk + 1)2

=
n!

2 deg X
π∗

{
nc1(L)n+1μ − (n + 1)c1(L)nc1(Xλ/B)

}
.
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2. Suppose X ⊂ P
N is K-unstable with respect to a 1-ps λ : C

× → SL(N + 1)
such that F (λ) > 0, which is the λ-weight of Hilbert point of X with respect to
the refined CM polarization ΛCM on the Hilbert scheme Hilb(χ, Pn), where χ(k) :=
dimH0(X,OX(k)) (cf. Theorem 1, [PT]). We let Xλ→P

1 to be the flat family obtained
by completion of C

×-orbit in Hilb(χ, Pn) of λ−1. Then the height of corresponding
Chow section give rise to the Chow weight of λ by Theorem 7. Apply re-embedding
as we did in the previous subsection we get kth height is the Chow weight for kth
embedding. Since F (λ) > 0, it follows from the first part that kth Chow weight and
hence kth height is negative for k � 1. Our statement c1(ΛCM )[P1] < 0 then follows
from Proposition 16. �

Remark 18. Notice that the above corollary implies that the CM -line is strictly
positive along the closure of one parameter subgroup through a K-stable point.

4. Height for vector bundles

Our second application is to the study of a family of vector bundles over a fixed
polarized projective manifold (X,OX(1)).

4.1. Height for vector bundles and Donaldson’s line bundle. Let (X,OX(1))
be a projective manifold with polarization OX(1) and

F −→ X × B
π−→ B

be a rank r coherent sheaf over X × B that is flat over B. We fix a m � 1 such
that Riπ∗F(m) = 0 for i > 0 and the evaluation map ρ : π∗(π∗F(m)) → F(m) is
surjective. By our assumption, V := π∗F(m) is a rank p(m) vector bundle over B
with p(m) being the Hilbert polynomial of F|X×{b} for general b ∈ B and we have
diagram

π∗V
ρ−→ F (m) −→ 0

↓
X × B

πX−→ X
↓ π
B

.

Let us briefly recall Gieseker’s construction (cf. [HL]) of Gieseker section sF(m) of
PHom(∧rV, π∗(π∗

XQ(m))∨) P(Hom(∧rV, π∗(π∗
XQ(m)))∨) over B. For simplicity, let

us assume

detF|X×{b} = Q ∈ Pic(X),

which implies that

detF = π∗L ⊗ π∗
XQ for some L ∈ Pic(B).

From the universal quotient ρ : π∗V → F(m), we obtain homomorphisms ∧rρ :
∧rπ∗V → det(F⊗π∗

XOX(m)). By applying π∗, we have

π∗ ◦ ∧rρ : ∧rV ⊗OB −→ π∗ det(F(m)) = L ⊗ π∗(π∗
XQ(rm)),
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which is adjoint to
s̃ : Hom (∧rV, π∗ (π∗

XQ(rm))) −→ L.

Note that s̃ is everywhere surjective (cf. [HL] Section 4.A) and therefore it defines the
Gieseker section

PKm

sF(m) ↗ ↓ Π
B

id−→ B

with

PKm := P
(Hom (∧rV, π∗(π∗

XQ(m)))∨
)

= P
(Hom (detπ∗F(m), π∗ detF(m))∨

)

and
Km + 1 := dim Hom

(∧H0
(F(m)|X×{b}

)
, H0(Q(rm))

)
,

that is, sF(m)(b) is the Gieseker point of F(m)b|X×{b} for b ∈ B. By Theorem 5, if
we assume that for generic b ∈ B, F|X×{b} is semi-stable then we have

c1

(
det

(
s∗F(m)(Π∗OPKm (1))∨(1)

))
≥ 0.

Similar to the variety case we have the following Proposition, whose proof is parallel
to what we did for the variety case.

Proposition 19. For the family (PKm,OPKm(1)) → B with section sF(m) we have

(1)
(
det

(
s∗F(m)(Π∗OPKm (1))∨(1)

))
=

{
det (π∗F(m))−

r
p(m) ⊗ L

}χ(rm)

where χ(m) := dimH0(X, Q(m)) for m � 1.
(2)

c1

(
h(PKm,OPKm (1))(sF(m))

)

=
1

p(m)
π∗ {(p(m)c1(F(m)) − rc1(π∗F(m))) ωn}χ(rm),

where ω := π∗
Xc1(OX(1)). And we call

h(F(m)) := p(m)π∗ (c1(F(m))ωn) − rFc1(π∗F(m))π∗ωn ∈ NS(B)

the height of the sheaf F(m).
(3) Suppose that

detF|X×{b} = Q ∈ Pic(X) for all b ∈ B.

Then

h(F(m)) = π∗
(
μc1(F)ωn − rF (ch2(F)ωn−1)

) mn−1

(n − 1)!
+ O(mn−2)
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with

μ =
π∗

(
(c1(Q) + rc1(X)/2) ωn−1

)

π∗ωn
,

which is the exactly the first Chern class of the Donaldson’s determinant line
bundle [Do1].

4.2. Positivity of Donaldson’s line bundle. To understand the geometric mean-
ing of the class

π∗
(
μc1(F)ωn − rch2(F)ωn−1

) ∈ NS(B),

let (X, H) be a projective surface polarized by an ample divisor H and K(X) be the
K-group of coherent sheaves on X. By setting h := OH , we introduce the class

u1(c) := −rh + χ(c · h)[Ox] ∈ K(X)

with c := F|X×{b} ∈ K(X)num, the numerical equivalence class of [F|X×{b}], and
χ(c ·h) being the Euler characteristic of the element c⊗OH ∈ K(X). Following [HL],
chapter 8, we define

ΛF (u1(c)) := detπ! (F ⊗ u1(c)) ∈ Pic(B).

Then a direct calculation similar to Proposition 8.3.1 in [HL] give rise to the following
Proposition whose proof are omitted.

Proposition 20. Let F be a B-flat family of sheaves on (X, H) of rank r, determinant
Q and Chern class c1, c2 ∈ H∗(X). Then

c1 (ΛF (u1(c))) = π∗
(
μc1(F)H2 − rch2(F)H

) ∈ H∗(B)Q

with μ = (c1 − KX/2) · H/H2.

As a quick consequence of the above Proposition and Theorem 7, we have

Corollary 21. Let F → (X,OX(1)) be vector bundle with Hilbert Polynomial p(m)
and [F ] = c ∈ K(X)num. Then F is Mumford semi-stable if and only if for any F
be a B-flat family of sheaves with F|X×{b} ∼= F for generic b ∈ B, c1(ΛF (u1(c))) is
non-negative.

Remark 22. Note that it was proved by Li (cf. [Li, HL]) that the line ΛF (u1(c)) is
nef on M(c) the moduli space of Gieseker semi-stable sheaves with fixed numerical
class c ∈ K(X)num over a projective surface and the projective image of ΛF (u1(c))⊗n

for n � 1 give rise to the Uhlenbeck Moduli space. So if one combine Donaldson’s
work [Do2] with the result of this section, one gets a GIT interpretation why the line
bundle ΛF (u1(c)) should lead to the Uhlenbeck compactification.

5. Digression

From the two applications, we have explored in the previous sections, it is natural to
ask the following:

Question: If the line bundle CM -line over the Hilbert scheme give rise to a
Uhlenbeck type of compactification of the moduli spaces. If it is so they will be a
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smaller compactification of the stable object. We hope to address this question in a
future work.
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Mathé matique, No. 24 L’Enseignement Mathématique, Geneva, 1977. 74 pp.

[MFK] D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der
Mathematik und ihrer Grenzgebiete (2) 34. Springer-Verlag, Berlin, 1994.

[Od] Y. Odaka, A generalization of Ross-Thomas’s slope theory, arXiv:math/0910.1794
[PT] S. Paul and G. Tian, CM stability and the generalised futaki invariant, arXiv:math/0605278
[R] Ross, J. Instability of Polarised Algebraic Varieties, Thesis, Imperial College.

[RT] J. Ross and R. Thomas A study of the Hilbert-Mumford criterion for the stability of projective
varieties, J. Algebr. Geom. 16(2) (2007), 201–255.

[SY] R. Schoen and S.-T. Yau, Lectures on differential geometry, International Press, Cambridge,

MA, 1994.
[Vi] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und

ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 30. Springer-Verlag,

Berlin, 1995. viii+320 pp.
[T] G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130(1) (1997),

1–37.
[W] X. Wang, Moment map, Futaki invariant and stability of projective manifoldse, Comm. Anal.

Geom. 12(5) (2004), 1009–1037.



926 XIAOWEI WANG

[Z] S. Zhang, Heights and reductions of semi-stable varieties, Composit. Math. 104(1) (1996),

77–105.
[Z1] S. Zhang, Private communication, 2005.

Current Address: Department of Math and CS, Rutgers University, Newark, NJ 07102,

USA

Department of Math, The Chinese University of Hong Kong, Sha Tin, Hong Kong

E-mail address: xiaowwan@rutgers.edu


