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ON THE SINGULAR LOCUS OF CERTAIN SUBVARIETIES OF
SPRINGER FIBERS

Lucas Fresse

Abstract. Let x ∈ End(Kn) be an endomorphism such that x2 = 0 (where K is an
algebraically closed field). The corresponding Springer fiber Fx is the algebraic variety
of x-stable complete flags. In the present case, Fx has a suitable decomposition into a

finite number of orbits under the action of the centralizer of x. The closures of these
orbits may be singular. In this paper, we give a combinatorial description of the singular
locus of the orbit closures. In particular, we deduce a description of the singular locus
of the irreducible components of Fx.

1. Introduction

Throughout this paper, we fix an algebraically closed field K of arbitrary characteris-
tic. We also fix a vector space V of finite dimension n. A chain (V0 ⊂ V1 ⊂ · · · ⊂ Vn)
of subspaces of V such that dimVi = i, for all i, is called a complete flag. By F , we
denote the set of all the complete flags. It has a natural structure of algebraic projec-
tive variety and it admits certain remarkable subvarieties. The Schubert varieties are
the most classical example.

1.1. Schubert varieties and their singular loci. Choose a basis (e1, . . . , en) of
V , and let B ⊂ GL(V ) be the subgroup of linear automorphisms whose matrix in
the basis is upper triangular. Then, F consists of a finite number of orbits for the
natural action of B, called Schubert cells, and their closures in the Zariski topology are
called Schubert varieties. The Schubert varieties are parameterized by the elements
w ∈ Sn of the symmetric group: each Schubert cell can be written X0

w := B · Fw,
where Fw := (〈ew1 , . . . , ewi〉K)n

i=0, and thus each Schubert variety is of the form
Xw := B · Fw. Moreover, dimXw = �(w) (the Bruhat length of w), and one has
Xw′ ⊂ Xw if and only if w′ ≤ w, where ≤ stands for the Bruhat order.

The simplicity of the combinatorics allowed V. Lakshmibai and C.S. Seshadri [7]
to determine the singular locus of the Schubert varieties, in the following manner.
Given w ∈ Sn, the corresponding Bruhat graph is by definition the graph whose set
of vertices is {v ∈ Sn : v ≤ w} and with an edge between v and v′ whenever one
has v′ = v(i : j), where (i : j) ∈ Sn is the transposition that switches two distinct
integers i and j. Then, the singular locus of the Schubert variety Xw is the union of
the Schubert cells X0

v corresponding to the singular vertices v of the Bruhat graph
of w, i.e., those vertices, which are incident with more than �(w) edges. The reason
is that, for each edge (v, v′) in the Bruhat graph, one gets a projective curve in Xw
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between the points Fv and Fv′ , giving rise to a tangent vector zv,v′ ∈ TFvXw. The
vectors zv,v′ corresponding to the various edges (v, v′) form a basis of TFvXw. Thus,
dimTFvXw is equal to the number of edges at v in the Bruhat graph.

1.2. Springer fibers. In this paper, we are rather interested in another family of
varieties of complete flags. Given a nilpotent endomorphism x ∈ End(V ), we let
Fx ⊂ F be the subset of x-stable complete flags, i.e., flags (V0, . . . , Vn) such that
x(Vi) ⊂ Vi−1 for each i. Then, Fx is a closed subvariety of F and it is called a
Springer fiber. The Springer fiber Fx is an equidimensional variety (see [10]), it is
usually not irreducible, and its irreducible components may be singular. Springer fibers
arise in some problems in representation theory (see, for instance, [1,6,12,13]). Their
elementary properties are described in [11], and the singularity of their irreducible
components has been studied recently in, e.g., [3–5], [9] and references therein.

Let Zx := {g ∈ GL(V ) : gxg−1 = x} be the centralizer of x. Thus, Zx naturally
acts on the complete flags and leaves the Springer fiber Fx stable. However, for x
arbitrary, Fx may contain an infinite number of Zx-orbits, and the inclusion relations
between the Zx-orbit closures, or of the Zx-orbits in the components of Fx, seem to
be quite complicated.

1.3. Springer fibers in the case x2 = 0. Hereafter, we focus on the situation
where x is an endomorphism such that x2 = 0. This situation is more favorable for
at least two reasons:

• Here, the Springer fiber Fx consists of a finite number of Zx-orbits, and each
orbit is driven by a special flag of the form Fw (cf. Section 1.1) corresponding
to the choice of a Jordan basis (e1, . . . , en).

• The orbits are suitably parameterized by a family of graphs called link pat-
terns, and the elementary properties of the orbits (dimension, inclusion
relations between closures) are known in terms of combinatorial properties
of these graphs.

In Section 2, we recall from [4], [8] the description of the Zx-orbits of Fx that we have
just summed up. Relying on this, criteria for the smoothness of the components of Fx

have already been established in [4]. Here, we are able to determine the singular locus
of each Zx-orbit closure of the Springer fiber Fx (in particular, of each irreducible
component), by implementing a technique analogous to the one used in the case of
the Schubert varieties (cf. Section 1.1). Our main result is stated in Section 3 and the
proof is given in Section 4.

2. Description of the Zx-orbits of Fx

As in Section 1.3, x ∈ End(V ) is an endomorphism such that x2 = 0. Let k = rankx.
Thus, x has exactly k Jordan blocks of size 2 and n − 2k Jordan blocks of size 1. In
this section, our purpose is to recall the construction of the Zx-orbits of the Springer
fiber Fx. This construction was given in [8] in a slightly different setting and has
been adapted to the present setting in [4]. The combinatorial objects which enter the
construction are presented in the next definition.

Definition 1. Let S2
n ⊂ Sn denote the subset of involutive permutations, that is,

permutations σ ∈ Sn such that σ2 = 1, and let S2
n(k) ⊂ S2

n denote the subset of
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permutations that can be written as product of k pairwise disjoint transpositions like
σ = (i1 : j1) · · · (ik : jk) with i1 < j1, . . . , ik < jk all distinct. The graph Pσ with
vertices 1, . . . , n and with k arcs joining (il, jl) (for l = 1, . . . , k) is called the link
pattern associated to σ. E.g., if σ = (1 : 4)(2 : 6)(5 : 7) ∈ S2

8(3), then

Pσ = •
1

•
2

•
3

•
4

•
5

•
6

•
7

•
8

The vertices i1, . . . , ik (resp. j1, . . . , jk) are called the left (resp. right) end points of
σ or of Pσ. The other vertices are called the fixed points. We will also need some
auxiliary notation:

• Two arcs (il, jl), (im, jm) are said to have a crossing if il < im < jl < jm
(i.e., the arcs intersect in Pσ); let c(σ) denote the number of crossings of Pσ.
A pair formed by an arc (il, jl) and a fixed point p is said to be a bridge if
il < p < jl (i.e., the arc spans the vertex p in Pσ); let b(σ) denote the number
of bridges of Pσ. For example, if σ is as above, then b(σ) = c(σ) = 2: the arcs
(1, 4), (2, 6), resp. (2, 6), (5, 7), have a crossing, and the pairs {(1, 4), 3} and
{(2, 6), 3} are bridges.

• Finally, given 1 ≤ s < t ≤ n, we let Rs,t(σ) denote the number of arcs of Pσ

that are contained between s and t, i.e., the number of indices l ∈ {1, . . . , k}
such that s ≤ il < jl ≤ t. Furthermore, we define an order on S2

n(k) by writing
σ′ � σ if we have Rs,t(σ′) ≤ Rs,t(σ) for all s, t.

We associate a subset of flags Zσ ⊂ Fx to any element σ ∈ S2
n(k), as follows.

Definition 2. Let σ ∈ S2
n(k). A basis (e1, . . . , en) of V is called a σ-basis if it satisfies

the following property:

x(ei) =

{
eσ(i) if σ(i) < i,
0 otherwise.

A complete flag F ∈ F of the form F = (〈e1, . . . , ei〉K)n
i=0, where (e1, . . . , en) is a

σ-basis, is called a σ-flag. We then denote by Zσ the set of all the σ-flags.

It is clear that we have Zσ ⊂ Fx. Moreover, one can see that the group Zx acts
transitively on the set of σ-bases, thus Zσ consists of a single Zx-orbit. Furthermore,
for each F = (V0, . . . , Vn) ∈ Zσ, one easily checks that

min{j = 0, . . . , n : x(Vi) ⊂ x(Vi−1) + Vj} =

{
σ(i) if σ(i) < i,

0 otherwise.

This implies that Zσ ∩ Zσ′ 	= ∅ holds only for σ = σ′. Therefore, σ �→ Zσ is an
injection from S2

n(k) to the set of Zx-orbits of Fx. Actually this map is bijective, as
mentioned among other properties in the following statement (see [4], [8]):

Proposition 1. As above, x ∈ End(V ) satisfies x2 = 0 and rankx = k.
(a) The map σ �→ Zσ is a bijection between S2

n(k) and the set of Zx-orbits of the
Springer fiber Fx.

(b) For each σ ∈ S2
n(k), we have dimZσ = (n−k)(n−k−1)

2 + k(k−1)
2 − b(σ) − c(σ).

In particular, the irreducible components of Fx are the closures of the orbits
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Zσ corresponding to the elements σ ∈ S2
n(k) such that Pσ has no crossings

and no bridges.
(c) Given σ, σ′ ∈ S2

n(k), we have Zσ′ ⊂ Zσ if and only if σ′ � σ.
(d) In particular, if σ0 = (1 : n−k+1)(2 : n−k+2) · · · (k : n), then Zσ0 is the only

closed Zx-orbit of Fx, and we have dimZσ0 = k(k−1)
2 + (n−2k)(n−2k−1)

2 .

Example 1. Assume that n = 5, k = 2. Then, Fx consists of fifteen Zx-orbits,
corresponding to the link patterns of the following list.

• • • • • , • • • • • , • • • • • , • • • • • , • • • • • ,

• • • • • , • • • • • , • • • • • , • • • • • , • • • • • , • • • • • ,

• • • • • , • • • • • , • • • • • ,

• • • • • .
The link patterns in the first (resp. second) (resp. third) line correspond to the orbits
of dimension 4 (resp. 3) (resp. 2). The only closed orbit has dimension 1 and it is
represented by the link pattern in the fourth line.

Remark 1. The numbers Rs,t(σ) of Definition 1 can be interpreted as follows. Given
(V0, . . . , Vn) ∈ Zσ, by definition of Zσ, we have Rs,t(σ) = dim(Vs−1 + x(Vt)) − s+ 1
for all 1 ≤ s < t ≤ n. Then, Proposition 1(c) means that the orbit closure Zσ can be
described as the set of flags F = (V0, . . . , Vn) ∈ Fx such that

dim(Vs−1 + x(Vt)) ≤ s− 1 +Rs,t(σ) for all 1 ≤ s < t ≤ n.

Remark 2. Fix (e1, . . . , en) a basis of V such that x(ei) = 0 for each i = 1, . . . , n−k,
and x(en−k+i) = ei for i = 1, . . . , k. In this remark, we relate the orbits Zσ to the
special flags Fw (w ∈ Sn) of Section 1.1. Note that, by construction of Fw, we have
Fw ∈ Fx if and only if w−1(i) < w−1(n− k + i) for all i = 1, . . . , k. Moreover, in this
case, we have Fw ∈ Zσ, where σ ∈ S2

n(k) is the element defined by σ =
∏k

i=1(w
−1(i) :

w−1(n− k+ i)). It easily follows that each orbit Zσ contains at least one special flag
Fw, though two different special flags Fw, Fw′ may belong to the same Zσ.

3. Statement of the results

In this section, we formulate our results that describe the singular locus of the Zx-
orbit closures of the Springer fiber Fx. The results rely on an analogue of the Bruhat
graph for link patterns, that we introduce now.

Definition 3. Given σ ∈ S2
n(k), we let X(σ) be the set of elements σ′ ∈ S2

n(k) such
that the link pattern Pσ′ is obtained from Pσ by one of the following operations:

• Either by interchanging two end points of two arcs which have a crossing (that
is, σ′ = (i : i′)σ(i : i′) where i, i′ are (left or right) end points of two arcs of
Pσ which have a crossing);

• Or by interchanging a fixed point with the end point of an arc over it (that
is, σ′ = (i : p)σ(i : p) where p is a fixed point of Pσ and i is (left or right) end
point of an arc spanning p).
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Figure 1. The graph G(σ) for σ as in Example 2

Note that we clearly have σ ≺ σ′ in this case, hence Zσ ⊂ Zσ′ \ Zσ′ (cf. Propo-
sition 1(c)). Two elements σ, σ′ ∈ S2

n(k) are said to be adjacent if we have either
σ′ ∈ X(σ) or σ ∈ X(σ′). Finally, given σ ∈ S2

n(k), we let G(σ) be the graph whose
set of vertices is {τ ∈ S2

n(k) : τ � σ} and with an edge between τ and τ ′ whenever
τ, τ ′ are adjacent.

Example 2. Let σ = (1 : 4)(2 : 3) ∈ S2
5(2). The graph G(σ) is drawn in Figure 1,

where we represent the vertices τ by the corresponding link patterns Pτ .

Remark 3. (a) By [8, §3], if τ ′ is in the cover of τ (i.e., τ ′ ≺ τ and τ ′ is maximal
for this property), then τ ∈ X(τ ′), so that τ, τ ′ are adjacent. In particular, the graph
G(σ) is always connected.
(b) Given τ � σ, the graph G(τ) is the full subgraph of G(σ) whose vertices are the
τ ′ ∈ S2

n(k) such that τ ′ � τ .

Our main result is the following:

Theorem 1. Let x ∈ End(V ) be such that x2 = 0 and rankx = k. Let σ ∈ S2
n(k)

and let Zσ ⊂ Fx be the corresponding Zx-orbit. Let d0 := k(k−1)
2 + (n−2k)(n−2k−1)

2 be
the dimension of the unique closed orbit of Fx (cf. Proposition 1(d)).

(a) Let τ ∈ S2
n(k) be such that τ � σ, so that Zτ ⊂ Zσ. Let a(σ, τ) denote the

number of edges at the vertex τ in the graph G(σ). Then

dimTFZσ = a(σ, τ) + d0 for all F ∈ Zτ .

In particular, a(σ, τ) ≥ dimZσ − d0 for each vertex τ .
(b) The orbit closure Zσ is smooth if and only if the graph G(σ) is regular (i.e.,

a(σ, τ) = dimZσ − d0 for each vertex τ). Otherwise, the singular locus of Zσ

is the union of the orbits Zτ which correspond to the singular vertices τ of
G(σ) (i.e., those such that a(σ, τ) > dimZσ − d0).

In the statement, TFZσ stands for the tangent space of Zσ at the point F . Observe
that part (b) of the theorem is an immediate consequence of part (a). Thus, our only
task is to prove part (a), and this will be done in the next section.

Note that, if we apply the theorem to the element σ ∈ S2
5(2) of Example 2, then

we get that the orbit closure Zσ is smooth, since the graph G(σ) is regular.
The next corollary proposes a reformulation of the criterion in Theorem 1(b).



758 LUCAS FRESSE

Corollary 1. Let σ ∈ S2
n(k) and let τ � σ, so that Zτ ⊂ Zσ. Then,

codimZσ
Zτ ≤ |{τ ′ adjacent to τ : τ ≺ τ ′ � σ}|,

with strict inequality if and only if Zτ lies in the singular locus of Zσ.

Proof. In view of Remark 3(b), we have

a(σ, τ) = a(τ, τ) + |{τ ′ adjacent to τ : τ ≺ τ ′ � σ}|.

Moreover, since Zτ lies in the regular locus of Zτ , Theorem 1(b) implies

a(τ, τ) = dimZτ − d0.

This yields

|{τ ′ adjacent to τ : τ ≺ τ ′ � σ}| − codimZσ
Zτ = a(σ, τ) − dimZσ + d0.

Thereby, the relations in Theorem 1(b) imply the desired conclusion. �

This reformulation allows us to show that the orbit closures Zσ are regular in
codimension one:

Corollary 2. Let σ ∈ S2
n(k) and let Sing(Zσ) be the singular locus of the orbit closure

Zσ. Then, codimZσ
Sing(Zσ) ≥ 2.

Proof. We have to check that each 1-codimensional orbit Zτ ⊂ Zσ lies outside of the
singular locus of Zσ. Such Zτ lies in the cover of Zσ, thus (by Proposition 1(c)) there
is no τ ′ 	= σ such that τ ≺ τ ′ � σ. This implies that

|{τ ′ adjacent to τ : τ ≺ τ ′ � σ}| ≤ 1 = codimZσ
Zτ ,

which, by Corollary 1, ensures that Zτ does not lie in the singular locus of Zσ. �

In the case where Zσ has maximal dimension (i.e., is a component of Fx), N. Perrin
and E. Smirnov [9] have proved that Zσ is a normal variety, which already implies that
it is regular in codimension one in this case. In view of Corollary 2, we can speculate
that Zσ is normal even if it is not of maximal dimension.

One can deduce from Corollary 1 a simpler criterion of singularity for the closures
of the Zx-orbits of Fx, in the following manner. Let σ0 be as in Proposition 1(d), so
that Zσ0 is the only closed Zx-orbit of Fx. Then, the singular locus of Zσ is nonempty
only when it contains Zσ0 . Thus, Corollary 1 implies:

Corollary 3. Let σ ∈ S2
n(k). Then,

dimZσ − d0 ≤ |{τ adjacent to σ0 : τ � σ}|

with strict inequality if and only if Zσ is singular.

In the case, where Zσ has maximal dimension, Corollary 3 retrieves the conclusion
of Theorem 3.1 of [2].

The next examples illustrate our results in the particular situation where k ≤ 2.

Example 3. (a) Let n ≥ 2 and suppose that k = 1. Then, every Zx-orbit closure in
Fx is smooth. (b) Let n ≥ 4 and suppose that k = 2. Let σ = (a : b)(c : d) ∈ S2

n(2)
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with a < b, c < d and, say, a < c. Then, the orbit closure Zσ is singular exactly in
the following three cases:

(i) a < b < c < d and (b > 2 and c < n− 1);
(ii) a < c < b < d and (a > 1 and d < n);
(iii) a < c < d < b and ((a > 1 and c− a > 1) or (b < n and b− d > 1)).

Claim (a) can be shown by applying Corollary 3, or directly as follows. Take
σ = (a : b) ∈ S2

n(1) (with a < b). By Proposition 1(c), we can see that Zσ is the union
of the orbits Z(i:j) for i ≤ a < b ≤ j, hence Zσ is the set of flags (V0, . . . , Vn) such that
Imx ⊂ Va, Vb−1 ⊂ kerx. Then, it is straightforward to check that Zσ is an iterated
bundle of base type (Grassb−2(Kn−2), Grassa−1(Kb−2), F (a), F (b−a−1), F (n−b+1)),
which implies that it is smooth (here, Grassl(Km) is the variety of l-dimensional
subspaces of K

m, and F (m) denotes the variety of complete flags of K
m).

To show Claim (b), we proceed as follows. First, by Proposition 1(b), we find

dimZσ − d0 =

⎧⎪⎨
⎪⎩

2n+ a+ c− b− d− 5 if a < b < c < d,
2n+ a+ c− b− d− 4 if a < c < b < d,
2n+ a+ c− b− d− 3 if a < c < d < b.

Next, we enumerate the set X(σ0) of elements τ ∈ S2
n(2) that are adjacent to σ0:

we can see that X(σ0) = {(1 : 2)(n − 1 : n), (1 : n)(2 : n − 1), (i : n − 1)(2 : n),
(1 : j)(2 : n), (1 : n − 1)(l : n), (1 : n − 1)(2 : m): i, j, l,m = 3, . . . , n − 2}. A
straightforward calculation allows us to determine the elements τ ∈ X(σ0), which are
� σ (according to the different possible configurations of a, b, c, d), and then we can
apply the criterion in Corollary 3 in order to reach the conclusion of Claim (b).

Example 4. Let n ≥ 6 and, as in Example 3(b), suppose k = 2. Let σ ∈ S2
n(2) be such

that Zσ ⊂ Fx has maximal dimension and is singular. Thus, σ = (a : a+ 1)(b : b+ 1)
with a+ 1 < b, 1 < a, b < n − 1. Then (as justified below), the singular locus of Zσ

is the closure of the Zx-orbit Z(a−1:b+2)(a:b+1). In particular, Sing(Zσ) is irreducible,
of codimension 2(b− a), and, by Example 3(b), it is smooth.

Let τ = (a − 1 : b + 2)(a : b + 1). The claimed equality Sing(Zσ) = Zτ is checked
in two steps:

(1) We show that the orbit Zτ lies in the singular locus. To do this we describe
the set X(τ) of elements τ ′ � τ adjacent to τ : X(τ) = {(i : b+ 2)(a : b+ 1),
(a − 1 : j)(a : b + 1), (a − 1 : b + 2)(l : b + 1), (a − 1 : b + 2)(a : m) :
i, j, l,m = a + 1, . . . , b}. We can see that τ ′ � σ for each τ ′ ∈ X(τ). Thus,
|{τ ′ adjacent to τ : τ ≺ τ ′ � σ}| = 4(b − a) > 2(b − a) = codimZσ

Zτ . Then,
Corollary 1 implies that Zτ ⊂ Sing(Zσ). Thereby, Zτ ⊂ Sing(Zσ).

(2) We show that, if τ ′ ∈ S2
n(2) satisfies τ ′ � σ and τ ′ 	� τ (that is, Zτ ′ ⊂ Zσ\Zτ ),

then Zτ ′ lies outside of Sing(Zσ). Such τ ′ takes the form τ ′ = (i1 : j1)(i2 : j2)
with i1 ≤ a < j1 and (a < i2 ≤ b < j2 or i2 ≤ a < min(j1, j2) ≤ b <
max(j1, j2)). For each τ ′ of this type, we consider the set X(τ ′) of elements
τ ′′ � τ ′ adjacent to τ ′. For every configuration of i1, j1, i2, j2, we can check
that |{τ ′′ ∈ X(τ ′) : τ ′′ � σ}| = codimZσ

Zτ ′ ; thus Corollary 1 implies that
Zτ ′ 	⊂ Sing(Zσ).
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4. Proof of Theorem 1

The purpose of this section is to prove Theorem 1(a). The proof that we propose
generalizes the ideas of the proof of the main theorem in [2]. We present our strategy
in the next subsection.

4.1. Outline of the proof. Let σ, τ ∈ S2
n(k) such that τ � σ, and let F ∈ Zτ .

Thus, F is a τ -flag, and there is a τ -basis (e1, . . . , en) such that F = (〈e1, . . . , ei〉)n
i=0.

Our goal is then to compute the dimension of the tangent space TFZσ.
Let B = {g ∈ GL(V ) : gei ∈ 〈ej : j = i, . . . , n〉K} be the group of automor-

phisms that are lower triangular in the basis, and let Ω = B · F ⊂ F . Thus, Ω is
an open neighborhood of F in F . Moreover, for F ′ ∈ Ω, there are unique scalars
(ϕi,j(F ′))1≤i<j≤n such that F ′ = (〈f1, . . . , fi〉K)n

i=0 with fi = ei +
∑

j>i ϕi,j(F ′)ej .

The maps ϕi,j : Ω → K induce an isomorphism of algebraic varieties Ω ∼= K
n(n−1)

2 .
This equips Ω with a structure of vector space with (ϕi,j)1≤i<j≤n as basis of its
dual, and such that F identifies with the zero vector. Let (εi,j)1≤i<j≤n ⊂ Ω be the
dual basis. The tangent space T := TFZσ identifies to a vector subspace of Ω. Let
T ⊥ = {ϕ ∈ Ω∗ : ϕ(ε) = 0 ∀ε ∈ T }.

In what follows, we aim to construct a family of d0 + a(σ, τ) linearly independent
vectors of T , and a family of n(n−1)

2 − d0 − a(σ, τ) linearly independent elements of
T ⊥. In view of the relation dim T + dim T ⊥ = dimΩ = n(n−1)

2 , this will imply the
equality dim T = d0 + a(σ, τ), and the proof will be complete.

4.2. Auxiliary statement. In this subsection, we formulate an explicit statement
which describes the construction of the linearly independent elements of T and T ⊥

outlined above, and which will imply Theorem 1(a).
We first need some notation. Given 1 ≤ i < j ≤ n, we let ωi,j(τ) ∈ S2

n(k) be the
element whose link pattern Pωi,j(τ) is obtained from Pτ by interchanging the vertices i
and j (i.e., ωi,j(τ) = (i : j)τ(i : j)). Let I be the set of pairs (i, j) with 1 ≤ i < j ≤ n.
We introduce four subsets I0, I−1 , I

+
1 , I2.

• Let I0 be the set of pairs (i, j) ∈ I such that i, j are both fixed points of Pτ

(i.e., τi = i and τj = j) or both right end points (i.e., τi < i and τj < j).
• Let I−1 be the set of pairs (i, j) ∈ I satisfying one of the following conditions:

(a) i is a fixed point and j is the left end point of an arc in the link pattern
Pτ , that is, τi = i < j < τj ;

(b) i is right end point and j is fixed point, that is, τi < i < j = τj ;
(c) i is right end point and j is left end point, that is, τi < i < j < τj ;
(d) i and j are left end points and the arc starting at i is over the arc starting

at j, that is, i < j < τj < τi.
• Let I+

1 be the set of pairs (i, j) ∈ I that satisfy one of the conditions:
(a) i is a fixed point and j is the right end point of an arc over i, that is,

τj < τi = i < j;
(b) j is fixed point and i is left end point of an arc over j, that is, i < j =

τj < τi;
(c) i and j are the left end points of two arcs that have a crossing, that is,

i < j < τi < τj ;
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(d) i and j are respectively left- and right end points of two arcs that have
a crossing and j is under the arc starting at i, that is, τj < i < j < τi.

• Let I2 = I \ (I0 ∪ I−1 ∪ I+
1 ).

Note that |I0| = d0. A careful comparison with Definition 3 shows that the maps I−1 →
{τ ′ adjacent to τ : τ ′ ≺ τ}, (i, j) �→ ωi,j(τ) and I+

1 → {τ ′ adjacent to τ : τ ′ � τ},
(i, j) �→ ωi,j(τ) are bijective.

Proposition 2. Let (i, j) ∈ I.
(i) If (i, j) ∈ I0, then εi,j ∈ T , or εi,j + εi′,j′ ∈ T for some i′ < i, j′ < j.
(ii) If (i, j) ∈ I−1 ∪ I+

1 and ωi,j(τ) � σ, then εi,j ∈ T .
(iii) If (i, j) ∈ I−1 ∪ I+

1 and ωi,j(τ) 	� σ, then ϕi,j ∈ T ⊥, or ϕi,j − ϕi′,j′ ∈ T ⊥ for
some i′ > i, j′ > j.

(iv) If (i, j) ∈ I2, then ϕi,j ∈ T ⊥, or ϕi,j − ϕi′,j′ ∈ T ⊥ for some i′ > i, j′ > j.

Observe that |{(i, j) ∈ I−1 ∪ I+
1 : ωi,j(τ) � σ}| = a(σ, τ). Thus, parts (i) and (ii)

of the proposition provide d0 + a(σ, τ) linearly independent elements of T . Parts (iii)
and (iv) provide n(n−1)

2 − d0 − a(σ, τ) linearly independent elements of T ⊥. Thereby,
in view of what is explained in Section 4.1, it suffices to show Proposition 2 in order to
get Theorem 1(a). The proof of the proposition is cut into the following subsections.

4.3. Proof of Proposition 2(i). Let (i, j) ∈ I0. Thus, we have either (i = τi and
j = τj) or (τi < i and τj < j). For each t ∈ K, we define an element gt ∈ Zx by letting
gt(ei) = ei + tej , gt(eτi) = eτi + teτj , and gt(el) = el for each l ∈ {1, . . . , n} \ {i, τi}.
The curve {gt(F ) : t ∈ K} lies in Zτ , hence in Zσ, and the tangent vector at t = 0 to
this curve is thereby an element of T .

If (τi < i, τj < j and τi < τj), then we have gt(F ) = (〈f1, . . . , fl〉K)n
l=0 with

fi = ei + tej , fτi = eτi + teτj , and fl = el for each l /∈ {i, τi}. In other words,
gt(F ) = t(εi,j + ετi,τj ). Thus, the tangent vector at t = 0 to the curve {gt(F ) : t ∈ K}
is εi,j + ετi,τj . This implies that εi,j + ετi,τj ∈ T in this case.

If (i = τi and j = τj) or (τi < i, τj < j and τi > τj), then we have gt(F ) =
(〈f1, . . . , fl〉K)n

l=0 with fi = ei + tej and fl = el for each l 	= i. Thereby, gt(F ) = tεi,j .
We therefore obtain that εi,j ∈ T in this case. This shows Proposition 2(i).

4.4. Proof of Proposition 2(ii). We first concentrate on the subset I−1 . Since
τ � σ, each (i, j) ∈ I−1 satisfies ωi,j(τ) ≺ σ. Thus, we have to show that εi,j ∈ T for
each (i, j) ∈ I−1 .

Recall the conditions (a) to (d) of the definition of I−1 . If (i, j) satisfies one of the
conditions (a) to (c), then the automorphism gt ∈ GL(V ) defined by gt(el) = el for
l 	= i and gt(ei) = ei + tej satisfies gt ∈ Zx. If (i, j) satisfies condition (d), then
we rather consider the map gt ∈ GL(V ) given by gt(el) = el for all l /∈ {i, τi},
gt(ei) = ei + tej , and gt(eτi) = eτi + teτj ; again, we have gt ∈ Zx. Thus, in both cases,
the curve {gt(F ) : t ∈ K} lies in Zσ, and the tangent vector at t = 0 to this curve
is an element of T . In both cases, we can see that gt(F ) = (〈f1, . . . , fl〉K)n

l=0 with
fi = ei + tej and fl = el for each l 	= i. So, gt(F ) = tεi,j . Differentiating at t = 0, we
obtain that εi,j ∈ T , as claimed.

Next, let us focus on the subset I+
1 : we take (i, j) ∈ I+

1 satisfying ωi,j(τ) � σ, and
we have to show that εi,j ∈ T .
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Set e′i = ej , e′j = ei, and e′l = el for l /∈ {i, j}. Using that (i, j) ∈ I+
1 , we can check

that (e′1, . . . , e
′
n) is a ωi,j(τ)-basis. So F ′ := (〈e′1, . . . , e′l〉K)n

l=0 is a ωi,j(τ)-flag, that is,
F ′ ∈ Zωi,j(τ). Since ωi,j(τ) � σ, by Proposition 1, we deduce that F ′ ∈ Zσ.

Recall the conditions (a) to (d) of the definition of I+
1 . If (i, j) satisfies (a), (b) or

(d), then we consider gt ∈ GL(V ) defined by gt(ej) = ej + tei, and gt(el) = el for all
l 	= j. If (i, j) satisfies (c), then we rather take gt ∈ GL(V ) such that gt(ej) = ej + tei,
gt(eτj ) = eτj +teτi , and gt(el) = el for all l /∈ {j, τj}. In both cases, we see that gt ∈ Zx,
hence the curve {gt(F ′) : t ∈ K} is contained in Zσ. In both cases, we can see that
F = limt→∞ gt(F ′). In fact, for each t ∈ K

×, we have gt(F ′) = (〈f1, . . . , fl〉K)n
l=0

where fl = el for l 	= i and fi = ei + t−1ej . In other words, gt(F ′) = t−1εi,j . In
particular, this yields tεi,j ∈ Zσ for all t ∈ K. Differentiating at t = 0, we obtain
εi,j ∈ T . Proposition 2(ii) ensues.

4.5. Proof of Proposition 2(iii). Let (i, j) ∈ I−1 ∪ I+
1 be such that ωi,j(τ) 	� σ.

We have necessarily (i, j) ∈ I+
1 (because each (l,m) ∈ I−1 satisfies ωl,m(τ) ≺ τ and so

ωl,m(τ) � σ), hence (i, j) satisfies one of the conditions (a) to (d) in the definition of
I+
1 formulated in Section 4.2.

Recall that Rs,t(τ) (for 1 ≤ s < t ≤ n) denotes the number of arcs between s and
t in the link pattern Pτ . On one hand, since τ is such that τ � σ, one has Rs,t(τ) ≤
Rs,t(σ) for each s, t, and moreover, in view of the definition of ωi,j(τ) and of the set
I+
1 , one has Rs,t(τ) ≤ Rs,t(ωi,j(τ)) ≤ Rs,t(τ)+ 1. On the other hand, the assumption

that ωi,j(τ) 	� σ implies that there are s < t such that Rs,t(ωi,j(τ)) > Rs,t(σ). We fix
a pair (s, t) with the latter property. For this pair (s, t), we therefore have

Rs,t(σ) = Rs,t(τ) and Rs,t(ωi,j(τ)) = Rs,t(τ) + 1.

We abbreviate r = Rs,t(σ). By the equality Rs,t(τ) = Rs,t(σ), there are indices
i1 < · · · < ir such that s ≤ τip < ip ≤ t for each p. By Remark 1, every element
F ′ = (V0, . . . , Vn) ∈ Ω ∩ Zσ satisfies

(∗) dim(Vs−1 + x(Vt)) ≤ s+ r − 1.

In what follows, we will rely on relation (∗) and on the indices i1, . . . , ir in order to
deduce certain relations in the tangent space T .

In the next step, we determine all the possible configurations of s, t, i, τi, j, τj .

• Assume first that (i, j) satisfies condition (a) of the definition of I+
1 , i.e.,

τj < τi = i < j. In this case, τ, ωi,j(τ) only differ by the fact that the
link pattern Pτ contains (τj , j) as an arc and i as a fixed point, whereas
Pωi,j(τ) contains (τj , i) as an arc and j as a fixed point. Thus, the relation
Rs,t(ωi,j(τ)) > Rs,t(τ) holds only if τj , i ∈ {s, . . . , t} and j /∈ {s, . . . , t}, that
is, only if s ≤ τj < i = τi ≤ t < j.

• If (i, j) satisfies condition (b) of the definition of I+
1 , that is, i < j = τj <

τi, then similarly the fact that Rs,t(ωi,j(τ)) > Rs,t(τ) implies that j, τi ∈
{s, . . . , t} and i /∈ {s, . . . , t}. Thereby, i < s ≤ j = τj < τi ≤ t in this case.

• Assume that (i, j) satisfies condition (c) of the definition of I+
1 , that is, i <

j < τi < τj . In this case, τ, ωi,j(τ) differ by the fact that (i, τi), (j, τj) are
arcs of Pτ , whereas (i, τj), (j, τi) are arcs of Pωi,j(τ). Then, we can see that we
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have Rs,t(ωi,j(τ)) > Rs,t(τ) only for j, τi ∈ {s, . . . , t} and i, τj /∈ {s, . . . , t}.
Whence, i < s ≤ j < τi ≤ t < τj .

• Next, assume that (i, j) satisfies condition (d) of the definition of I+
1 , so

τj < i < j < τi. Here, the only difference between τ and ωi,j(τ) is that
(i, τi), (τj , j) are arcs of Pτ , whereas (τj , i), (j, τi) are arcs of Pωi,j(τ). Thus, the
fact that Rs,t(ωi,j(τ)) > Rs,t(τ) implies that we have either (τj , i ∈ {s, . . . , t}
and j, τi /∈ {s, . . . , t}) or (j, τi ∈ {s, . . . , t} and τj , i /∈ {s, . . . , t}). Therefore,
in this case, we have either s ≤ τj < i ≤ t < j < τi or τj < i < s ≤ j < τi ≤ t.

Finally, this analysis reveals that only two situations can happen: either

(1) s ≤ τj < i ≤ t < j and τi ≥ i, or
(2) i < s ≤ j < τi ≤ t and (τj = j or τj /∈ {s, . . . , t}).

Now, let us consider successively the situations (1), (2). In both cases, we deter-
mine through formula (∗) a linear equation satisfied in the tangent space T , that
is, we construct an element of the space T ⊥. To this end, we start with an arbi-
trary element F ′ = (V0, . . . , Vn) ∈ Ω ∩ Zσ with Vl = 〈f1, . . . , fl〉K for all l, where
fl = el +

∑
m>l ϕl,m(F ′)em as in Section 4.1. Recall that we have fixed indices

i1 < . . . < ir with s ≤ τip < ip ≤ t for each p.

(1) We consider the family of vectors (f1, . . . , fs−1, x(fi1), . . . , x(fir ), x(fi)). This
family comprises s+r vectors that all lie in the subspace Vs−1+x(Vt). In view
of formula (∗), the family is linearly dependent. Thus, the matrix of the family
in the basis (e1, . . . , en) has rank < s+r. In particular, the minor determinant
with respect to the sub-basis (e1, . . . , es−1, eτi1

, . . . , eτir
, eτj ) is equal to zero.

The nullity of this minor determinant yields a polynomial relation satisfied on
Ω∩Zσ. Let us describe this relation more precisely. Note that x(fip) = eτip

+∑
l∈Lip

ϕip,l(F ′)eτl
for each p, where Lip := {l > ip : τl < l}. Furthermore,

since τi ≥ i and τj < j, we have x(ei) = 0, x(ej) = eτj and thus x(fi) =
ϕi,j(F ′)eτj +

∑
l∈Li\{j} ϕi,l(F ′)eτl

where Li := {l > i : τl < l}. Therefore, a
relation of the following form holds on Ω ∩ Zσ:∣∣∣∣∣∣∣∣∣∣∣∣

1 ∗ · · · (∗) ∗

∗ 1
... ∗

...
. . .

...
(∗) 1 ∗

· · · ∗ ϕi,j

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where the coefficients of the matrix marked with the symbol ∗ are either ϕl,m

for some l < m, or zero. Developing along the last column, this relation can
be written ϕi,j = P , where P is a polynomial in the ϕl,m’s with no term of
degree ≤ 1. The differential at 0 of ϕi,j −P therefore vanishes on the tangent
space T . This differential is simply ϕi,j , whence ϕi,j ∈ T ⊥.

(2) Here, we consider the family of vectors

(f1, . . . , fi−1, fi+1, . . . , fs−1, x(fi1), . . . , x(fir ), fi, x(fτi)).
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As above, this family comprises r+s vectors, all lying in Vs−1 +x(Vt), so that
formula (∗) implies that the family is linearly dependent. Thus, the matrix of
the family in the basis (e1, . . . , en) has rank < s+r, hence the minor determi-
nant with respect to the sub-basis (e1, . . . , ei−1, ei+1, . . . , es−1, eτi1

, . . . , eτir
,

ei, ej) is equal to zero (here we use the assumption (τj = j or τj /∈ {s, . . . , t}),
which guarantees that j /∈ {τi1 , . . . , τir}, so that the vectors in the tuple are
all distinct and form indeed a sub-basis). The nullity of this minor determi-
nant provides a polynomial relation on Ω ∩ Zσ that we describe now more
carefully. As in situation (1), one has x(fip) = eτip

+
∑

l∈Lip
ϕip,l(F ′)eτl

for
each p. Since i < τi, one has x(eτi) = ei, thus x(fτi) = ei +

∑
l∈Lτi

ϕτi,l(F
′)eτl

with Lτi := {l > τi : τl < l}. Hence a relation of the following form is satisfied
on Ω ∩ Zσ: ∣∣∣∣∣∣∣∣∣∣∣∣

1 ∗ · · · (∗) ∗

∗ . . . . . .
...

...
...

. . . 1 ∗ ∗
(∗) · · · ∗ 1 1
∗ · · · ∗ ϕi,j ψ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where as before the symbol ∗ is either ϕl,m for some l < m, or zero, and where
we have either ψ = ϕτi,τj (if τj ∈ Lτi) or ψ = 0 (otherwise). Developing the
determinant along the last column, the relation becomes ϕi,j −ψ = P , where
P is a polynomial in the ϕl,m’s with no term of degree ≤ 1. Differentiating
at 0, we deduce that the relation ϕi,j − ψ = 0 holds on the tangent space T .
Therefore, ϕi,j − ψ ∈ T ⊥. This completes the proof of Proposition 2(iii).

4.6. Proof of Proposition 2(iv). We first note that the set I2 is formed by the
pairs (i, j), 1 ≤ i < j ≤ n, which satisfy at least one of the following conditions:

(a) i ≤ τj < j and i ≤ τi;
(b) i < τi < j.

Indeed, these are the only configurations that are not represented in I0, I−1 , I
+
1 .

Take an arbitrary element F ′ = (〈f1, . . . , fl〉K)n
l=0 ∈ Ω ∩ Zσ, where fl = el +∑

m>l ϕl,m(F ′)em as before. We will exploit the property of F ′ to be x-stable.
First, assume that (i, j) satisfies condition (a) above. In this case, one has x(ei) = 0

and x(ej) = eτj , so that x(fi) = ϕi,j(F ′)eτj +
∑

l∈Li\{j} ϕi,l(F ′)eτl
where Li =

{l > i : τl < l}. Since F ′ is x-stable, the family of vectors (f1, . . . , fi−1, x(fi)) is
linearly dependent. Thus, the matrix of (f1, . . . , fi−1, x(fi)) with respect to the basis
(e1, . . . , en) has rank < i. In particular, the minor determinant with respect to the
sub-basis (e1, . . . , ei−1, eτj ) is zero. The nullity of this minor determinant yields a
polynomial relation that is satisfied on the subset Ω ∩ Zσ. This relation takes the
form ∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · (0) ∗

∗ 1
... ∗

...
. . .

...
(∗) 1 ∗

· · · ∗ ϕi,j

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,
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where the coefficients of the matrix represented with the star ∗ are either ϕl,m for
some l,m, or zero. Developing along the last column, the relation becomes ϕi,j = P ,
where P is a polynomial in the ϕl,m’s with no term of degree ≤ 1. The differential at
0 of ϕi,j −P is therefore a linear form which vanishes on the tangent space T , whence
ϕi,j ∈ T ⊥.

Next, assume that (i, j) satisfies condition (b). Hence, x(eτi) = ei, so that x(fτi) =
ei +

∑
l∈Lτi

ϕτi,l(F
′)eτl

, where Lτi = {l > τi : τl < l}. Since F ′ is x-stable, we see that
the family of vectors (f1, . . . , fi−1, fi+1, . . . , fτi−1, fi, x(fτi)) is linearly dependent.
Thus, its matrix in the basis (e1, . . . , en) has rank < τi, and so the minor determinant
with respect to the sub-basis (e1, . . . , ei−1, ei+1, . . . , eτi−1, ei, ej) is zero. This yields a
polynomial relation of the following form satisfied on the subset Ω ∩ Zσ:∣∣∣∣∣∣∣∣∣∣∣∣

1 (0) ∗ ∗

∗ . . .
... ∗

...
. . . 1 ∗

...
(∗) · · · ∗ 1 1
∗ · · · ∗ ϕi,j ψ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where, as above, each star ∗ is either 0 or ϕl,m for some l,m, and where either
ψ = ϕτi,τj (if τj ∈ Lτi) or ψ = 0 (otherwise). Developing the determinant along the
last column, we get ϕi,j − ψ = P , where P is a polynomial in the ϕl,m’s with no
term of degree ≤ 1. Differentiating at 0, we deduce that the relation ϕi,j − ψ = 0 is
satisfied on the tangent space T , whence ϕi,j − ψ ∈ T ⊥. This achieves the proof of
Proposition 2(iv).
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