
Math. Res. Lett. 19 (2012), no. 04, 741–752 c© International Press 2012

FINITE INJECTIVE DIMENSION OVER RINGS WITH
NOETHERIAN COHOMOLOGY

Jesse Burke

Abstract. We study rings that have Noetherian cohomology over a ring of cohomology
operators. Examples of such rings include commutative complete intersection rings and
finite-dimensional cocommutative Hopf algebras. The main result is a criterion for a

complex of modules over a ring with Noetherian cohomology to have finite injective
dimension. The criterion implies in particular that for any module over such a ring, if all
higher self-extensions of the module vanish, then it must have finite injective dimension.

This generalizes a theorem of Avramov and Buchweitz for complete intersection rings,
and a well-known theorem in the representation theory of finite groups from finitely
generated to arbitrary modules.

1. Introduction

Let R be an associative ring and S a ring of cohomology operators on R. Thus, S is
a commutative graded ring and there exists a family of homogeneous maps of graded
rings, indexed by complexes of R-modules M ,

ζM : S → Ext∗R(M, M),

that satisfies a certain commutativity condition. See Section 3 for the full definition.
We say R has Noetherian cohomology over S if Ext∗R(M, M) is a Noetherian S-module
via ζM for all complexes M , which have Noetherian cohomology over R.

In this paper, we prove the following:

Theorem. Let R be a ring with Noetherian cohomology over a ring of cohomology
operators S, and let M be a complex of R-modules with Hn(M) = 0 for n � 0. Let
S+ be the ideal ⊕i≥1S

i. If the S-module Ext∗R(M, M) is S+-torsion, then M has finite
injective dimension.

Recall that Ext∗R(M, M) is S+-torsion if for every x ∈ Ext∗R(M, M) there exists
an integer n such that (S+)n x = 0. There is, for instance, an integer l depending on
the degrees of the generators of S+, such that if Extnl

R (M, M) = 0 for some n ≥ 1,
then Ext∗R(M, M) is S+-torsion; see 4.5. A complex has finite injective dimension if it
has a bounded above semi-injective resolution; see 2.4. If the complex in question is a
module, then a semi-injective resolution is an injective resolution in the classical sense.
To compute Ext∗R(M, M) for a complex M , one may use a semi-injective resolution,
and so if M is a module then Ext∗R(M, M) agrees with the classical notion. Thus, a
special case of the theorem is that if M is an R-module with Extn

R(M, M) = 0 for
n � 0, then M has finite injective dimension.

Received by the editors October 12, 2011.

2000 Mathematics Subject Classification. xxx.

741



742 JESSE BURKE

There are many rings with Noetherian cohomology and hence to which the result
above applies. First, assume that R is a ring of the form Q/(f1, . . . , fc), where Q is
a commutative Noetherian regular ring of finite Krull dimension and f1, . . . , fc is a
Q-regular sequence. The graded polynomial ring S = R[χ1, . . . , χc], where the degree
of each χi is 2, is a ring of cohomology operators for R and R has Noetherian coho-
mology over S by [11]. In this context, the theorem above generalizes a key instance
of [2, Theorem 4.2] from finitely generated modules to a large class of complexes,
including all modules:

Corollary A. Let R = Q/(f1, . . . , fc), where Q is a commutative Noetherian regular
ring of finite Krull dimension and f1, . . . , fc is a Q-regular sequence. Let M be a
complex of R-modules with Hn(M) = 0 for n � 0. If Ext2n

R (M, M) = 0 for some
n ≥ 1, then M has finite injective dimension.

Indeed, if Ext2n
R (M, M) = 0 for some n, then Ext∗R(M, M) must be S+-torsion

since the degree of χi is 2. Thus l = 2 in the notation above; see 5.1 for further
details.

Now let R be a Hopf algebra over a field k. Any commutative subring of Ext∗R(k, k)
is a ring of cohomology operators on R; see 5.5. Let S be the center of Ext∗R(k, k).
It follows from the main result of [10] that every finite-dimensional cocommutative
Hopf algebra has Noetherian cohomology over S. Thus we have the following:

Corollary B. Let R be a finite-dimensional cocommutative Hopf algebra over a field
k and let S be the center of Ext∗R(k, k). For an R-complex M with Hn(M) = 0 for
all n � 0, if Ext∗R(M, M) is S+-torsion, then M has finite injective dimension.

In particular, the result applies to the group ring of a finite group over a field
where it generalizes a well-known result for finite-dimensional representations to, in
particular, arbitrary representations.

For the proof of the main theorem, we work in an “infinite completion” of the
bounded derived category of Noetherian R-modules. This allows us to avoid finite-
ness conditions on the complexes to which the criterion is applied. By [13], such a
completion is given by the homotopy category of injective R-modules. We recall rele-
vant facts about this category in Section 2. In Section 3, we give the precise definition
of a ring of cohomology operators and prove a preliminary result. The proof of the
main theorem occupies Section 4 and in Section 5 we apply it to the cases discussed
above.

The techniques in this paper are inspired by [7]. We have minimized the use of
machinery from that paper to make this one closer to being self-contained.

2. Background

Throughout R denotes an associative ring. By “R-module” we mean a left-module
over R. An R-complex is a complex of R-modules.

In this section, we briefly recall some definitions and results on triangulated cate-
gories. We then review the homological algebra of complexes that we will need.

2.1. Let M be an R-complex. We write Hn(M) for the nth cohomology group of
M and H(M) for the graded R-module that in degree n is Hn(M). We say M has
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finite cohomology if H(M) is a Noetherian R-module. This implies, in particular, that
Hn(M) = 0 for |n| � 0. The complex M is acyclic if H(M) = 0.

Let N be another R-complex. We denote the Hom-complex between M and N by
HomR (M, N). This has components and differential given by

HomR (M, N)n =
∏

i∈Z

HomR

(
M i, N i+n

)
∂(f) = ∂N ◦ f − (−1)|f |f ◦ ∂M ,

where |f | is the degree of f . A morphism f : M → N is a degree zero cycle of
HomR (M, N), i.e., |f | = 0 and ∂(f) = 0. It is a quasi-isomorphism when H(f) :
H(M) → H(N) is an isomorphism.

2.2. The homotopy category of injective R-modules, denoted by K(Inj R), has as
objects complexes X such that Xi is an injective R-module for all i. The morphisms
between objects X, Y are given by

HomK(Inj R) (X, Y ) := H0(HomR (X, Y )).

In other words, morphisms in K(Inj R) are homotopy equivalence classes of morphisms
of complexes.

The standard shift functor on K(Inj R) is denoted Σ. Thus for a complex

X = · · · → Xn−1 → Xn → Xn+1 → · · · ,

we have that (ΣX)n = Xn+1 and ∂ΣX = −∂X . By Hom∗
K (X, Y ) we denote the

Z-graded abelian group that in degree n is HomK (X, ΣnY ) . With multiplication given
by composition Hom∗

K (X, X) is a graded ring, whereas Hom∗
K (X, Y ) is a bimodule

under the left action by Hom∗
K (Y, Y ) and the right action by Hom∗

K (X, X).

2.3. The category K(Inj R) is triangulated. For a proof and reference on triangulated
categories see e.g., [17]. A triangulated subcategory of K(Inj R) is thick if it is closed
under direct summands. It is localizing when it is closed under set-indexed direct
sums. Every localizing subcategory in K(Inj R) is automatically thick; see e.g., the
proof of [12, 1.4.8].

For a subclass of objects C in K(Inj R), we denote by thickK(C), respectively locK(C),
the smallest thick, respectively localizing, subcategory containing C. One may realize
these by taking the intersection of all thick, respectively localizing, subcategories
containing C.

An object C ∈ K(Inj R) is compact if the natural map
⊕

i∈I

HomK(Inj R) (C, Xi) → HomK(Inj R)(C,
⊕

i∈I

Xi)

is an isomorphism for any set of objects {Xi}i∈I of K(Inj R). We denote the collection
of compact objects of K(Inj R) by K(Inj R)c.

When R is left-Noetherian, [13, 2.3.1] shows that K(Inj R) is compactly generated,
i.e., an object X ∈ K(Inj R) is nonzero if and only if there exists a compact object
C ∈ K(Inj R) such that HomK(Inj R) (C, X) �= 0.

2.4. A complex of injective modules I is semi-injective if for all acyclic complexes A,
the complex HomR (A, I) is acyclic. When I is semi-injective it has the following lifting
property: for every morphism α : M → I and every quasi-isomorphism β : M → N
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there exists a unique up to homotopy map γ : N → I making the following diagram
commute:

M
β

�
��

α

��

N

γ
��

I

.

A semi-injective resolution of a complex M is a quasi-isomorphism ηM : M → iM ,
where iM is semi-injective. Every complex has a semi-injective resolution; this was
first proven in [16]. Moreover, by the lifting property, a semi-injective resolution is
unique up to isomorphism in K(Inj R).

When M is a module, viewed as a complex concentrated in degree 0, a semi-injective
resolution of M is just an injective resolution in the usual sense.

2.5. Let iM, iN be semi-injective resolutions of complexes M, N , respectively. Define
the derived Hom functors as

Extn
R(M, N) := HomK (iM, ΣniN) ∼= Hn HomR (iM, iN) .

Set Ext∗R(M, N) to be the graded R-module which in degree n is Extn
R(M, N). The

lifting property of semi-injective complexes shows that Ext∗R(M, N) is independent of
the choice of resolutions, up to isomorphism.

If there exists a semi-injective resolution ηM : M → iM such that (iM)n = 0 for
all n � 0, then we say M has finite injective dimension and write inj dimR M < ∞.

2.6. Let D(R) be the unbounded derived category of R-modules; see e.g., [17] for the
definition. We denote by Q the localization functor Q : K(Inj R) → D(R) that sends
a complex to its image in the derived category. When R is left-Noetherian [13, 2.3.2]
shows that Q restricts to an equivalence

Q : K(Inj R)c
∼=−→ Df(R),

where Df(R) is the full subcategory of D(R) of objects with finite cohomology. By [13,
3.9] the functor Q has a right adjoint, denoted by Qρ, which takes any complex to a
semi-injective resolution, viewed as an object of K(Inj R).

When restricted to Df(R), Qρ gives an inverse to the equivalence above. Thus the
compact objects of K are exactly the semi-injective resolutions of objects in Df(R).

The following construction is a key part of the proof of the main theorem.

2.7. Let S = locK(C), for a set of compact objects C in K(Inj R). For any object X in
K(Inj R) there is a triangle

ΓX → X → LX →
such that ΓX ∈ S and LX ∈ S⊥, where

S⊥ = {Y ∈ K(Inj R) | HomK (Z, Y ) = 0 for all Z ∈ S}.
This is a form of Bousfield localization; see [15, 1.7] for a proof.
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3. Cohomology operators

Throughout this section S = ⊕i≥0S
i denotes a commutative graded ring.

3.1. We say S is a ring of cohomology operators for R if for every X ∈ K(Inj R) there
is a map of graded rings

ζX : S → Hom∗
K(Inj R) (X, X) ,

such that the two S-module structures on Hom∗
K(Inj R) (X, Y ) via ζX and ζY agree.

Thus, for each α ∈ Hom∗
K(Inj R) (X, Y ), and all homogeneous s ∈ S, we require

(3.1) ζY (s) · α = (−1)|s|α · ζX(s).

We say R has Noetherian cohomology over S if S is a Noetherian ring of finite Krull
dimension, R has finite injective dimension as a left module, and Hom∗

K(Inj R) (C, C) is
a Noetherian S-module for all compact objects C in K(Inj R).

Remark 3.2. Equivalently, S is a ring of cohomology operators for R if there is a
ring map S → Z(K(Inj R)), where Z(−) denotes the graded center of a triangulated
category; see e.g., [7, Section 4].

A ring of cohomology operators for R has been defined previously in [5] to be a ring
map S → Z(D(R)). The essentially surjective functor Q : K(Inj R) → D(R) induces
a ring map Z(K(Inj R)) → Z(D(R)) and thus a ring of cohomology operators in our
sense gives rise to a ring of cohomology operators in the sense of [5].

In the rest of the section, we assume that S is Noetherian, has finite Krull dimen-
sion, and is a ring of cohomology operators for R. We set S+ = ⊕i≥1S

i.
We will need the following result on the structure of a ring with Noetherian coho-

mology.

3.3. Assume R has Noetherian cohomology over S. Then the following hold:

(1) R is left-Noetherian;
(2) inj dimRp

Rp < ∞ for all p ∈ Spec Rc;
(3) An R-complex with finite cohomology M has finite projective dimension if and

only if Extn
R(M, M) = 0 for all n � 0 if and only if M has finite injective

dimension.

This is contained in [4], where less assumptions are placed on S. For the rings in
Section 5 to which we apply the main theorem the properties above are well known.

The following construction was introduced in [7]:

3.4. Let s be a homogeneous element of S of degree n and let X be an object of
K(Inj R). The Koszul object of s on X, denoted X//s, is the mapping cone of ζX(s) ∈
HomK(Inj R) (X, ΣnX). Thus there is an exact triangle

(3.2) X
ζX(s)−−−→ ΣnX → X//s →,

and X//s is unique up to isomorphism. For s = s1, . . . , sr a sequence of homogeneous
elements of S, the Koszul object of s on X, denoted X//s, is defined inductively as
the Koszul object of sr on X//(s1, . . . , sr−1).
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Let Y be another object of K(Inj R). We need the following properties of Koszul
objects:

(1) If X is compact, then so is X//s; this follows by induction and the triangle
(3.2) above.

(2) There exists an integer n ≥ 0, independent of X and Y , such that

(s)n Hom∗
K(Inj R) (Y, X//s) = 0 = (s)n Hom∗

K(Inj R) (X//s, Y ) ,

where (s) = (s1, . . . , sn) is the ideal in S generated by s1, . . . , sn.
(3) If Hom∗

K(Inj R) (X//s, Y ) = 0 and the S-module Hom∗
K(Inj R) (X, Y ) is s-torsion

then
Hom∗

K(Inj R) (X, Y ) = 0.

The last two results are contained in [7, 5.11].

The next result shows that every compact object of K(Inj R) can be cut down to
an object with finite projective dimension using the above construction.

Proposition 3.5. Assume R has Noetherian cohomology over S. Let s = s1, . . . , sr

be a set of generators of the ideal S+ = ⊕i>0S
i and let iR ∈ K(Inj R) be an injective

resolution of R. For every compact object C of K(Inj R) the object C//s is in thickK(iR).
In particular there is an inclusion of subcategories:

thickK(C//s |C ∈ K(Inj R)c) ⊆ thickK(Inj R)(iR).

Proof. By 3.4(2) there exists n ≥ 1 such that (s )n Hom∗
K(Inj R) (C//s , C//s ) = 0. Since

C//s is compact, the S-module Hom∗
K(Inj R) (C//s , C//s ) is finitely generated by the

definition of Noetherian cohomology. A standard argument now shows that

(3.3) Homm
K(Inj R) (C//s , C//s ) = 0 for m � 0.

Since C//s is compact, by 2.6, the complex C//s is semi-injective. Thus,

Hom∗
K(Inj R) (C//s , C//s ) ∼= Ext∗R(C//s , C//s ).

Now 3.3 and 3.3(3) show that C//s has finite projective dimension. One checks,
by induction on projective dimension for instance, that this implies that C//s ∈
thickD(R)(R). Since triangulated functors preserve thick subcategories we have that

Qρ(C//s ) ∈ thickK(Inj R)(QρR).

As semi-injective resolutions are unique in K(Inj R) and C//s and Qρ(C//s ) are semi-
injective, we have that Qρ(C//s ) ∼= C//s and QρR ∼= iR. Stringing together the above
shows that C//s is in thickK(iR). �

4. Finite injective dimension

In this section, we prove the theorem in the introduction. To do this we need the
following:

Proposition 4.1. Let R be a left-Noetherian ring that has finite injective dimension
as a left R-module and let M be an R-complex with Hn(M) = 0 for n � 0. Let iR
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and iM be semi-injective resolutions of R and M , respectively. If iM is in locK(iR),
then M has finite injective dimension.

Proof. Since M has right-bounded cohomology, we may pick a projective resolution
P

�−→ M , i.e., a quasi-isomorphism such that P j is projective and P j = 0 for j � 0.
Each P j has finite injective dimension bounded by the injective dimension of the ring,
which we denote by d.

Fix an injective resolution of each P j of length at most d. By the comparison
theorem there are maps between the resolutions which form a bicomplex. Taking the
total sum complex of this bicomplex gives a complex L and a quasi-isomorphism
P

�−→ L, such that each Lj is injective and Lj = 0 for j � 0. Now let L → iL be a
semi-injective resolution. We have a diagram

P
� ��

�
���

��
��

��
� L

� �� iL

M
� �� iM

By the lifting property of semi-injective resolutions, described in 2.4, we see that iM ∼=
iL in K(Inj R). In particular iL is a semi-injective resolution of M and iL ∈ locK(iR).

Let T be the mapping cone of L → iL. We have a triangle

L → iL
v−→ T →

in K(Inj R). Note that T is acyclic since L → iL is a quasi-isomorphism. Thus, we have
isomorphisms

Hom∗
K (iR, T ) ∼= Hom∗

K(R) (R, T ) ∼= H∗(T ) = 0.

The first is [13, 2.1], the second is clear, and the third is the fact that T is acyclic.
The full subcategory whose objects are

{X | Hom∗
K (X, T ) = 0}

is a localizing subcategory of K(Inj R). Thus, since iR is in this subcategory, so is
locK(iR). In particular iL ∈ locK(iR), and thus Hom∗

K (iL, T ) = 0. This shows that the
map v above is nullhomotopic. We will show that this forces iL to have an injective
cokernel in a high degree.

Since v is nullhomotopic there exists a map s : iL → T such that ∂s + s∂ = v. Let
k be an integer such that Ln = 0 for all n ≥ k, which exists by assumption. Thus vn

is bijective for all n ≥ k and we have that (vn)−1∂s + (vn)−1s∂ = 1iLn . One checks
that v−1 commutes with the differentials in the degrees for which it is defined; this
gives

∂(vn−1)−1s + (vn)−1s∂ = 1iLn .

Thus v−1s is a contracting homotopy of 1iM in high degrees. A simple diagram chase
now shows that Im(∂k) splits as a submodule of (iL)k+1 and hence is injective.

Since v is a bijection in degrees n ≥ k and T is acyclic, this implies that Hn(iL) = 0
for n ≥ k. Thus iL has an injective cokernel in a degree higher than its last nonzero
cohomology; by [3, 2.4.I] this implies that M has finite injective dimension. One may
also verify this directly by noting that we have shown that iL ∼= X ⊕ Y with Xi = 0
for i � 0 and Y nullhomotopic. �



748 JESSE BURKE

Theorem 4.2. Let R be an associative ring and S a Noetherian graded ring of finite
Krull dimension. Assume that S is a ring of cohomology operators on R and that R
has Noetherian cohomology over S. For an R-complex M with Hn(M) = 0 for n � 0,
if the S-module Ext∗R(M, M) is S+ = ⊕i≥1 Si-torsion, then M has finite injective
dimension.

Proof. Let X = iM be a semi-injective resolution of M . Then, by 2.5,

Ext∗R(M, M) ∼= Hom∗
K(Inj R) (X, X) .

Let s be a finite set of generators of the ideal S+. By 3.3, R is left-Noetherian and
it has finite injective dimension by the assumption of Noetherian cohomology. Thus
by 4.1 it is enough to show that iM ∈ locK(iR). Since every localizing subcategory in
K(Inj R) is thick (see 2.3), Proposition 3.5 shows that

(4.1) locK(C//s |C ∈ Kc) ⊆ locK(iR).

Thus to prove the theorem it is enough to show that X ∈ locK(C//s |C ∈ K(Inj R)c).
Let us set C := locK(C//s |C ∈ K(Inj R)c).

Fix a compact object D. By hypothesis Hom∗
K(Inj R) (X, X) is S+-torsion. By the def-

inition of cohomology operators, the action of S on Hom∗
K(Inj R) (D, X) factors through

Hom∗
K(Inj R) (X, X) and hence Hom∗

K(Inj R) (D, X) is also S+-torsion.
Now consider the full subcategory T of K(Inj R) with objects those Z ∈ K(Inj R)

such that Hom∗
K(Inj R) (D, Z) is S+-torsion. It is clearly closed under suspension. Given

a triangle Y → Z → W → ΣY in K(Inj R), there is an exact sequence of S-modules:

Hom∗
K(Inj R) (D, Y ) → Hom∗

K(Inj R) (D, Z) → Hom∗
K(Inj R) (D, W ) .

From this we see that if Hom∗
K(Inj R) (D, Y ) and Hom∗

K(Inj R) (D, W ) are S+-torsion then
Hom∗

K(Inj R) (D, Z) is as well. This shows that T is triangulated. For a family of objects
{Zi} in T, we have that

Hom∗
K(Inj R)

(
D,

⊕

i

Zi

)
∼=

⊕

i

Hom∗
K(Inj R) (D, Zi) ,

since D is compact. Thus T is closed under direct sums and hence is localizing. By
3.4(2), for every object C the module Hom∗

K(Inj R) (D, C//s ) is S+-torsion. Thus

C = locK(C//s |C ∈ K(Inj R)c) ⊆ T

since T is localizing and each C//s is in T.
Since C is compactly generated there is a triangle

(4.2) ΓX → X → LX →
with ΓX ∈ C and LX ∈ C⊥; see 2.7. We have that Hom∗

K(Inj R) (D, ΓX) is S+-torsion
since ΓX ∈ C ⊆ T. We have shown above that X ∈ T. Thus LX ∈ T since T is
triangulated. By definition this means Hom∗

K(Inj R) (D, LX) is S+-torsion. Since D//s ∈
C and LX ∈ C⊥, we have that

Hom∗
K(Inj R) (D//s , LX) = 0.
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By 3.4(3) this implies that Hom∗
K(Inj R) (D, LX) = 0. But since D was an arbitrary

compact object and K(Inj R) is compactly generated (see 2.3), this shows that LX = 0.
By the triangle (4.2) this implies that ΓX ∼= X ∈ K(Inj R) and hence X is an object
of C = locK(C//s |C ∈ K(Inj R)c). �

Remark 4.3. The hypothesis that Hn(M) = 0 for n � 0 is necessary. Indeed, from
the definition of finite injective dimension, recalled in 2.4, if a complex M has finite
injective dimension, then Hn(M) = 0 for n � 0.

We record the following that was contained in the proof of 4.2.

Corollary 4.4. Under the assumptions and notation of Theorem 4.2, there is an
equality

locK(C//s |C ∈ K(Inj R)c) = locK(iR).

Proof. One containment is given by (4.1). For the other direction, note that since
the S-module Hom∗

K(Inj R) (iR, iR) ∼= Ext∗R(R, R) is S+-torsion, the proof of 4.2 above
shows that iR ∈ locK(C//s |C ∈ K(Inj R)c). �

Corollary 4.5. Let R, S and M be as in 4.2. Let s1, . . . , sr be a finite set of homo-
geneous generators of the ideal S+. Set

d := max{deg si | 1 ≤ i ≤ r} and l := lcm{deg si | 1 ≤ i ≤ r}.
Then inj dimR M < ∞ if one of the following holds:

(1) there exists an integer n ≥ 0 such that Extj
R(M, M) = 0 for all n ≤ j ≤

n + d − 1; or
(2) there exists an integer m ≥ 0 such that Extml

R (M, M) = 0.

Proof. Either condition forces the S-module Ext∗R(M, M) to be S+-torsion. Indeed,
assume that there exists an integer n such that (1) holds. For every i there exists an
integer ki such that

n ≤ ki(deg si) ≤ n + d − 1.

One way to see this is by induction on n. Consider the ideal (S+)k1+...+kr =
(s1, . . . , sr)k1+...+kr in S. It is generated by monomials in the si of the form sn1

1 . . . snr
r

for positive integers ni with
∑

ni =
∑

ki. For each such monomial there exists an i
such that ni ≥ ki, else

∑
ni <

∑
ki; applying ζM to the monomial, and using that

ζM is a map of rings, we see that

ζM (sn1
1 . . . snr

r ) = ζM (sn1
1 ) . . . ζM (sni

i ) . . . ζM (snr
r )

= ζM (sn1
1 ) . . . ζM (ski

i )ζM (sni−ki
i ) . . . ζM (snr

r ) = 0,

since ζM (ski
i ) ∈ Extki(deg si)

R (M, M) = 0. Thus

(S+)k1+...+kr Ext∗R(M, M) = ζM ((S+)k1+...+kr ) Ext∗R(M, M) = 0

and hence Ext∗R(M, M) is S+-torsion. By Theorem 4.2 this shows that
inj dimR M < ∞.
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To prove (2) assume that such an m exists. For every i = 1, . . . , r, there exists an
integer di such that di(deg si) = l. Letting α = m(

∑
i di), a similar proof as above

shows that (s1, . . . , sr)α Ext∗R(M, M) = 0. �

5. Applications

In this section, we apply Theorem 4.2 in the two contexts discussed in the introduction.

5.1. Let R be a commutative ring with a presentation

R ∼= Q/(f),

where Q is a commutative Noetherian regular ring of finite Krull dimension and
(f) = (f1, . . . , fc) is a Q-regular sequence.

Let S = R[χ1, . . . , χc] be the polynomial ring in c indeterminates over R, graded
by setting |χi| = 2. For every X ∈ K(Inj R) there is a homomorphism of graded
R-algebras

ζX : S → Hom∗
K(Inj R) (X, X) .

When X = iM is the injective resolution of a finitely generated R-module M , so that

Hom∗
K(Inj R) (X, X) ∼= Ext∗R(M, M),

such a map ζX may be constructed as in [9, Section 1] using a free resolution of M .
The process described in [1, Section 1], which replaces free resolutions with injective
resolutions, generalizes to arbitrary objects of K(Inj R). The results of loc. cit. show
that the maps ζX satisfy the conditions of a ring of cohomology operators.

By [6, 5.1] the S-module Hom∗
K(Inj R) (iM, iM) ∼= Ext∗R(M, M) is finitely generated

when M has finite cohomology over R. This was proved first by Gulliksen [11] for
modules. It follows from 2.6 that R has Noetherian cohomology over S. Restating
Theorem 4.2 in this context, we have:

Corollary 5.2. Let Q be a commutative Noetherian regular ring of finite Krull
dimension, (f) = (f1, . . . , fc) a Q-regular sequence and R = Q/(f). For an R-complex
M with Hn(M) = 0 for all n � 0, if Ext∗R(M, M) is S+-torsion, then M has finite
injective dimension.

In the notation of Corollary 4.5 we see that d = 2 = l. Since R is a Gorenstein
ring of finite Krull dimension, a module has finite projective dimension if and only if
it has finite injective dimension. This gives:

Corollary 5.3. If M is an arbitrary R-module such that Ext2n
R (M, M) = 0 for some

n ≥ 1 then M has finite projective dimension.

Remark 5.4. In [2, 4.2] the same statement is proved for finitely generated modules
of finite complete intersection dimension over a Noetherian ring. All finitely gener-
ated modules over the ring R have finite complete intersection dimension. However,
complete intersection dimension is not defined for non-finitely generated modules, so
we have not generalized completely [2, 4.2].

5.5. Let R be a Hopf algebra over a field k. For two R-modules M, N we view M⊗k N
as an R-module via the diagonal map Δ : R → R⊗k R. When M, N are injective then
so is M ⊗k N . For X ∈ K(Inj R) the functor − ⊗k X preserves homotopies of maps.
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Thus there is a functor − ⊗k X : K(Inj R) → K(Inj R). Viewing k as an R-module via
the augmentation there is an isomorphism

ϕX : ik ⊗k X
∼=−→ X,

see [8, 5.3] which proof holds in our more general situation. Thus for each X one gets
a map

ηX : Hom∗
K (ik, ik) → Hom∗

K (X, X)
that sends α : ik → Σnik to

ϕΣnX(α ⊗k X)(ϕX)−1 : X → ΣnX.

One can check that ηX is a ring map. Let S be the ring Ext∗R(k, k) ∼= Hom∗
K (ik, ik).

By [14, (VIII.4.7), (VIII.4.3)] the ring S is graded-commutative and the maps ηX

satisfy the commutativity relations (3.1). Thus setting

Seven :=

{⊕
i≥0 Ext2i

R (k, k) if char k �= 2,

Ext∗R(k, k) if char k = 2,

we see that Seven is commutative and is a ring of cohomology operators on R.
By the main result of [10], when R is cocommutative and finite-dimensional over

k, the ring S is Noetherian and Ext∗R(M, N) is a Noetherian S-module (via ηM , or
equivalently, ηN ) for all complexes M, N with finite cohomology. The ideal of odd
degree elements in S is nilpotent when char k �= 2. Thus when R is a cocommutative
finite-dimensional Hopf algebra it has Noetherian cohomology over Seven.

Specializing Theorem 4.2 and Corollary 4.5 to this context, and using that R is
self-injective, we have:

Corollary 5.6. Let R be a finite-dimensional cocommutative Hopf algebra and Seven

the commutative ring defined as above. For an R-complex M with Hn(M) = 0 for all
n � 0, if Ext∗R(M, M) is S+-torsion, then M has finite injective dimension.

Corollary 5.7. Let R be as above and M an R-module. There exists an integer l
such that if Extnl

R (M, M) = 0 for some n ≥ 1 then M has finite projective dimension.
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