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C 1-BOUNDARY REGULARITY OF PLANAR INFINITY
HARMONIC FUNCTIONS

Changyou Wang and Yifeng Yu

Abstract. We prove that if Ω ⊂ R
2 is a bounded domain with C2-boundary and

g ∈ C2(R2), then any viscosity solution u ∈ C(Ω) of the infinity Laplacian equation (1.1)

is C1(Ω). The interior C1 and C1,α-regularity of u in dimension two has been proved
by Savin [20], and Evans and Savin [15], respectively. We also show that for any n ≥ 3,

if Ω ⊂ R
n is a bounded domain with C1-boundary and g ∈ C1(Rn), then the solution u

of equation (1.1) is differentiable on ∂Ω. This can be viewed as a supplementary result
to the much deeper interior differentiability theorem by Evans and Smart [16,17].

1. Introduction

In 1960s, Aronsson [3] introduced the notion of the absolutely minimizing Lipschitz
extension. Namely, u ∈ W 1,∞(Ω) is said to be an absolutely minimizing Lipschitz
extension in some bounded open subset Ω ⊂ R

n if for any open set V ⊂ Ω, we have
that

sup
x�=y∈∂V

|u(x) − u(y)|
|x − y| = sup

x�=y∈V

|u(x) − u(y)|
|x − y| .

The results of Crandall et al. [13] imply that the above definition is equivalent to
saying that for any open set V ⊂ Ω and v ∈ W 1,∞(V ),

u|∂V = v|∂V ⇒ ‖Du‖L∞(V ) ≤ ‖Dv‖L∞(V ).

Jensen proved in [18] that u ∈ W 1,∞(Ω) is an absolutely minimizing Lipschitz exten-
sion with a given Lipschitz continuous boundary data g iff u is a viscosity solution of
the infinity Laplacian equation:

(1.1)

{
Δ∞u :=

∑
1≤i,j≤n uxiuxj uxixj = 0 in Ω,

u = g on ∂Ω.

Moreover, (1.1) has a unique viscosity solution with any given continuous boundary
data. The reader can refer to Armstrong and Smart [2] for a nice new proof of Jensen’s
uniqueness theorem. After Jensen’s celebrated work, there has been an explosion
of interest in the infinity Laplacian equation and its generalizations. Two natural
extensions include: (i) absolute minimal Lipschitz extensions with respect to more
general metrics on R

n (see, e.g., [7]); and (ii) absolute minimizers of quasiconvex
functions of the gradient (see, e.g., [1,4–6,9,10]). We would like to mention beautiful
connections between the infinity harmonic functions and the differential game theory
first discovered by Peres et al. [19] and later by Barron et al. [8] for Aronsson’s
equations.

Received by the editors January 23, 2012.

823



824 CHANGYOU WANG AND YIFENG YU

Viscosity solutions of the infinity Laplacian equation (1.1) are also called infinity
harmonic functions. One of the most important problems concerning infinity harmonic
function is its C1-regularity. When n = 2, this has been proved by Savin [20], and the
C1,α-regularity was subsequently obtained by Evans and Savin [15]. Very recently,
Evans and Smart [16, 17] made a breakthrough in dimensions n ≥ 3 by showing that
any infinity harmonic function is differentiable everywhere. While the continuity of
gradient of u remains an open question.

In this short article, we will study the boundary regularity of infinity harmonic
functions. We are able to prove

Theorem 1.1. Suppose that Ω ⊂ R
2 is a bounded domain with ∂Ω ∈ C2. Assume that

g ∈ C2(R2) and u ∈ C(Ω) is the viscosity solution of the infinity Laplacian equation
(1.1). Then u ∈ C1(Ω). Moreover, for any δ > 0, there exists εδ > 0 depending only
on ||g||C2(R2) and ||∂Ω||C2 such that for x, y ∈ Ω,

|x − y| ≤ εδ ⇒ |Du(x) − Du(y)| ≤ δ.(1.2)

Here ||∂Ω||C2 is understood as follows: We say that ||∂Ω||C2 ≤ C < +∞, if there
exist 0 < rC < RC < +∞ such that Ω ⊂ BRC

(O) and for any x = (x1, x2) ∈ ∂Ω, after
suitable rotation, there exists f (x)(t) ∈ C2(R) such that ||f (x)||C2(R) ≤ C, f (x)(0) =
d
dtf

(x)(0) = 0 and for all r ∈ (0, rC)

Br(x) ∩ Ω = {x} + (Br(O) ∩ {y = (y1, y2)| y2 > f (x)(y1)})
and

Br(x) ∩ ∂Ω = {x} + (Br(O) ∩ {y = (y1, y2)| y2 = f (x)(y1)}).
The C2 assumption can actually be relaxed to C1,1 and the above definition of norm
is equivalent to saying that Ω has a uniform interior and exterior ball condition.

Sketch of the ideas of proof of Theorem 1.1: The C2-regularities of both ∂Ω and g
assure the existence of classical solutions of the eikonal equation: |Du| = constant
near ∂Ω, which serve as barrier functions. Using interior estimate established in [20]
and routine scaling arguments, to prove Theorem 1.1, it suffices to show that u locally
lies between two barrier functions that are C1-close. One side bound comes easily from
the method of characteristics. The proof for the other side bound is more tricky and
we utilize some ideas of [20], but is simpler than [20]. The C2-regularity assumption
is necessary to implement the method of characteristics. It remains an interesting
question whether Theorem 1.1 holds when g and ∂Ω are assumed to be C1, a more
natural assumption. It is also an interesting question to ask whether the C1,α-interior
regularity by Evans and Savin [15] holds up to the boundary for infinity harmonic
functions.

Using the tool of comparison with cones by Crandall et al. [13], we also establish
the differentiability of infinity harmonic functions on the boundary in all dimensions.

Theorem 1.2. For n ≥ 2, let Ω ⊂ R
n be a bounded domain with ∂Ω ∈ C1 and

g ∈ C1(Rn). Assume that u is the viscosity solution of the infinity Laplacian equa-
tion (1.1). Then u is differentiable on the boundary, i.e., for any x0 ∈ ∂Ω, there exists
Du(x0) ∈ R

n such that

u(x) = u(x0) + Du(x0) · (x − x0) + o(|x − x0|) for all x ∈ Ω.
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Remark 1.1. The interior differentiability of infinity harmonic functions in all di-
mensions has been proved by Evans and Smart [16]. It is not clear to us whether the
C1 assumption of g and ∂Ω in Theorem 1.2 can be relaxed to be everywhere differen-
tiable. We need the continuity of the gradient of g and ∂Ω to derive (2.1) in the next
section.

2. Boundary differentiability and proof of Theorem 1.2

In this section, we will assume that ∂Ω ∈ C1 and g ∈ C1(Rn) and u ∈ C(Ω) is a
viscosity solution of (1.1). We will prove the boundary differentiability Theorem 1.2.

For x ∈ Ω and r > 0, we define

S+
r (x) = max

y∈∂(Br(x)∩Ω)\{x}
u(y) − u(x)

|y − x|
and

S−
r (x) = max

y∈∂(Br(x)∩Ω)\{x}
u(x) − u(y)

|y − x| .

By the comparison principle with cones as in [12, 13], it is readily seen that both S+
r

and S−
r are monotone increasing functions of r > 0. Hence, for any x ∈ Ω, we have

that
S+(x) = lim

r→0
S+

r (x) and S−(x) = lim
r→0

S−
r (x)

exist. Let
S(x) = max

{
S+(x), S−(x)

}
.

Then it is standard that the following properties of S(x) hold, whose proof is left to
the readers. Note that by Evan and Smart [16,17], Du(x) exists for all x ∈ Ω.

Lemma 2.1. (i) For x ∈ Ω,

S+(x) = S−(x) = S(x) = |Du(x)|.
(ii) For x ∈ ∂Ω,

min{S+(x), S−(x)} ≥ |DT g(x)|,
where DT g denotes the tangential gradient of g on ∂Ω.
(iii) S(x) is upper-semicontinuous, i.e.,

(2.1) lim sup
y→x

S(y) ≤ S(x) ∀x ∈ Ω.

We first prove Aronsson’s tightness property for infinity harmonic functions in
R

n
+ = {x = (x′, xn) ∈ R

n : xn ≥ 0}, such a property was first proved by Crandall
and Evans [13] for infinity harmonic functions in R

n.

Lemma 2.2. Suppose w = w(x′, xn) ∈ W 1,∞(Rn
+) and

|Dw(x)| ≤ 1 a.e. x ∈ R
n
+.

Let e = (e′, en) ∈ R
n be a unit vector with en ≥ 0. Assume that w(x′, 0) = e′ · x′ for

all x′ ∈ R
n−1 and for t > 0 w(te) = t. Then w(x) = e · x for x ∈ R

n
+.
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Proof. For t > 0 and x = (x′, xn) ∈ R
n
+, we have that

w(te) − w(x) ≤ |te − x|
so that

w(x) ≥ t − |te − x| =
2e · x − t−1|x|2
1 + |e − t−1x| .

This, after taking t → +∞, implies

w(x) ≥ e · x, ∀x ∈ R
n
+.

It remains to show

(2.2) w(x) ≤ e · x, ∀x ∈ R
n
+.

Case 1: en = 0. Then we have −te ∈ R
n
+ and

w(x) ≤ w(−te) + |x + te| = −t + |x + te|.
Hence

−w(x) ≥ t − |x + te| =
−2e · x − t−1|x|2
1 + |e + t−1x| ,

so that (2.2) follows by taking t → +∞.

Case 2: en > 0. Then we have that for any x ∈ R
n
+,

w(x) ≤ w

(
x′ − xn

en
e′, 0

)
+

∣∣∣∣
(

xn

en
e′, xn

)∣∣∣∣ = e′ · x′ − xn

en
|e′|2 +

xn

en
= e · x.

This completes the proof. �

Proof of Theorem 1.2. Since ∂Ω ∈ C1, by suitable rotations and translations we may
assume that x0 = 0 ∈ ∂Ω and for some r > 0

Ω ∩ Br(0) = {(x′, xn) ∈ Br(0) | xn > f(x′)},
where f ∈ C1(Rn−1), f(0) = 0 and Df(0) = 0. Without loss of generality, we may
assume that

S+(0) ≥ S−(0)
so that S(0) = max{S+(0), S−(0)} = S+(0). Our goal is to show that

Du(0) = p0 :=
(
DT g(0),

√
S2(0) − |DT g(0)|2

)
.(2.3)

Here DT g(0) =
(

∂g
∂x1

, g
∂x2

, . . . , ∂g
∂xn−1

)
(0) is the tangential gradient of g at 0 ∈ ∂Ω . If

S(0) = 0, this follows immediately from Lemma 2.1. So we may assume after scalings
that S(0) = 1. For limm→+∞ λm = 0, set Ωm = λ−1

m Ω and define

um(x) =
u(λmx) − g(0)

λm
, x ∈ Ωm.

Since um(0) = 0 and u is an absolute minimal Lipschitz extension, we have

‖Dum‖L∞(Ωm) = ‖Du‖L∞(Ω) ≤ ‖Dg‖L∞(Ω)

so that1

‖um‖L∞(Ωm∩BR) + ‖Dum‖L∞(Ωm) ≤ (1 + R)‖Dg‖L∞(Ω), ∀R > 0.

1If Dg = 0 (i.e., g is constant), then u is constant so that um ≡ 0. Hence we may assume Dg �≡ 0.
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Since lim
m→∞Ωm = R

n
+, we may assume that um → w locally uniformly in R

n
+. It is

clear that

• w ∈ W 1,∞(Rn
+) is an infinity harmonic function in R

n−1 × (0, +∞),
• w(x′, 0) = DT g(0) · x′ for x′ ∈ R

n−1,
•

(2.4) |Dw|(x) ≤ S(0) = 1 a.e. x ∈ R
n
+.

We need to verify that

(2.5) w(x) = p0 · x, ∀x = (x′, xn) ∈ R
n
+,

with p0 given by (2.3).
Since g ∈ C1, by the definition of S+ there exists r0 > 0 such that for any 0 < r ≤ r0

there exists xr ∈ ∂Br ∩ Ω such that

lim
r→0

u(xr) − g(0)
r

= S+(0) = 1.

Note that if |DT g(0)| < 1, we may in fact choose xr ∈ ∂Br ∩ Ω satisfying

u(xr) − g(0)
r

= S+
r (0).

We now claim that for each k ∈ N, there exists a unit vector ek = (e′k, (ek)n) with
(ek)n ≥ 0 such that

(2.6) w(tek) = t for t ∈ [0, k].

In fact, taking possible subsequences, we may assume that (for r = kλm)

lim
m→+∞

xkλm

kλm
= ek.

Then kek = xkλm

λm
+ o(1) for limm→+∞ o(1) = 0. Hence

w(kek) = lim
m→+∞

u(xkλm) − g(0)
λm

= k.

This and (2.4) yield (2.6). After taking a subsequence if necessary, we assume that

lim
k→+∞

ek = e

for a unit vector e = (e′, en) with en ≥ 0. By (2.6), it is clear that

w(te) = t, ∀t > 0.

Hence Lemma 2.2 implies w(x) = e · x. Since w(x′, 0) = DT g(0) · x′, we have e′ =
DT g(0). Combining with en ≥ 0 and |e| = 1, we conclude that en =

√
1 − |DT g(0)|2

and hence (2.3) holds. This completes the proof. �
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3. C1-boundary regularity and proof of Theorem 1.1

In this section, we will assume that n = 2, ∂Ω ∈ C2, g ∈ C2(R2), and u ∈ C(Ω) is a
viscosity solution of (1.1). We will prove the C1-boundary regularity Theorem 1.1.

Write e = (e1, e2). Assume that |e| = 1 and e2 = τ > 0. For μ, ν > 0, let Bμ,ν

denote the parallelogram

Bμ,ν =
{

te + (s, 0)
∣∣∣ t ∈

[
−1

4
, μ

]
, s ∈ [−ν, ν]

}
.

We assume that

Ω = B1,1 ∩ {(x1, x2)| x2 > f(x1)}, Γ = ∂Ω ∩ {(x1, x2) ∈ B1,1 | x2 = f(x1)}
for a function f ∈ C2(R) and f(0) = f ′(0) = 0. Let O = (0, 0) ∈ Γ. See figure 1
below.

Lemma 3.1. Assume |f ′| ≤ ε and e2 = τ > 0. Suppose that u ∈ C(Ω) is infinity
harmonic function in Ω satisfying that
(i)

u = g on Γ;

(ii)
|u(x) − e · x| ≤ ε in Ω.

Assume that w ∈ C1(Ω) ∩ C(Ω) is a solution of{
|Dw| = 1 − δ in Ω,

w = g on Γ.

For any fixed δ, τ > 0, if ε is sufficiently small then we have that

u(x) ≥ w(x) for x ∈ Ω ∩ B1, 1
4
.

Figure 1. Proof of Lemma 3.1.
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Proof. We argue by contradiction. Suppose that there exists x0 ∈ Ω∩B1, 1
4

such that
u(x0) < w(x0). Note that when ε is small, within B1,1, each line x + te intersects the
curve {x2 = f(x1)} exactly once. Denote U as the connected component of {u < w}
containing x0. Since |w(te + x)− g(x)| ≤ (1− δ)t for x ∈ Γ and x + te ∈ Ω, it is clear
that if ε is sufficiently small then

U ⊂ Ω ∩ B 1
4 ,1.

See figure 1 above. Also, U should stretch all the way to ∂Ω\Γ although ∂U ∩Γ might
not be empty. Without loss of generality, we assume

∂U ∩
{

te + (1, 0)

∣∣∣∣∣t ∈
[
−1

4
,
1
4

]}
�= ∅.

Let K be the line segment
{

(3
8 , 0) + λe : λ ∈ [ 14 , 1

2 ]
}

. According to (ii) , if ε is small
enough, then there must exist x̄ ∈ K such that

|Du(x̄)| > 1 − 10ε.

Let ξ(t) : (−T, 0] → Ω be a backward generalized gradient flow from x̄, i.e., ξ(0) = x̄,
ξ(−T ) ∈ ∂Ω,

|Du(ξ(t))| ≥ |Du(x̄)| ≥ 1 − 10ε, −T ≤ t ≤ 0

and

u(x̄) − u(ξ(t)) ≥
∫ 0

t

|ξ̇(s)| ds ≥ (1 − 10ε)|x̄ − ξ(t)|, −T ≤ t ≤ 0.

See [11] for the construction of ξ. Let S denote the strip bounded by two lines
L1 = 1

4 + λe and L2 = 1
2 + λe. According to (ii), when ε is small enough, the whole

curve ξ must lie within the strip S and ξ(−T ) ∈ Γ. Hence, there exists t0 ∈ (−T, 0)
such that ξ(t0) ∈ S ∩ U. This leads a contradiction if we are able to establish the
following claim.
Claim. If ε is sufficiently small, then

sup
x∈U∩S

|Du(x)| ≤ 1 − 12ε.

In fact, we again argue by contradiction. Assume that there is a x̃ ∈ U ∩ S such that

|Du(x̃)| > 1 − 12ε.

Let ξ̃(t) : (−T̃ , 0] → U be a backward gradient flow from x̃ such that ξ(−T̃ ) ∈ ∂U .
Since

u(x̃) − u(ξ̃(−T̃ )) ≥ (1 − 12ε)
∫ 0

−T̃

| ˙̃ξ(s)| ds,

we have that u(ξ̃(−T̃ )) < w(ξ̃(−T̃ )) provided that 12ε < δ. Hence ξ̃(−T̃ ) ∈
{

te +

(1, 0)|t ∈ [−1
4 , 1

4 ]
}

. Then by (ii),

e · (x̃ − ξ̃(−T̃ )) ≥ (1 − 12ε)|x̃ − ξ̃(−T̃ )| − 2ε.

This is impossible provided that ε is small enough. �
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Let f be the same function as in the statement of Lemma 3.1. Denote

Σt = Bt(O) ∩ {(x1, x2)| x2 > f(x1)}.
and

Γt = Bt(O) ∩ {(x1, x2)| x2 = f(x1)}.
See figure 2 below.

Lemma 3.2. Assume |f ′| ≤ ε, |f ′′| ≤ 1 and |g|C2(R2) ≤ 1. Suppose that u is infinity
harmonic in Σ1 and u = g on Γ1. Assume that

(3.1) max
x∈Σ1

|u − e · x| ≤ ε and max
x∈Γ1

|(Dg − e)T | ≤ ε.

Here (Dg− e)T denotes the tangential component of (Dg− e) along the boundary Γ1.
Then for any τ > 0, there exists εe,τ > 0 depending only on e and τ such that when
ε ≤ εe,τ ,

(3.2) |Du(x) − e| ≤ τ for all x ∈ Σ 1
2
.

Proof: When ε > 0 is sufficiently small, ∂Bt(O) ∩ {(x1, x2)| x2 = f(x1)} contains
exactly two points, for t ∈ (0, 1]. Due to (3.1) and |f ′| ≤ ε, by comparison with cones
(first on the boundary and then in the interior), it is easy to prove that

(3.3) sup
Σ 3

4

|Du(x)| ≤ |e| + Cε.

If |e| = 0, then (3.2) follows from (3.3) immediately. Now we assume |e| = μ > 0.

Claim: Given δ > 0, when ε(≤ min{ δ
2 , μ

2 }) is small enough, there exists a positive
constant r̂ ∈ (0, 1

6 ) depending only on e and δ such that for any point x ∈ Γ 2
3
, we can

find two barrier functions w±
x (y) ∈ C1(Br̂(x)) satisfying

(3.4) w−
x (y) ≤ u(y) ≤ w+

x (y) in Br̂(x) ∩ Σ1

and

(3.5) max{|Dw+
x (y) − e|, |Dw−

x (y) − e|} ≤ 2δ in Br̂(x).

For simplicity, we will only prove this claim for x = O = (0, 0) (the proof for other
points can be done similarly). Since f ′(0) = 0, DT g(O) = gx1(0). Denote gx1(0) = s
and e = (e1, e2). Then by (3.1), |s − e1| ≤ ε.

Figure 2. Uniform control.
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Case 1: e2 = 0. Then |e1| = μ. Choose ε small enough such that by (3.3),

(3.6) sup
Σ 3

4

|Du(x)| ≤
√

s2 + δ2.

Using the method of characteristics (see [14] Chapter 3 for instance), there exist a
simply connected open set V containing O such that V + := V ∩ {x2 > f(x1)} ⊂ Σ 3

4

and two barrier functions w± ∈ C2(V ) that are classical solutions of the eikonal
equation: {

|Dw±| =
√

s2 + δ2 in V,

w± = g on V ∩ Γ1

subject to the condition: Dw±(O) = (gx1(O),±δ) = (s,±δ). Since |s − e1| ≤ ε,
|s| ≤ μ+ δ. We may choose r2 > 0 depending only on μ and δ such that Br2(O) ⊂ V .
From the constructions of w±, we have that

(3.7) w−(x) ≤ u(x) ≤ w+(x) for x ∈ Br2(O) ∩ Σ1.

We will indicate the proof of the second inequality in (3.7) (the first inequality in
(3.7) can be proved similarly). According to the method of characteristics, for any
x ∈ Br2(O) ∩ Σ1, there exists a unique yx ∈ V ∩ Γ 3

4
and tx > 0 such that

ξ(tx) = x, ξ(0) = yx

and the characteristics ξ : (0, tx] → V + satisfies that

ξ̇(t) =
Dw+(ξ(t))√

s2 + δ2
.

Hence, by (3.6), we have

d

dt

(
u(ξ(t)) − w+(ξ(t))

)
=

Du(ξ(t)) · Dw+(ξ(t))√
s2 + δ2

−
√

s2 + δ2 ≤ 0, 0 ≤ t ≤ tx.

This implies u(x) ≤ w+(x). We would like to point out that ξ is actually a straight
line and

Dw+(ξ(t)) ≡ DT g(yx)τ(yx) + n(yx)
√

s2 + δ2 − D2
T g(yx).

Here τ(yx) = (1,f ′(yx1))√
1+(f ′(yx1))

2
is the unit tangential direction of Γ1 at yx = (yx1, yx2),

n(yx) = (−f ′(yx1),1)√
1+(f ′(yx1))

2
is the inward normal vector of Γ1 at yx, and DT g(yx) = Dg(yx)·

τ(yx).

Case 2: e2 �= 0. Without loss of generality, we assume that e2 > 0. For otherwise, we
can consider −u and −e. Let 0 < δ < e2

2 . When ε is small enough, by (3.3) we have

sup
Γ 3

4

|Du(x)| ≤
√

s2 + (e2 + δ)2

and √
s2 + (e2 − δ)2 ≤

√
|e|2 − δ2.
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Using the method of characteristics, there exist a simply connected open set V con-
taining O such that V + := V ∩ {x2 > f(x1)} ⊂ Σ 3

4
and two barrier functions w± on

V which are classical solutions of{
|Dw±| =

√
s2 + (e2 ± δ)2 in V,

w± = g on V ∩ Γ1

subject to the condition: Dw±(O) = (gx1(O), e2±δ) = (s, e2±δ). Since |s| ≤ |e1|+ε ≤
μ+ δ, we may Choose r2 > 0 depending only on e and δ such that Br2(O) ⊂ V . From
the construction of w+, we have that

u(x) ≤ w+(x) for x ∈ Br2(O) ∩ Σ1.

The proof is similar to that of (3.7). Moreover, let λ ∈ (0, 1) such that B1,1 ⊂
B r2

λ
(O) (see the definition of B1,1 at the begin of this section), and consider uλ(x) =

u(λx)−u(O)
λ , x ∈ B1,1. Apply Lemma 3.1 to uλ, fλ(t) = f(λt)

λ , gλ(x) = g(λx)−g(O)
λ ,

and wλ(x) = w−(λx)−w−(O)
λ , we conclude that when ε is small enough, there exists

0 < r3 = αr2 for some α ∈ (0, 1) depending only on e and δ such that

u(x) ≥ w−(x) for x ∈ Br3(O) ∩ Σ1.

Hence
w−(x) ≤ u(x) ≤ w+(x) for x ∈ Br3(O) ∩ Σ1.

Note that |D±w(O)−e| ≤ ε+δ. Also, the module of continuity of Dw± depends only
on δ and e. Hence, we may choose r̂ > 0 depending only on δ and e such that the
Claim holds.

Next let W =
{

x ∈ Σ 1
2
| d(x, Γ 1

2
) ≤ r̂

2

}
. When x ∈ W , (3.2) can be derived from

our claim and Savin’s interior estimate (see [20] Proposition 2) through routine scaling
argument. For reader’s convenience, we sketch it here. Fix x0 ∈ W . Choose y0 ∈ ∂Ω
such that |x0 − y0| = d(x0, ∂Ω) = r0 < r̂

2 ≤ 1
12 . Clearly, y0 ∈ Γ 2

3
. Denote

v(y) =
u(y0 + r0(y − y0)) − u(y0)

r0
, y ∈ B1(x̄0).

Then v is an infinity harmonic function in B1(x̄0), here x̄0 = y0 + x0−y0
r0

. By (3.4) and
(3.5), we have

|v(y) − e · (y − y0)| ≤ 4δ for y ∈ B1(x̄0).

Figure 3. Rescaling argument along the boundary.



C1-BOUNDARY REGULARITY OF HARMONIC FUNCTIONS 833

Let ṽ(z) = v(x̄0 + z) + e · y0 − e · x̄0 for z ∈ B1(O). Then we have

|ṽ(z) − e · z| ≤ 4δ, z ∈ B1(O).

By Savin’s interior estimate ([20] Proposition 2), for any given τ > 0, if δ is chosen
to be sufficiently small, we have that

|Du(x0) − e| = |Dv(x̄0) − e| = |Dṽ(O) − e| ≤ τ.

If x ∈ Σ 1
2
\W , (3.2) follows immediately from Savin’s interior estimate ([20] Proposi-

tion 2).

Proof of Theorem 1.1. It suffices to prove (1.2). We argue by contradiction. If it were
false, then there would exist τ > 0, a sequence of C2 bounded domains Ωm, boundary
values gm ∈ C2(R2), and infinity harmonic functions um ∈ C(Ωm), and two sequences
of points {xm} and {ym} in Ωm such that

(3.8) ||gm||C2(R2) ≤ 1, ||Ωm||C2 ≤ C,

(3.9) |xm − ym| ≤ 1
m

and |Dum(xm) − Dum(ym)| ≥ 4τ.

Upon taking possible subsequences, we may assume that there exist a bounded C1,1

domain Ω (i.e., ∂Ω ∈ C1,1) and g ∈ C1,1(R2) such that Ωm → Ω and gm → g in C1

as m → +∞. Due to Savin’s interior estimate [20] or the C1,α regularity in [15], xm

and ym must converge to a point on ∂Ω. Let us assume that

lim
m→+∞xm = lim

m→+∞ ym = (0, 0) = O ∈ ∂Ω.

By suitable translations and rotations, we may assume that O ∈ ∂Ωm and there exists
some r > 0 such that for all m ≥ 1

Ωm ∩ Br(O) = {(y1, y2) ∈ Br(O) | y2 > fm(y1)},
for some fm ∈ C2(R), fm(0) = 0, f

′
m(0) = 0 and ||fm||C2(R) ≤ C. Next, we suppose

as m → ∞,
um → u uniformly in C(Ω).

Here u ∈ C(Ω) is the infinity harmonic function satisfying u = g on ∂Ω. According
to Theorem 1.2, u is differentiable at O. Denote e = Du(0). For τ and e, let ε = εe,τ

be the same number as in Lemma 3.2. Choose a positive number λε < min{r, ε} such
that ∣∣∣∣u(λεx) − u(O)

λε
− e · x

∣∣∣∣ ≤ ε

2
for x ∈ λ−1

ε (Bλε(O) ∩ Ω)

and ∣∣∣(Dg − e)T

∣∣∣ ≤ ε

2
for x ∈ Bλε(O) ∩ ∂Ω.

Hence when m is large enough,∣∣∣∣um(λεx) − um(O)
λε

− e · x
∣∣∣∣ ≤ ε for x ∈ λ−1

ε (Bλε(O) ∩ Ωm)

and ∣∣∣(Dgm − e)T

∣∣∣ ≤ ε for x ∈ Bλε(O) ∩ ∂Ωm.
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Set vm(x) = um(λεx)−um(O)
λε

. Apply Lemma 3.2 to ũ = vm, f̃(t) = fm(λεt) and

g̃ = gm(λεx)−gm(O)
λε

, we have that

|Dum(λεx) − e| = |Dvm(x) − e| ≤ τ in x ∈ λ−1
ε

(
Bλε

2
(O) ∩ Ωm

)
.

This contradicts to (3.9) when m is sufficiently large. The proof is no complete. �
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