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GRADIENT ESTIMATE FOR EIGENFORMS OF HODGE
LAPLACIAN

Jiaping Wang and Linfeng Zhou

Abstract. In this paper, we derive a gradient estimate for linear combinations of
eigenforms of the Hodge Laplacian on a closed manifold. The estimate is given in terms

of the dimension, volume, diameter and curvature bound of the manifold. As an appli-
cation, we obtain directly a sharp estimate for the heat kernel of the Hodge Laplacian.

1. Introduction

Let (Mn, g) be a compact oriented Riemannian manifold without boundary. The
Hodge Laplacian Δ : Ap(M) → Ap(M), acting on the space of smooth p-forms Ap(M)
on M, is defined by

Δ = −dδ − δd.

Here, as usual, d is the exterior differential operator and δ the adjoint of d with respect
to the L2 inner product on Ap(M). We denote the eigenvalues of Δ by {0 ≤ λ1 ≤
. . . λk ≤ . . . } with a corresponding orthonormal basis of eigenforms {φi}∞i=1. We have
the following estimate concerning the eigenforms.

Theorem 1.1. Let (Mn, g) be a closed manifold with curvature bound |Rm| ≤ K.

Then for any bi ∈ R with
∑k

i=1 b
2
i ≤ 1, the form ω =

∑k
i=1 biφi satisfies the estimate

|∇ω|2 + (λk + 1) |ω|2 ≤ c (λk + 1)
n
2 +1,

where c = c(n, V, d,K) is an explicit constant depending on the dimension n, volume
V, diameter d and the curvature bound K.

We would like to emphasize that the estimate is valid for all finite linear combi-
nations of the eigenforms, and it does not involve any covariant derivatives of the
curvature tensor. Also, the exponent n

2 + 1 in λk is sharp. This sharp exponent in
turn leads to another one in k for the lower bound of the eigenvalue λk ≥ c k−

2
n for

all k > bp, the p−th Betti number of M.
Our estimates can then be applied to analyze the heat kernel of Δ. Combining with

a result of Rumin [8], one has the following Sobolev inequality for p−forms.

Theorem 1.2. For an explicit constant c = c(n, V, d,K),
(∫

M

|ω − P (ω)| 2n
n−2

)n−2
n

≤ c

∫

M

{|dω|2 + |δω|2}
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for all smooth p−form ω on M, where P (ω) denotes the projection of ω on to the
space of harmonic p−forms.

Another consequence is the following Hessian estimate for the eigenfunctions on M.

Corollary 1.3. Let (Mn, g) be a closed manifold with curvature bound |Rm| ≤ K. Let
φ1, φ2, · · · , φk be orthonormal eigenfunctions of the scalar Laplacian with correspond-
ing eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λk. Then there exists a constant c(K, d, V, n)
such that

|∇d f | ≤ c λ
n+4

4
k ,

where f =
∑k

i=1 bi φi and
∑k

i=1 b
2
i = 1.

Let us point out that the analysis of the Laplacian on a compact manifold is a
classical subject. Numerous contributions have been made by various authors. While
the results here are mostly known, we do hope our seemingly more direct treatment
is of certain expository value.

As well-known, the gradient estimate method was successfully employed by Yau
[11] to study harmonic functions on complete manifolds. The method was further
developed by Li [4], and Li and Yau [6] to study eigenfunctions and eigenvalues. In
particular, they have obtained a lower bound for the first non-zero eigenvalue of the
scalar Laplacian in terms of the lower bound of Ricci curvature and the diameter of
the manifold.

Our current work is very much motivated by and follows the ideas in a famous
paper of Li [5], where he has obtained a lower bound for higher eigenvalues of the
Hodge Laplacian. This is achieved through an estimate of the linear combinations of
the eigenforms. The estimate involves the curvature operator lower bound and the
Sobolev constant of the manifold, but not the curvature upper bound. However, the
estimate there seems insufficient to provide a sharp exponent for the eigenvalue lower
bounds alluded above. We would also like to point out that both E. Aubry’s PhD
thesis and the paper [10] by W. Ballmann, J. Brüning and G. Carron have already
developed a gradient estimate for individual eigenforms.

The case of scalar Laplacian deserves special attention as it is of more common
concern. So we will treat it separately in section 2. The result is a bit stronger in
the sense it only involves the Ricci curvature lower bound in all the estimates. The
approach is also more straightforward as it only relies on a direct application of the
maximum principle.

The case of general Hodge Laplacian is handled in section 3. The proof now involves
an iteration scheme as in [5].

Finally, we mention that the results here can be extended to the case of compact
manifolds with boundary. For the ease of exposition, we omit the details here.

2. Analysis of scalar Laplacian

In this section, we will derive a variant version of the well-known gradient estimates of
Li-Yau [6] concerning the eigenfunctions. As an application, we give direct proofs to
some well-known results including a lower bound of the high eigenvalues, the existence
of heat kernel and its long time decay estimate.

Let (Mn, g) be a closed Riemannian manifold with diameter d, volume V, and Ricci
curvature lower bound −(n−1)K, where K ≥ 0 is a constant. Denote the eigenvalues
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of the Laplacian Δ by 0 = λ0 < λ1 ≤ · · · ≤ λk ≤ · · · with the corresponding
eigenfunction φi, i = 0, 1, 2, · · · , satisfying

Δφi = −λiφi,

∫

M

φi φj = δij .

For a given constant c, consider the function

Q(x) = |∇φ|2 + c φ2,

where φ =
∑k

i=1 biφi with bi ∈ R and
∑k

i=1 b
2
i = 1. Obviously, the maximum value of

Q(x) over M is a function of b1, · · · , bk. This function in turn achieves its maximum
at some point a1, · · · , ak. Let u =

∑k
i=1 aiφi.

Lemma 2.1.
|∇u|2 + c u2 ≤ c max

M
u2,

where c = λk + (n− 1)K.

Proof. Define

F (b1, . . . , bk, x, λ) = Q(x) − λ

(
k∑

i=1

b2i − 1

)

.

Then, subject to the constraint
∑k

i=1 b
2
i = 1, F achieves its maximum value at some

point (a1, · · · , ak, x0, α). We now show

|∇u|2(x0) + c u2(x0) ≤ c max
M

u2

for c > λk + (n− 1)K.
At the point (a1, · · · , ak, x0, α), F satisfies

(2.1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇F (a1, · · · , ak, x0, α) = 0
ΔF (a1, · · · , ak, x0, α) ≤ 0
∂F

∂bi
= 0

∑k
i=1 a

2
i = 1.

From the third equation of (2.1), we have
k∑

j=1

(2aj〈∇φi,∇φj〉 + 2caj φi φj) − 2αai = 0.

After multiplying by ai and summing over i, one sees that

α = Q(u, x0) = |∇u|2(x0) + c u2(x0).

Suppose now that
|∇u|2(x0) + cu2(x0) > c max

M
u2.

Then
∇u(x0) 	= 0

and one can choose an orthonormal frame {e1, . . . , en} at x0 so that

∇u(x0) = u1(x0)e1.
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Now the first equation of (2.1), ∇F (a1, . . . , ak, x0, α) = 0, becomes

2u1u1i + 2cuui = 0

for i = 1, . . . , n. This in particular implies

(2.2) |∇∇u|2 ≥ u2
11 = c2 u2.

On the other hand, at the maximum point (a1, · · · , ak, x0, α),

ΔF (a1, . . . , ak, x0, α) ≤ 0

or

(2.3) Δ|∇u|2 + cΔu2 ≤ 0.

By the Bochner formula, it becomes

|∇∇u|2 + 〈∇Δu,∇u〉 +Ric(∇u,∇u) + cuΔu+ c|∇u|2 ≤ 0.

In view of (2.2) and the lower bound of Ricci curvature, the above inequality reduces to

c2u2 + 〈∇Δu,∇u〉 − (n− 1)K|∇u|2 + cuΔu+ c|∇u|2 ≤ 0.

Note that

Δu = −
k∑

i=1

λi ai φi.

Therefore,

0 ≥ c2 u2 + (c− (n− 1)K)|∇u|2 −
k∑

i,j=1

λi ai aj 〈∇φi,∇φj〉 −
k∑

i,j=1

c λi ai aj φi φj

≥ c2 u2 + (c− (n− 1)K)|∇u|2 −
k∑

i=1

λi ai

k∑

j=1

(aj〈∇φi,∇φj〉 + c aj φi φj)

≥ c2 u2 + (c− (n− 1)K)|∇u|2 −
k∑

i=1

αλi a
2
i

≥ c2 u2 + (c− (n− 1)K)|∇u|2 − αλk

≥ c2 u2 + (c− (n− 1)K)|∇u|2 − λk (|∇u|2 + cu2)

≥ c (c− λk)u2 + (c− (n− 1)K − λk)|∇u|2.
This is an obvious contradiction if c > (n− 1)K + λk. In other words,

|∇u|2(x0) + c u2(x0) ≤ c max
M

u2

for all c > (n−1)K+λk. The lemma follows by letting c approach λk +(n−1)K. �

As a consequence, we obtain a quick proof to the following well-known facts.

Theorem 2.2. There exists a constant c(K, d, V, n) such that

(1) |∇φ|2 ≤ cλ
n+2

2
k , φ2 ≤ cλ

n
2
k .
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In particular,

|∇φk| ≤ cλ
n+2

4
k , |φk| ≤ cλ

n
4
k .

(2) For all k ≥ 1,
λk ≥ c−1 k

2
n .

(3) The function H(x, y, t) given by

H(x, y, t) =
1
V

+
∞∑

k=1

e−λkt φk(x)φk(y)

is a heat kernel of M. Moreover,

|H(x, y, t) − 1
V
| ≤ c t−

n
2

for all t > 0.
(4) The following Sobolev inequality holds.

(∫

M

|f | 2n
n−2

)n−2
n

≤ c

∫

M

|∇f |2

for all smooth function f on M with
∫

M
f = 0.

Proof. (1) Let u be the function considered in the preceding lemma. Then we need
only to prove the estimate for u. Choose point p such that

u2(p) = max
M

u2.

For r > 0 and x ∈ Bp( r√
λk+(n−1)K

), using lemma 2.1, we conclude

u2(p) − u2(x) ≤ max
y∈M

2|u|(y) |∇u|(y) d(x, p)

≤ 2u2(p)
√
λk + (n− 1)K

r
√
λk + (n− 1)K

≤ 2r u2(p).

Therefore,
u2(x) ≥ (1 − 2r)u2(p)

on Bp( r√
λk+(n−1)K

). Integrating with respect to x over the ball yields

1 = ||u||2L2(M) ≥ (1 − 2r)u2(p)
Vp

(
r√

λk+(n−1)K

)

Vp(d)
Vp(d).

Choose r such that
4r < 1 and

r

λ1 +
√

(n− 1)K
< d.

Then by the Bishop volume comparison theorem we have

1 ≥ (1 − 2r)u2(p)
c(K, d, V, n)

(λk + (n− 1)K)
n
2
.
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In other words,

u2(x) ≤ u2(p) ≤ c(K, d, V, n)λ
n
2
k ,

where we have used the fact that λk ≥ λ1 ≥ c by [6]. Using lemma 2.1 again, we also
conclude

|∇u|2(x) ≤ (λk + (n− 1)K)u2(p) ≤ c(K, d, V, n)λ
n+2

2
k .

(2) For each x ∈M, there exists an orthogonal matrix (aij)k×k such that

∇ψj(x) = 0

for j = n+ 1, · · · , k, where ψj =
∑k

i=1 aij φi.
From (1), it follows that

k∑

i=1

|∇φi|2(x) =
n∑

j=1

|∇ψj |2(x)

≤ n max
j

|∇ψj |2

≤ c1 λ
n+2

2
k .

Integrating the inequality with respect to x, we conclude

λ1 + λ2 + · · · + λk ≤ c2 λ
n+2

2
k .

By an elementary induction argument, the inequality implies

λk ≥ c3 k
2/n

for all k ≥ 1, where c3 = min{λ1, ( 1
c2

n
n+2 )

n
2 }.

(3) In view of (1) and (2), it is straightforward to check the infinite series

1
V

+
∞∑

k=1

e−λkt φk(x)φk(y)

converges uniformly in the C1 sense for x, y ∈ M and t ≥ c for any c > 0. It is then
easy to verify the limit is a heat kernel of M.

Since
c−1 k

2
n ≤ λk ≤ c k

2
n ,

one sees by (1) that

|H(x, y, t) − 1
V
| ≤

∞∑

k=1

e−λkt|φk|(x) |φk|(y)

≤
∞∑

k=1

c λ
n
2
k e−λkt

≤ c t−
n
2

∫ ∞

0

s
n
2 e−s ds

≤ c t−
n
2 .

(4) follows from (3) by a result of Varopoulos [9]. �
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We remark that both (2) and (3) were first proved by Cheng and Li [1] using the
Sobolev inequality. Historically, the Sobolev inequality on manifolds was derived from
the isoperimetric inequalities, which were established by Yau [12] and Croke [3].

3. Gradient estimate for eigenforms

Using the well-known Bochner-Weitzenbock formula, one can directly apply the proof
in the previous section to the Hodge Laplacian acting on the smooth p−forms on M.
However, the resulting estimates depend also on the bounds of the covariant derivative
of the curvature tensor of M. It turns out this dependency is superfluous by adopting
a different argument as demonstrated by E. Aubry in his PhD thesis and also by W.
Ballmann, J. Brüning and G. Carron in [10]. In the following, we present a slightly
refined version of their argument to suit our purpose.

We will use the moving frame notations. So for a p−form ω on M, under an
orthonormal coframe {ω1, · · · , ωn}, ω = ai1···ipωip ∧ · · · ∧ ωi1 .

The Bochner-Weitzenbock formula says

Δω = ΔBω − E(ω),

where
ΔBω = ai1···ip,jjωip ∧ · · · ∧ ωi1

is the Bochner Laplacian and

E(ω) = Rkβiβjαiα ai1...kβ ...ip ωip ∧ · · · ∧ ωjα ∧ · · · ∧ ωi1

with Rijkl being the curvature tensor of M. Now,

ΔB(∇ω) = ai1...ip,ijjωip ∧ · · · ∧ ωi1 ⊗ ωi

and
∇Δω = ai1...ip,jjiωip ∧ · · · ∧ ωi1 ⊗ ωi −∇(E(ω)).

Hence
ΔB(∇ω) −∇Δω = aI,ijjωI ⊗ ωi − aI,jjiωI ⊗ ωi + ∇(E(ω)).

By the Ricci identity, we have

aI,ijj − aI,jij = (Rjαiαijai1...jα...ip),j

and
aI,jij − aI,jji = Rjαiαijai1...jα...ip,j +Rljijai1...ip,l.

Thus we have the commutation formula

ΔB(∇ω) −∇Δω = Rliai1...ip,l ωip ∧ · · · ∧ ωi1 ⊗ ωi(3.1)
+Rjαiαijai1...jα...ip,j ωip ∧ · · · ∧ ωi1 ⊗ ωi

+ (Rjαiαij ai1...jα...ip),j ωip ∧ · · · ∧ ωi1 ⊗ ωi

+ ∇(E(ω)).

Finally, we conclude

〈ΔB(∇ω) −∇Δω,∇ω〉 = Rliai1...ip,lai1...ip,i(3.2)
+Rjαiαijai1...jα...ip,jai1...iα...ip,i

+ (Rjαiαij ai1...jα...ip),jai1...iα...ip,i

+ 〈∇(E(ω)),∇ω〉
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Note that these formulas and the following lemma have more or less been derived
by Le Couturier and G. Robert in [2].

We now consider the function f = |∇ω|2 +A |ω|2, where A ≥ 1 is a fixed constant.

Lemma 3.1. Let (Mn, g) be a closed Riemannian manifold with curvature operator
|Rm| ≤ K. Then for k ≥ 1,

∫

M

fk−1Δf ≥ 2
∫

M

(〈∇Δω,∇ω〉 +A 〈Δω, ω〉) fk−1 − c k2

∫

M

fk,

where c = 2nK(K + 2) + 18K2.

Proof. Direct calculation gives

Δf = Δ(|∇ω|2 +A |ω|2)(3.3)

= 2〈ΔB(∇ω),∇ω〉 + 2|∇∇ω|2
+ 2A |∇ω|2 + 2A 〈ΔBω, ω〉

= 2〈∇Δω,∇ω〉 + 2A 〈Δω, ω〉
+ 2|∇∇ω|2 + 2A |∇ω|2 + 2A 〈E(ω), ω〉
+ 2 〈ΔB(∇ω) −∇Δω,∇ω〉.

Therefore,
∫

M

fk−1Δf = 2
∫

M

(〈∇Δω,∇ω〉 +A 〈Δω, ω〉)fk−1(3.4)

+ 2
∫

M

(|∇∇ω|2 +A |∇ω|2) fk−1

+ 2A
∫

M

〈E(ω), ω〉 fk−1

+ 2
∫

M

〈ΔB(∇ω) −∇Δω,∇ω〉 fk−1.

Since |Rm| ≤ K,

(3.5) 2A
∫

M

〈E(ω), ω〉 fk−1 ≥ −2K
∫

M

fk.

Using (3.2), we have

2
∫

M

〈ΔB(∇ω) −∇Δω,∇ω〉 fk−1(3.6)

= 2
∫

M

Rliai1...ip,lai1...ip,i f
k−1

+ 2
∫

M

Rjαiαijai1...jα...ip,jai1...iα...ip,i f
k−1

+ 2
∫

M

(Rjαiαij ai1...jα...ip),jai1...iα...ip,i f
k−1

+ 2
∫

M

〈∇(E(ω)),∇ω〉fk−1.



EIGENFORM GRADIENT ESTIMATE 583

The first and second term of (3.6) obviously satisfy

(3.7) 2
∫

M

Rliai1...ip,lai1...ip,i f
k−1 ≥ −2(n− 1)K

∫

M

fk.

and

2
∫

M

Rjαiαijai1...jα...ip,jai1...iα...ip,i f
k−1 ≥ −2K

∫

M

|∇ω|2 fk−1(3.8)

≥ −2K
∫

M

fk.

For the third term of (3.6), after integration by parts, we have

2
∫

M

(Rjαiαij ai1...jα...ip),jai1...iα...ip,i f
k−1(3.9)

= −2
∫

M

Rjαiαij ai1...jα...ipai1...iα...ip,ij f
k−1

− 2(k − 1)
∫

M

Rjαiαij ai1...jα...ipai1...iα...ip,i f
k−2 fj

≥ −2K
∫

M

|ω| |∇∇ω| fk−1

− 2(k − 1)K
∫

M

|ω| |∇ω| fk−2 |∇f |

≥ −2K2

∫

M

fk − 1
2

∫

M

|∇∇ω|2 fk−1

− 8 k2K2

∫

M

fk − 1
2

∫

M

(|∇∇ω|2 +A |∇ω|2) fk−1,

where we have used the fact that

|ω| |∇ω| ≤ f

and

|∇f | ≤ 2|∇ω| |∇∇ω| + 2A |ω| |∇ω|(3.10)

≤ 4kK (|∇ω|2 +A |ω|2) +
1

4kK
(|∇∇ω|2 +A |∇ω|2).

Applying integration of parts to the last term of (3.6), we get

2
∫

M

〈∇(E(ω)),∇ω〉fk−1(3.11)

≥ −2
∫

M

〈E(ω),ΔBω〉fk−1

− 2(k − 1)
∫

M

|E(ω)| |∇ω| fk−2 |∇f |
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≥ −2
√
nK

∫

M

|ω| |∇∇ω| fk−1

− 2(k − 1)K
∫

M

|ω| |∇ω| fk−2 |∇f |

≥ −2nK2

∫

M

fk − 1
2

∫

M

|∇∇ω|2 fk−1

− 8 k2K2

∫

M

fk − 1
2

∫

M

(|∇∇ω|2 +A |∇ω|2) fk−1,

where we have used (3.10) in the last step.
Putting (3.7), (3.8), (3.9) and (3.11) into (3.6), we conclude

2
∫

M

〈ΔB(∇ω) −∇Δω,∇ω〉 fk−1(3.12)

≥ −(2nK(K + 1) + 18 k2K2)
∫

M

fk

− 2
∫

M

(|∇∇ω|2 +A |∇ω|2) fk−1.

Plugging (3.5) and (3.12) into (3.4), we arrived at
∫

M

fk−1Δf ≥ 2
∫

M

(〈∇Δω,∇ω〉 +A 〈Δω, ω〉) fk−1

− (2nK(K + 2) + 18 k2K2)
∫

M

fk.

The lemma is proved. �

We now prove a gradient estimate concerning the linear combinations of eigenforms.

Theorem 3.2. Let (Mn, g) be a closed manifold with curvature bound |Rm| ≤ K.
Let φ1, φ2, · · · , φl be orthonormal eigenforms of the Hodge Laplacian Δ acting on the
p−forms with corresponding eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λl. Then for any bi ∈ R

with
∑l

i=1 b
2
i ≤ 1, the form ω =

∑l
i=1 biφi satisfies the estimate

|∇ω|2 +A |ω|2 ≤ c (λl +K + 1)
n
2 +1,

where A = λl +K + 1, and c = c(n, V, d,K) is a constant.

Proof. For each k ≥ 1, let

Ik = max
∫

M

f2k,

where f = |∇ω|2 + A |ω|2 and the maximum is taken over all ω =
∑l

i=1 bi φi with
bi ∈ R and

∑l
i=1 b

2
i ≤ 1.

Note that for ω =
∑l

i=1 biφi with
∑l

i=1 b
2
i ≤ 1,

Δω = −
l∑

i=1

λi bi φi = −λl

l∑

i=1

aiφi,
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where ai = λi λ
−1
l bi, i = 1, · · · , l. Obviously,

l∑

i=1

a2
i ≤ 1.

So if we denote η =
∑l

i=1 ai φi, then
∫

M

(〈∇Δω,∇ω〉 +A 〈Δω, ω〉)f2k−1

≥ −
∫

M

(|∇Δω|2 +A |Δω|2) 1
2 f2k− 1

2

≥ −λl

(∫

M

(|∇η|2 +A |η|2)2k

) 1
4k
(∫

M

f2k

) 4k−1
4k

≥ −λl Ik.

Combining with lemma 3.1, we have the estimate

(3.13)
∫

M

f2k−1Δf ≥ −(2λl + c1 k
2) Ik,

where c1 = 8nK(K + 2) + 72K2.

On the other hand

(3.14)
∫

M

f2k−1Δf = −2k − 1
k2

∫

M

|∇fk|2.

Applying the Sobolev inequality
(∫

M

|u|2β

) 1
β

≤ Cs

(∫

M

|∇u|2 +
∫

M

u2

)

,

where β = n
n−2 , to u = fk, we get

(3.15)
(∫

M

f2kβ

) 1
β

≤ Cs

(∫

M

|∇fk|2 +
∫

M

f2k

)

.

Combining (3.13), (3.14) and (3.15), we get
(∫

M

f2kβ

) 1
β

≤ Cs k (λl + c1 k
2) Ik

Since this is true for all ω, we may maximize the left hand side over ω and conclude

(Iβk)
1

βk ≤ (Cs k (λl + c1 k
2))

1
k (Ik)

1
k

for all k ≥ 1.
Let k = βi, i = 0, 1, 2, · · · and iterate the preceding inequality. Then,

lim
i→∞

(Iβi)
1

βi ≤
∞∏

i=0

(Cs β
i (λl + c1 β

2i))
1

βi I1

≤ c2 (λl + 1)
n
2 I1,
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where c2 = c2(n, d, V,K) is a constant. In other words,

max
ω

max
x∈M

(|∇ω|2 +A |ω|2)2(x)

≤ c2 (λl + 1)
n
2 max

ω

∫

M

(|∇ω|2 +A |ω|2)2

≤ c2 (λl + 1)
n
2 max

ω
max
x∈M

(|∇ω|2 +A |ω|2)(x) max
ω

∫

M

(|∇ω|2 +A |ω|2).

Hence,

max
ω

max
x∈M

(|∇ω|2 +A |ω|2)(x) ≤ c2 (λl + 1)
n
2 max

ω

∫

M

(|∇ω|2 +A |ω|2).

However,
∫

M

(|∇ω|2 +A |ω|2) = −
∫

M

〈Δω, ω〉 −
∫

M

〈E(ω), ω〉 + c

∫

M

|ω|2

≤ λl +K +A.

Therefore,

max
ω

max
x∈M

(|∇ω|2 +A |ω|2)(x) ≤ c2 (λl + 1)
n
2 (λl +K +A).

The theorem is proved. �

As in section 2, we can draw the following conclusions from theorem 3.2.

Theorem 3.3. Let (Mn, g) be a closed manifold with curvature bound |Rm| ≤ K. Let
0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · be all the eigenvalues of the Hodge Laplacian Δ acting
on the p−forms, and φ1, φ2, · · · , φk, · · · the corresponding orthonormal eigenforms.
Then there exists a constant c(K, d, V, n) such that
(1) |∇φk| ≤ c (λk + 1)

n+2
4 and |φk| ≤ c (λk + 1)

n
4 .

(2) For all k > bp, the p-th Betti number of M,

λk ≥ c−1 k
2
n .

(3) The tensor Hp(x, y, t) given by

Hp(x, y, t) =
∞∑

k=1

e−λktφk(x) ⊗ φk(y)

is a heat kernel of Δ. Moreover,

|Hp(x, y, t) −
bp∑

k=1

φk(x) ⊗ φk(y)| ≤ c t−
n
2

for all t > 0.
(4) The following Sobolev inequality holds.

(∫

M

|ω − P (ω)| 2n
n−2

)n−2
n

≤ c

∫

M

{|dω|2 + |δω|2}

for all smooth p-form ω on M, where P (ω) denotes the projection of ω on to the space
of harmonic p-forms.
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Proof. (1) is obvious by theorem 3.2. Using theorem 3.2, (2) follows as in the proof
of (2) in theorem 2.2, where we now use a result of T. Mantuano [7] that λbp+1 ≥
c(n, V, d,K). For (3), the proof is the same as (3) in theorem 2.2. Finally, (4) follows
from (3) by Theorem 1.2 in [8]. �

We also have the following corollary concerning the eigenfunctions.

Corollary 3.4. Let (Mn, g) be a closed manifold with curvature bound |Rm| ≤ K. Let
φ1, φ2, · · · , φk be orthonormal eigenfunctions of the scalar Laplacian with correspond-
ing eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λk. Then there exists a constant c(K, d, V, n)
such that

|∇dφ| ≤ c λ
n+4

4
k ,

where φ =
∑k

i=1 bi φi and
∑k

i=1 b
2
i = 1.

Proof. Note that dφi is an eigenform for the Hodge Laplacian acting on the one forms.
Now the corollary follows by applying theorem 3.2 to the one form setting with dφi

normalized to have unit length in the L2 sense. �
As a final remark, it is possible to make explicit of all the constants in our argu-

ments. In particular, we could spell out their dependency on the geometric quantities
d, V and K.

Acknowledgments

We would like to thank Gilles Carron for his insightful comments which lead to vari-
ous improvement to the paper. Part of the paper was written while the second author
was visiting the School of Mathematics at the University of Minnesota. He deeply
appreciates its hospitality. He would also like to thank Gang Liu for his helpful com-
ments. The first author is partially supported by NSF grant no. DMS-1105799 and
the second author by NSFC grant no. 11271132.

References

[1] S. Y. Cheng and P. Li, Heat kernel estimates and lower bound of eigenvalues, Comment. Math.
Helv. 56(3) (1981), 327–338.

[2] M. L. Couturier and G. Robert, Lp-pinching and the geometry of compact Riemannian man-

ifolds, Comment. Math. Helv. 69(2) (1994), 249–271.

[3] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm.
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