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A NOTE ON EXACT FORMS ON ALMOST COMPLEX
MANIFOLDS

Tedi Draghici and Weiyi Zhang

Abstract. On a compact almost complex manifold (M2n, J), the conditions that J
admits tamed or compatible symplectic forms are characterized in terms of exact forms.

In dimension 4, it is shown that J admits a compatible symplectic form if and only if J
admits tamed symplectic forms with arbitrary J-anti-invariant parts.

1. Introduction

Among other interesting problems raised in [2], Donaldson asked the following ques-
tion for a compact almost complex 4-manifold (M4, J):

Question 1.1. If J is tamed by a symplectic form, is there a symplectic form com-
patible with J?

An almost complex structure J on a manifold M2n is tamed by a symplectic form ω
(and such an ω is called J-tamed), if ω is J-positive, i.e.,

ω(X, JX) > 0, ∀X ∈ TM, X �= 0.

A symplectic form ω is compatible with J (or J-compatible), if ω is J-positive and
J-invariant, i.e.,

ω(X, JX) > 0 and ω(JY, JZ) = ω(Y, Z), ∀X, Y, Z ∈ TM, X �= 0.

Question 1.1 was known to have an affirmative answer on CP 2 from fundamental
works of Gromov [9] and Taubes [17]. This was recently extended by Taubes [16] to all
compact 4-manifolds with b+ = 1 and generic J . The powerful subvarieties-current-
form technique of Taubes has been further refined in [13] for rational 4-manifolds. In
particular, it is shown that Question 1.1 is true for all almost complex structures on
CP 2#CP 2 and S2 × S2.

Another approach on the tame-compatible question has been suggested by Don-
aldson [2]. He showed that, at least in the case b+ = 1, Question 1.1 is a consequence
of solving a symplectic analog of the complex Monge–Ampère equation in the Calabi–
Yau theorem (see also [18]). While the symplectic Calabi–Yau problem is still open,
significant progress has been achieved in [7, 19–21]. Note also that a recent result
in [11] shows that the tame-compatible question holds on all compact quotients of
four-dimensional Lie groups by discrete subgroups.

Question 1.1 could be asked for higher dimensions as well, but it is known that
certain almost complex structures have local obstructions, coming from the structure
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of their Nijenhuis tensor, to admitting compatible symplectic forms (see e.g. [10]).
There are no such local obstructions in dimension 4, or for integrable almost complex
structures in any dimension. In [12, 15] it was asked whether Question 1.1 holds for
compact complex manifolds of arbitrary dimensions. As observed in [12], classical
results imply that this is true for complex surfaces. Some positive results are known
for higher dimensional complex manifolds, e.g. [6, 14], but the problem is still open
in this case. Note that Theorem 1.4 of [14] implies that any non-Kähler Moishezon
manifold is also non-tamed.

After this brief overview of the tame-compatible question, we observe that this
note is somewhat complementary to it. The main direction of our four-dimensional
result can be paraphrased as saying that if there exists a J-compatible symplectic
form, then there is great flexibility in constructing J-tamed symplectic forms. The
precise statement is:

Theorem 1.2. Let (M4, J) be a compact almost complex manifold. The following are
equivalent:

(i) J admits a compatible symplectic form;
(ii) For any J-anti-invariant form α, there exists a J-tamed symplectic form

whose J-anti-invariant part is α.

The implication (ii) ⇒ (i) is obvious, by just taking α = 0. The implication (i) ⇒ (ii)
is also elementary, but less obvious. In higher dimensions the statement of Theorem 1.2
is no longer true (see Remark 3.5). A higher dimensional version could be considered
Proposition 2.5.

Our results are consequences of some equivalent reformulations of Question 1.1 in
terms of certain spaces of exact forms on an almost complex manifold (M2n, J).

2. Reformulations of Donaldson’s question

Let (M2n, J) be a compact almost complex manifold. The almost complex structure
J acts as an involution, by α(·, ·) → α(J ·, J ·), on the space of real C∞-forms Ω2.
Thus we have the splitting into J-invariant, respectively, J-anti-invariant 2-forms

(2.1) Ω2 = Ω+
J ⊕ Ω−

J .

Let Zk be the space of closed k-forms on M and let Z±
J = Z2∩Ω±

J be the correspond-
ing subspaces of Z2. We will also denote by Ω⊕

J the cone of J-invariant, J-positive
forms, i.e., the forms ω ∈ Ω2 such that ω(·, J ·) defines a Riemannian metric on M .
It is easy to see that the sets of symplectic forms that are J-compatible, respectively,
J-tamed, denoted respectively by Sc

J , St
J , are given by

Sc
J = Ω⊕

J ∩ Z2, St
J = (Ω⊕

J ⊕ Ω−
J ) ∩ Z2.

With these notations, Question 1.1 becomes: if St
J �= ∅ is Sc

J �= ∅ as well ?
The conditions that J admits tamed or compatible symplectic forms can be restated

in terms of the spaces of exact forms dΩ−
J , dΩ+

J , dΩ⊕
J .

Proposition 2.1. Let (M2n, J) be a compact almost complex manifold. Then
(i) J is tamed by a symplectic form if and only if dΩ−

J ∩ dΩ⊕
J �= ∅;

(ii) J is compatible with a symplectic form if and only if dΩ⊕
J = dΩ+

J .
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Proof. For (i) suppose that J is tamed by the symplectic form ω, which we decom-
pose into its J-invariant and J-anti-invariant parts ω = ω+

J + ω−
J . By the tameness

assumption, ω+
J ∈ Ω⊕

J , and since dω = 0, we have d(ω+
J ) = d(−ω−

J ) ∈ dΩ−
J ∩ dΩ⊕

J .
Thus, dΩ−

J ∩ dΩ⊕
J �= ∅. Showing that dΩ−

J ∩ dΩ⊕
J �= ∅ implies that J is tamed is done

by just reversing this argument.
For (ii), assuming dΩ⊕

J = dΩ+
J , since 0 ∈ dΩ+

J , it follows that there is ω ∈ Ω⊕
J

so that dω = 0. For the other implication, note that Ω⊕
J − Ω⊕

J = Ω+
J , that is any

J-invariant form can be written as the difference of two J-positive forms. Indeed,
if θ ∈ Ω+

J , taking any ω ∈ Ω⊕
J , then (nω + θ) − nω = θ and if n is large enough

nω + θ ∈ Ω⊕
J . If, additionally, we can choose ω with dω = 0, then d(nω + θ) = dθ, so

the equality dΩ⊕
J = dΩ+

J is proved. �

A direct consequence of Proposition 2.1 is that Question 1.1 can be rephrased as:

Question 2.2. Is it true that either dΩ−
J ∩ dΩ⊕

J = ∅ or dΩ⊕
J = dΩ+

J ?

Seemingly unrelated, we could also ask:

Question 2.3. If α ∈ Ω−
J satisfies dα ∈ dΩ⊕

J , is it true that d(−α) ∈ dΩ⊕
J as well?

It turns out that this is also equivalent to Donaldson’s question.

Proposition 2.4. Suppose (M2n, J) is a compact almost complex manifold. Then
Questions 1.1, 2.2 and 2.3 are all equivalent for the given J .

Proof. As mentioned already, the equivalence of Questions 1.1 and 2.2 follows from
Proposition 2.1. We now show that Question 2.3 implies Question 1.1. Suppose that
J is tamed by the symplectic form ω = ω+

J + ω−
J . Then ω+

J ∈ Ω⊕
J and d(−ω−

J ) =
dω+

J ∈ dΩ⊕
J . Question 2.3 implies that there exists a J-positive form ω̃+

J such that
dω̃+

J = dω−
J . This implies d(ω+

J +ω̃+
J ) = 0, so ω+

J +ω̃+
J is a symplectic form compatible

with J .
Conversely, suppose that Question 1.1 is true. If for an α ∈ Ω−

J there exists β ∈ Ω⊕
J

such that dα = dβ, then β − α is a symplectic form taming J . From Question 1.1,
there exists a symplectic form ω compatible with J . Further for a large number n,
nω − β is J-positive, and d(nω − β) = d(−α), which implies Question 2.3. �

Using essentially the same arguments, we have:

Proposition 2.5. Let (M2n, J) be a compact almost complex manifold and assume
that J admits tamed symplectic forms. The following are equivalent:

(i) J admits a compatible symplectic form;
(ii) For any J-anti-invariant form α, if there exists a J-tamed symplectic form

with J-anti-invariant part α, then there also exists a J-tamed symplectic form
whose J-anti-invariant part is −α.

Proof. For the implication (ii) ⇒ (i), let ω1 be a J-tamed symplectic form and
let α be the J-anti-invariant part of ω1. From (ii), there exists another J-tamed
symplectic form ω2 whose J-anti-invariant part is −α. But then ω1 + ω2 is a J-
compatible symplectic form, as it has vanishing J-anti-invariant part.

Next we show (i) ⇒ (ii). Suppose that ω is a J-compatible symplectic form and
let ω1 be a J-tamed symplectic form with J-anti-invariant part α. For a large enough
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number n, the form ω2 = nω − ω1 is J-positive and is certainly closed. Thus ω2 is a
J-tamed symplectic form whose J-anti-invariant part is −α. �

3. Exact forms on almost complex four-manifolds

In this section we prove Theorem 1.2 and make a few related remarks. We start by
mentioning the sub-groups H+

J , H−
J of H2(M, R),

H±
J = {a ∈ H2(M ; R)|∃ α ∈ Z±

J such that [α] = a}

and their dimensions h±
J = dim(H±

J ), which will appear occasionally in this section.
The reader can consult the references for more on these subgroups [1, 3–5, 8, 12].
Here we just recall the particularity of dimension 4: for any compact almost complex
4-manifold (M4, J) the subgroups H+

J , H−
J induce a direct sum decomposition of

H2(M4, R). In particular, h+
J + h−

J = b2, where b2 is the second Betti number of
M4. These facts are no longer true in higher dimensions for general almost complex
structures. If b+ (resp. b−) are the “self-dual” (resp. “anti-self-dual”) Betti numbers
of a compact manifold (M4, J), it is also known that h−

J ≤ b+, h+
J ≥ b−, with the

inequalities being strict if J is tamed by a symplectic form [3].

The key tool in obtaining Theorem 1.2 is the following observation.

Proposition 3.1. Let (M4, J) be a compact almost complex four-manifold. Then

(3.1) dΩ−
J � dΩ2 = dΩ+

J .

Moreover, the quotient space (dΩ2)/(dΩ−
J ) is always infinite-dimensional.

Proof. Let g be a Riemannian metric compatible with J and let ω denote the funda-
mental form of (g, J). It is well known that

(3.2) Ω+
J = C∞(M)ω ⊕ Ω−

g , Ω+
g = C∞(M)ω ⊕ Ω−

J ,

where Ω±
g denote the spaces of g-self-dual (resp. anti-self-dual) two-forms. The relation

dΩ2 = dΩ+
J is then an immediate consequence of:

Lemma 3.2. Suppose (M4, g) is a compact Riemannian four-manifold. Then

(3.3) dΩ+
g = dΩ−

g = dΩ2.

Proof of Lemma 3.2. By Hodge decomposition, any two-form α is written as α =
αh + dα1 + ∗dα2, where the terms are respectively the harmonic, the exact and the
co-exact parts of α. Then it is clear that

dα = d ∗ dα2 = d(dα2 + ∗dα2) = d(−dα2 + ∗dα2).

But (dα2 + ∗dα2) is a self-dual form and (−dα2 + ∗dα2) is anti-self-dual, thus the
lemma is proved. �

To finish the proof of the proposition it remains to verify the claim about the
dimension of the quotient (dΩ2)/(dΩ−

J ). Let H+
g be the space of harmonic self-dual

forms and let
Tg = {f ∈ C∞(M) | ∃α ∈ H+

g , < ω, α >= f}.
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Since H+
g is finite-dimensional, Tg is a finite-dimensional subspace of C∞(M). With

the notations above, dim(Tg) = b+ − h−
J . It is clear that

H+
g + Ω−

J = Tgω ⊕ Ω−
J .

This immediately implies

dΩ−
J = d(H+

g + Ω−
J ) = d(Tgω ⊕ Ω−

J ).

Moreover, it can be easily seen more: for any β ∈ Ω+
g , dβ ∈ dΩ−

J if and only if
β ∈ H+

g + Ω−
J = Tgω ⊕ Ω−

J . This implies that the map

C∞(M) → dΩ+
g , f �→ d(fω)

induces an isomorphism between the quotient spaces C∞(M)/Tg and (dΩ+
g )/(dΩ−

J ).
It follows that the inclusion dΩ−

J ⊂ dΩ+
g is strict and that the quotient is infinite-

dimensional. �

Remark 3.3. Note that Proposition 3.1 can be rephrased in terms of currents. A
consequence is that each homology class in HJ

+ has infinitely many J-invariant closed
representatives, while each class in HJ

− has a unique J-anti-invariant representative.
Here HJ

± ⊂ H2(M ; R) are the J-(anti)-invariant homology groups defined by currents
(see [3,12]). This should be compared with the fact that each cohomology class in H−

J ,
in dimension 4, has a unique (necessarily harmonic) J-anti-invariant representative.

Combining Propositions 2.1 and 3.1, we get:

Proposition 3.4. For a compact almost complex four-manifold (M4, J), J admits a
compatible symplectic structure if and only if dΩ⊕

J = dΩ2.

The proof of Theorem 1.2 is now immediate.

Proof of Theorem 1.2. The implication (ii) ⇒ (i) follows by taking α = 0, as men-
tioned in the introduction. For the other direction, let α ∈ Ω−

J and use Proposition
3.4 to get β ∈ Ω⊕

J so that dβ = d(−α). Then ω = β +α is a J-tamed symplectic form
whose J-anti-invariant part is α. �

Remark 3.5. (i) With the notations above, Theorem 1.2 can be restated as: Sc
J �= ∅

if and only if the projection map Ω⊕
J ⊕ Ω−

J → Ω−
J when restricted to St

J is still onto.
(ii) In [12], Li and Zhang found the precise relationship between the tame and

compatible cohomology cones. Denoted by Kt
J , Kc

J , these are, respectively, the images
of St

J and Sc
J under the natural map Z2 → H2(M, R). In dimension 4, the main result

of [12] is:
if Sc

J �= ∅, then Kt
J = Kc

J + H−
J .

This is valid in higher dimensions as well under the additional assumption H+
J +H−

J =
H2(M, R) (which holds automatically in dimension 4, see [3]).

(iii) Theorem 1.2 and Proposition 3.1 are no longer true in dimension higher than 4.
Indeed, if J is any complex structure on a compact manifold of dimension 6 or higher,
dΩ−

J cannot be a subset of dΩ+
J . This is because a form β ∈ Ω−

J is written as β = α+α,
with α a complex form of type (2, 0), hence, generically, dβ contains terms of type
(3, 0) and (0, 3). But Ω+

J = [Ω1,1
J ]R, so for an integrable J , dΩ+

J ⊂ [Ω2,1
J ⊕ Ω1,2

J ]R.
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As a further application of Proposition 3.1, we compute the cohomology of some J-
modified de Rham-type of complexes. Let us denote by d+

J (resp. d−J ) the composition

of the differential Ω1 d−→ Ω2 with the projection Ω2 → Ω+
J (resp. Ω2 → Ω−

J ). Note
that both Ker(d−J ) and Ker(d+

J ) contain the space of closed 1-forms Z1. Replacing
the Ω1 and Ω2 terms in the de Rham differential complex, we consider the following
J-modified complexes:

0 −→ Ω0 d−→ Ker(d−J ) d−→ Ω+
J

d−→ Ω3 d−→ Ω4 −→ 0,(3.4)

0 −→ Ω0 d−→ Ker(d+
J ) d−→ Ω−

J
d−→ Ω3 d−→ Ω4 −→ 0.(3.5)

The following are immediate observations (using also Proposition 3.1).

Proposition 3.6. Suppose (M4, J) is a compact almost complex four-manifold.
(i) The group H+

J (resp. H−
J ) is the cohomology group at Ω+

J -level for the complex
(3.4) (resp. at Ω−

J -level for the complex (3.5)).
(ii) For the complex (3.4), the cohomology groups at levels Ω0, Ker(d−J ), Ω3, Ω4

are the usual de Rham cohomology groups Hi(M, R) for i = 0, 1, 3, 4, respec-
tively.

(iii) For the complex (3.5), the cohomology groups at levels Ω0, Ker(d+
J ), Ω4 are the

usual de Rham cohomology groups Hi(M, R) for i = 0, 1, 4, respectively. At
the Ω3-level, the cohomology group of the complex (3.5) is given by Z3/dΩ−

J ,
so it is infinite dimensional, by Proposition 3.1.

Remark 3.7. All statements of Proposition 3.6 are still true in higher dimensions,
except those about the cohomology at the Ω3-level which use Proposition 3.1. Note
also that for a compact four-manifold Ker(d+

J ) = Z1, so the second differential in the
complex (3.5) is just the zero map.

Acknowledgments

We are grateful to Tian-Jun Li and the referees for useful suggestions about this note.
The second author is partially supported by an AMS-Simons travel grant.

References

[1] D. Angella and A. Tomassini, On cohomological decomposition of almost-complex manifolds and
deformations, J. Symplectic Geom. 9 (2011), 403–428.

[2] S.K. Donaldson, Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern,
153–172, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006.

[3] T. Draghici, T.-J. Li and W. Zhang, Symplectic forms and cohomology decomposition of almost

complex 4-manifolds, Int. Math. Res. Notices 2010 (2010), 1–17.
[4] T. Draghici, T.-J. Li and W. Zhang, On the J-anti-invariant cohomology of almost com-

plex 4-manifolds, arXiv:1104.2511, Quart. J. Math., first published online December 6, 2011

doi:10.1093/qmath/har034.
[5] T. Draghici, T.-J. Li and W. Zhang, Geometry of tamed almost complex structures on 4-

dimensional manifolds, in Proceedings of ICCM 2010, AMS/IP Studies in Advanced Mathe-

matics Vol. 51, 2012, 233–251.
[6] N. Enrietti, A. Fino, and L. Vezzoni, Tamed symplectic forms and SKT metrics, J. Symplectic

Geom. 10 (2012), 203–224.
[7] A. Fino, Y.Y. Li, S. Salamon, and L. Vezzoni, The Calabi–Yau equation on 4-manifolds over

2-tori, arXiv:1103.3995.



EXACT FORMS ON ALMOST COMPLEX MANIFOLDS 697

[8] A. Fino and A. Tomassini, On some cohomological properties of almost complex manifolds, J.

Geom. Anal. 20 (2010), 107–131.
[9] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82(2) (1985),

307–347.

[10] M. Lejmi, Strictly nearly Kähler 6-manifolds are not compatible with symplectic forms, C. R.
Math. Acad. Sci. Paris 343(11–12) (2006), 759–762.

[11] T.-J. Li and A. Tomassini, Almost Kähler structures on four dimensional unimodular Lie alge-

bras, J. Geom. Phys. 62 (2012), 1714–1731.
[12] T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological

properties of almost complex manifolds, Commun. Anal. Geom. 17(4) (2009), 651–683.

[13] T.-J. Li and W. Zhang, Almost Kähler forms on rational 4–manifolds, preprint.
[14] T. Peternell, Algebraicity criteria for compact complex manifolds, Math. Ann. 275(4) (1986),

653–672.
[15] J. Streets and G. Tian, A Parabolic flow of pluriclosed metrics, Int. Math. Res. Not. 2010

(2010), 3101–3133.
[16] C. Taubes, Tamed to compatible: symplectic forms via moduli space integration, J. Symplectic

Geom. 9 (2011), 161–250.

[17] C. Taubes, SW =⇒ Gr: from the Seiberg-Witten equations to pseudo-holomorphic curves, J.
Amer. Math. Soc. 9(3) (1996), 845–918.

[18] V. Tosatti and B. Weinkove, The Calabi–Yau equation, symplectic forms and almost complex

structures, in Geometry and Analysis, Vol. I, 475–493, Adv. Lect. Math. (ALM)17, International
Press, 2011; arXiv:0901.1501.

[19] V. Tosatti and B. Weinkove, S.T. Yau, Taming symplectic forms and the Calabi–Yau equation,

Proc. Lond. Math. Soc. (3) 97(2) (2008), 401–424.
[20] V. Tosatti and B. Weinkove, The Calabi–Yau equation on the Kodaira–Thurston manifold, J.

Inst. Math. Jussieu 10(2) (2011), 437–447.
[21] B. Weinkove, The Calabi–Yau equations on almost Kähler manifolds, J. Differential Geometry,

vol 76 (2)(2007), 317–349.

Department of Mathematics, Florida International University, Miami, FL 33199, USA

E-mail address: draghici@fiu.edu

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

E-mail address: wyzhang@umich.edu




