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THE MUCKENHOUPT A∞ CLASS AS A METRIC SPACE AND
CONTINUITY OF WEIGHTED ESTIMATES

Nikolaos Pattakos and Alexander Volberg

Abstract. We show how the A∞ class of weights can be considered as a metric space.
As far as we know this is the first time that a metric d∗ is considered on this set.
We use this metric to generalize the results obtained in [8]. Namely, we show that for

any Calderón–Zygmund operator T and an Ap, 1 < p < ∞, weight w0, the numbers
‖T‖Lp(w)→Lp(w) converge to ‖T‖Lp(w0)→Lp(w0) as d∗(w, w0) → 0. We also find the
rate of this convergence and prove that it is sharp.

1. Introduction and useful results

The main purpose of this paper is to define a natural metric structure on the classical
Muckenhoupt Ap classes, and generalize a continuity result obtained in [8]. As far as
we know, this is the first time that such metric has been studied in the context of
continuity of norms of Calderón–Zygmund operators. Classically, the Ap spaces have
only been treated as sets with no additional structure on them. Weighted inequalities
have been studied extensively during the last 15 years and it is interesting that all
Lp(w) norms of Calderón–Zygmund operators turn out to be continuous with respect
to the weight w, as we shall see in this paper. Moreover, we find the “rate” of this
continuity with respect to the weight and prove that it is sharp (see Theorem 1.3).
In addition, we can realize the completion of the Ap metric spaces as subspaces of
the BMO space. Many properties of these new complete metric spaces are going to
be considered in Section 2. In [8], the two authors showed that weighted estimates
for classical operators are continuous at the constant weight 1. Thus, Theorem 1.3 is
a generalization of these results, since we prove the whole continuity of the operator
norm with respect to the weight w. At the time that [8] appeared, the authors did not
guess that such a metric on the Muckenhoupt classes behaves in a regular manner,
i.e., forcing all weighted estimates to be continuous.

Such continuity results have been coming up recently in connection with partial
differential equations (PDE) with random coefficients and continuity of norms of
Calderón–Zygmund operators. For example, the continuity at w = 1, was used in [2].
The continuity at any weight can also be important in various questions of PDE. This
and the fact that the proofs here involve some subtle changes in the approach of [8],
made us believe that the main results of the present paper can be of independent
interest.

The metric Ap classes will be considered in Section 2, where we study many prop-
erties of these new spaces, and the main Theorem 1.3, in Section 3. Before we state
and prove the main Theorems in Sections 2 and 3, we need some definitions and
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some already known results about the weighted theory and its relation with the BMO
space.

We are going to work with functions w ∈ L1
loc(R

n) that are positive almost every-
where with respect to Lebesgue measure. Functions like these are known as weights.
The celebrated Ap classes of weights are defined in the following way:

For 1 < p < ∞, we say that w ∈ Ap if for all cubes Q in R
n we have that ([w]Ap

is called the Ap characteristic of the weight):

[w]Ap := sup
Q

(
1
|Q|

∫
Q

w

) (
1
|Q|

∫
Q

w1−p
′
)p−1

<∞,

where p
′
is the conjugate exponent to p, i.e., 1

p + 1
p′ = 1.

The class of A1 weights consists of those w such that there is a positive constant
c with the property:

Mw(x) ≤ cw(x),

for almost every x in R
n, where M is the Hardy–Littlewood maximal function. The

smallest such constant is denoted by [w]A1 and is called the A1 characteristic.
We define the class of A∞ weights as:

[w]A∞ := sup
Q

(
1

|Q|
∫

Q
w

exp( 1
|Q|

∫
Q

logw)

)
<∞.

It is really easy to see that any Ap weight is actually an A∞ weight, and that we
have the estimate [w]A∞ ≤ [w]Ap . It is also true that any A∞ weight is an Ap weight
for some 1 < p <∞. This means that we have the equality:

A∞ =
⋃

1<p<∞
Ap.

Another nice property is that for 1 ≤ p ≤ q ≤ ∞ we have A1 ⊂ Ap ⊂ Aq ⊂ A∞,
where the inclusions here are strict. All of these sets are different for different values
of p and q.

The space of BMO functions in R
n, consists of locally integrable functions f such

that the norm

‖f‖∗ = sup
Q

1
|Q|

∫
Q

|f − fQ| dx
is finite. The BMO space and the A∞ space, have many nice properties. First of all,
if f is a BMO function then for any number λ ∈ (0, c

‖f‖∗
], the function eλf is an Ap

weight, 1 < p <∞, where the constant c depends on p and the dimension n. Secondly,
for small BMO norm, the Ap norm of the weight eλf is bounded by the number 2 for
example (see e.g., [3]).

A subset of BMO that appears in many applications is BLO. It stands for the
functions of bounded lower oscillation. A function f ∈ L1

loc(R
n) is said to belong in

BLO if there is a positive constant c such that:
1
|Q|

∫
Q

f − inf
x∈Q

f(x) ≤ c,

for all cubes Q, where the infimum is understand as the essential infimum. It can be
proved that for any w ∈ A1, the function logw is in BLO. Also if a function f ∈ BLO



METRIC SPACE AND CONTINUITY OF WEIGHTED ESTIMATES 501

then for sufficiently small λ > 0 the function eλf ∈ A1. The reference for all these
results is [3].

For the proofs of our theorems interpolation with change of measure is going to
play an important role and for this reason we need some preliminary results on this
subject as well. In the following (X,M, μ) and (Y,N , ν) will denote measure spaces.
Suppose T is an operator of a class of functions on X into a class of functions on Y .
T is called a sub-linear operator, if it satisfies the following properties:

(i) If f = f1 + f2 and Tf1, T f2 are defined then Tf is defined,
(ii) |T (f1 + f2)| ≤ |Tf1| + |Tf2|, μ almost everywhere,
(iii) For any scalar k, we have |T (kf)| = |k||Tf |, μ almost everywhere.

Let p, q ≥ 1 be two real numbers. We say that T is of type (p, q), if T is
defined for all functions f in Lp(X,M, μ) and there exists a positive number,
K, independent of f , such that

‖Tf‖q,ν ≤ K‖f‖p,μ,

where

‖Tf‖q,ν =
(∫

Y

|Tf |qdν
) 1

q

and

‖f‖p,μ =
(∫

X

|f |pdμ
) 1

p

.

Let μ0, μ1 be two measures for (X,M). If we define the measure μ = μ0 + μ1, then
μ0, μ1 are each absolutely continuous with respect to μ. Thus, by the Radon–Nikodym
theorem, there exists two functions, α0, α1 such that for any E ∈ M,

μj(E) =
∫

E

αj dμ,

where j = 0, 1. In the following we will assume that α0, α1 are never zero. This is
equivalent to asserting that the sets of measure zero with respect to μj , j = 0, 1, are
the same as the sets of measure zero with respect to μ. Thus, in the various measure
spaces that we will consider, the equivalence classes of functions will be the same.

Let 0 ≤ s ≤ 1, and define the measure μs on X by

μs(E) =
∫

E

α1−s
0 αs

1 dμ,

for each E ∈ M. Also assume, that we have two measures ν0, ν1 on N , and define the
measures νr, for 0 ≤ r ≤ 1, just as we did for μs above.

Given any real numbers 1 ≤ p0, p1, q0, q1 and any 0 ≤ t ≤ 1, we define pt, qt, s(t), r(t)
as follows:

(1 − t)pt

p0
+
tpt

p1
= 1,

(1 − t)qt
q0

+
tqt
q1

= 1,

s(t) =
(tpt)
p1

, r(t) =
(tqt)
q1

.

We have the following theorem by [9]:
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Theorem 1.1. Suppose that T is a sub-linear operator satisfying

‖Tf‖qj ,νj ≤ Kj‖f‖pj ,μj

for all f ∈ Lpj (X,M, μj), j = 0, 1. Then, for 0 ≤ t ≤ 1, we have

‖Tf‖qt,νr(t) ≤ K1−t
0 Kt

1‖f‖pt,μs(t) ,

for all f ∈ Lpt(X,M, μs(t)).

In addition to the previous theorem, we need also the following proved in [7]:

Theorem 1.2. If the A∞ norm of a weight w is small, i.e., [w]A∞ ≤ 1 + δ < 2, then
the function f = logw, and any cube Q satisfy

1
|Q|

∫
Q

|f − fQ| dx ≤ 32
√
δ.

Our purpose is to generalize the main Theorem proved in [8]. This generalization
is the following:

Theorem 1.3. Let T be a linear operator such that for some 1 < p <∞,

‖T‖Lp(w)→Lp(w) ≤ F ([w]Ap),

for any Ap weight w in R
n, where F is an increasing, real valued function. Fix an Ap

weight w0. Then:

lim
d∗(w,w0)→0

‖T‖Lp(w)→Lp(w) = ‖T‖Lp(w0)→Lp(w0),

and in addition for any sub-linear operator satisfying the hypothesis of the theorem
we have the estimate:

‖T‖Lp(w)→Lp(w) ≤ ‖T‖Lp(w0)→Lp(w0)(1 + cd∗(w,w0))

for all weights w ∈ Ap with sufficiently small d∗(w,w0), where c is a positive constant
that depends on p, on the function F , on the dimension n and on [w0]Ap .

In order to do that we will define a metric in the A∞ space and this is going to
generalize the convergence [w]Ap → 1 in the sense that this will be equivalent to the
convergence d∗(w, 1) → 0 in the metric d∗.

2. The (A∞, d∗) metric space

Let us observe that if we have any weight w, any positive constant c > 0 and any
1 ≤ p ≤ ∞, then [w]Ap = [cw]Ap . We define an equivalence relation in A∞ in the
following way: for u, v ∈ A∞ we will write u ∼ v if and only if there is a positive
constant c such that u = cv almost everywhere in R

n. This allows us to define the
quotient space:

A∞ = A∞
/

∼ .

In the same way, we define for 1 ≤ p <∞:

Ap = Ap

/
∼ .
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For two elements u, v ∈ A∞, we define the distance function d∗ as:

d∗(u, v) = ‖log u− log v‖∗.

Again it is obvious that all the requirements of a metric are satisfied and the reason
for defining the equivalence relation is exactly because we need to have:

d∗(u, v) = 0 ⇔ u ∼ v.

So we define a metric in A∞, going through the BMO space. We can check that for
an Ap weight w, [w]Ap → 1 is equivalent to d∗(w, 1) → 0 and since Ap ⊂ A∞, the
restriction of the d∗ metric to Ap, makes the class a metric space. The drawback of
these “new” metric spaces is that none of them is complete.

However, the following is an obvious remark that gives more informations about
this “new” spaces. It states that small balls around the constant weight 1, are complete
in the d∗ metric.

Theorem 2.1. Consider a closed ball B̄(1, r) of sufficiently small radius r > 0 and
center at the weight 1, in the metric space (A∞, d∗), i.e., B̄(1, r) = {w ∈ A∞ :
d∗(w, 1) ≤ r}. Then B̄(1, r) is a complete metric space with respect to the metric d∗.

Proof. Consider a Cauchy sequence {wn}n∈N in (B̄(1, r), d∗). This means that the
sequence {logwn}n∈N is Cauchy in the BMO space. But BMO is a Banach space and
so there is a function f ∈ BMO such that logwn → f in BMO as n→ ∞. By the John–
Nirenberg inequality we know that there is a dimensional constant c > 0 such that for
all λ ∈ (0, c

‖f‖∗
] the function eλf ∈ A2. But |‖ logwn‖∗ − ‖f‖∗| ≤ ‖ logwn − f‖∗ → 0

as n → ∞. Here, we use the fact that wn ∈ B̄(1, r). This means that ‖ logwn‖∗ =
‖ logwn − log 1‖∗ ≤ r and r is sufficiently small. Therefore, the number ‖f‖∗ is small
and so the number c

‖f‖∗
is really big. We are now allowed to choose for λ = 1 and we

get that ef ∈ A2 or equivalently there is a weight w ∈ A2 ⊂ A∞ with f = logw. It is
trivial now to see that d∗(wn, w) → 0 as n→ ∞. �

Of course in the previous Theorem, we can replace the A∞ space by any of the other
Ap spaces. We already mentioned that none of the Ap spaces is complete. The proof
of this fact is very simple. Let us prove that A1 is not complete by finding a Cauchy
sequence in the space that has no limit inside A1. It will follow that this example
works for anyone of the Ap spaces. Consider a decreasing sequence −1 < rn < 0 with
limn→∞ rn = −1. Define the A1 weights wn = |x|rn . Then:

d∗(wrn , wrm) = ‖rn log |x| − rm log |x|‖∗ = |rn − rm|‖ log |x|‖∗

and since rn → 1 we see that {wn}n∈N is Cauchy in A1, or equivalently the sequence
{logwn}n∈N is Cauchy in BMO. Its limit in the BMO space is obviously the function
f(x) = − log |x|. This means that for w(x) = 1

|x| we have d∗(wn, w) → 0 as n → ∞,
but since w is not in L1

loc(R
n) it cannot be an A1 weight. So the space (A1, d∗) is not

complete.
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Let us also mention the following result in [4], by Garnett and Jones, that helps
to understand better when a ball in (Ap, d∗) is complete. It states that for a function
f ∈ BMO,

distBMO(f, L∞) := inf{‖f − g‖∗ : g ∈ L∞} ∼ 1
sup{λ > 0 : eλf ∈ A2} .

This means that if we have a Cauchy sequence in Ap, the closer the sequence is to
the L∞ space, the more chances it has to have a limit in Ap.

So now we can try and find the completion of these spaces under the metric d∗. By
definition the completion of (Ap, d∗) is the space Āp that consists of the equivalence
classes of all Cauchy sequences of Ap. We can identify this space as a subspace of
BMO. Indeed:

Āp = {f ∈ BMO : ∃{wn}n∈N ⊂ Ap : lim
n→∞ ‖ logwn − f‖∗ = 0},

and we can think of the Ap class as a subset of Āp, by identifying every weight w
with its logarithm, logw, in BMO. Since the classical Ap spaces form an increasing
“sequence” of the variable p (and of course the same is true for the Ap spaces), the
same is true for this new subspaces of BMO, Ā1 ⊂ Āp ⊂ Āq ⊂ Ā∞ ⊂ BMO, for 1 ≤
p ≤ q ≤ ∞.

They are also convex subsets of BMO. Indeed, consider 1 < p < ∞, and f, g ∈
Āp. This means that there are sequences {wn}n∈N, {vn}n∈N ⊂ Ap such that: f =
limn→∞ wn, g = limn→∞ vn, in BMO. Let 0 < t < 1 be fixed. We will show that
tf+(1−t)g ∈ Āp. For this, we only need to see that tf+(1−t)g = limn→∞ log(wt

nv
1−t
n ),

in BMO, and check using Hölder that the weight wt
nv

1−t
n ∈ Ap, for all n, since:

[wtv1−t]Ap ≤ [w]tAp
[v]1−t

Ap
,

for all w, v ∈ Ap. Thus, tf + (1 − t)g ∈ Āp. It is trivial to see now that Ā∞ is also a
convex subset of BMO. For Ā1 the same holds, since if we have two A1 weights, w, v,
it is trivial to see that wtv1−t ∈ A1 and actually that [wtv1−t]A1 ≤ [w]tA1

[v]1−t
A1

.
Here, let us observe that for any 1 < p < ∞, we have that L∞ ⊂ Āp. There is a

nice result of weighted theory (see [3]) that states the following (we will present the
statement only for A2): there are dimensional constants c1, c2 > 0, such that for a
function φ in R

n we have:
(a) eφ ∈ A2 provided inf{‖φ− g‖∗ : g ∈ L∞} ≤ c1 and
(b) inf{‖φ− g‖∗ : g ∈ L∞} ≤ c2 provided eφ ∈ A2. This means that all functions

f ∈ BMO that satisfy the assumption (a), belong to the Ā2 space. Equiva-
lently, there is a small neighborhood of L∞ inside BMO, that lies inside the
Ā2 space.

We should also mention that since:

BLO = {α logw : α ≥ 0, w ∈ A1},
we can ask the question if the spaces Ā1, BLO are equal. Let us assume that they
are. A classical result of weighted theory is that BMO = BLO − BLO. By our as-
sumption we have that BMO = Ā1 − Ā1. Now consider a function f ∈ BMO.
There are functions φ, ψ ∈ Ā1 such that f = φ − ψ. We know that there are se-
quences of A1 weights {φn}n∈N, {ψn}n∈N such that f = limn→∞ log φn − limn→∞
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logψn = limn→∞ log φnψ
−1
n , where the limit is in BMO. But φnψ

−1
n is an A2 weight

for all n. So we get that Ā2 = BMO. But this is obviously false.
Note that from the argument follows the inclusion, Ā1−Ā1 ⊂ Ā2. Trivially, we have

the more general fact, that for any 1 < p < ∞, Ā1 + (1 − p)Ā1 ⊂ Āp. Also, since we

have that w ∈ Ap ⇔ w1−p
′ ∈ Ap′ , we get the equivalence f ∈ Āp ⇔ (1 − p

′
)f ∈ Āp′ .

For p = 2 we have f ∈ Ā2 ⇔ −f ∈ Ā2, which means that the Ā2 class is symmetric
with respect to the origin in the BMO space. No other Āp class has this property.
Here we should remember the following about power weights. A function of the form
|x|α is an Ap weight in R

n, if and only if −n < α < n(p − 1). The interval for α is
symmetric with respect to the origin, if and only if p = 2. Now we can see that there
is a “correspondence” between the Ā2 space and the interval (−n, n).

3. The continuity in the weight

Our goal in this section is to prove the main Theorem:

Theorem 3.1. Let T be a linear operator such that for some 1 < p <∞,

‖T‖Lp(w)→Lp(w) ≤ F ([w]Ap),

for any Ap weight w in R
n, where F is an increasing, real valued function. Fix an Ap

weight w0. Then:

lim
d∗(w,w0)→0

‖T‖Lp(w)→Lp(w) = ‖T‖Lp(w0)→Lp(w0),

and in addition for any sub-linear operator satisfying the hypothesis of the theorem
we have the estimate:

‖T‖Lp(w)→Lp(w) ≤ ‖T‖Lp(w0)→Lp(w0)(1 + cd∗(w,w0))

for all weights w ∈ Ap with sufficiently small d∗(w,w0), where c is a positive constant
that depends on p, on the function F , on the dimension n and on [w0]Ap .

Here let us mention something that is important. Say that our A∞ weight w is
of the “order” [w]A∞ < 1 + δ. Then by Theorem 1.2 we get that d∗(w, 1) ≤ c

√
δ.

Since Theorem 1.3 is going to be a generalization of the main Theorem in [8], the rate
of convergence that we have in both theorems should agree. The above observation
explains exactly this.

Remark 3.1. Notice that the second half of the previous theorem is true for the
Maximal function (since it is true for all sub-linear operators that are bounded in the
way described in the theorem), i.e., for all weights w ∈ Ap that are sufficiently close
to w0 ∈ Ap, with d∗(w,w0) ≤ δ:

‖M‖Lp(w)→Lp(w) ≤ ‖M‖Lp(w0)→Lp(w0)(1 + cδ).

It is well known (see [1]) that ‖M‖Lp(w)→Lp(w) ≤ c[w]
1

p−1
Ap

, which can be used here.

The argument is similar to the one given in [8], but it uses some small new ideas
in order to overcome the problem that we have to work with two weights w and w0,
instead of “one” weight w, as was done in [8]. We are going to present it because we
have to point out these nice differences.
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Proof. First we will show that for any sub-linear operator that satisfies the assump-
tions of our theorem we have:

‖T‖Lp(w)→Lp(w) ≤ ‖T‖Lp(w0)→Lp(w0)(1 + cδ)

for all weights w ∈ Ap with d∗(w,w0) ≤ δ. Let 0 < δ be a small number that we
consider to be fixed. Fix also an Ap weight w, with d∗(w,w0) < δ. This means that
‖ log w

w0
‖∗ ≤ δ. We would like to write our weight w as w = w1−t

0 W t, for some small
and positive number t (which is going to be about δ), and some weight W ∈ Ap. At
exactly this point, the justification of this fact is diffirent than the one given in [8].
The argument used there can not be used here. Fortunately, we are able to continue

as follows. From the expression we can see that W = w
1
t

w
1
t
0

w0. For this, let us consider

only the case p = 2, but the general case is identical to this one. Since w0 ∈ A2

we know that there is a small ε > 0 such that w1 := w1+ε
0 ∈ A2. Then obviously

w0 = w1−s
1 for small s > 0. To continue, consider the function f = log

(
w
w0

) 1
s

. The
BMO norm of f is really small since:

‖f‖∗ =
1
s
d∗(w,w0) ≤ 1

s
δ,

and so by the John–Nirenberg inequality we have that for all λ ∈ (0, c
‖f‖∗

] the function

eλf =
(

w
w0

)λ
s ∈ A2, where c is a positive constant that depends only on the dimension.

If we choose λ = c0
δ , c0 > 0 is any constant less than or equal to sc, we see that

w2 :=
(

w
w0

) c0
δs ∈ A2, which implies that the function w1−s

1 ws
2 ∈ A2. Then:

W :=
w

1
t

w
1
t
0

w0 = w1−s
1 ws

2 ∈ A2,

where we put t = δ
c0

. Here we should mention that the A2 norm of W can be chosen
to be bounded above by a constant that depends only on the A2 norm of w1. On the
other hand, [w1]A2 depends only on the A2 norm of w0, and this is fixed. With this
in mind, let us assume that the A2 characteristic of W is bounded above by c. The
important thing here is that it does not depend on δ.

Now the proof continues as in [8], namely: Write γ = ‖T‖Lp(w0)→Lp(w0). By the
interpolation result of Stein and Weiss, Theorem 1.1, for X = Y = R

n, M = N = L
and μ0 = ν0 = w0dx, μ1 = ν1 = Wdx, where by L we denote the σ-algebra of
Lebesgue measurable sets in R

n, we get

‖T‖Lp(w)→Lp(w) ≤ γ1−t‖T‖t
Lp(W )→Lp(W )

≤ γ1−tctF
(
[W ]Ap

)t

≤ γ1−tctF (c)t,

and the right-hand side goes to γ as t → 0+ or equivalently as δ → 0+. In other
words,

lim sup
d∗(w,w0)→0

‖T‖Lp(w)→Lp(w) ≤ ‖T‖Lp(w0)→Lp(w0),
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and in addition we have the desired estimate:

‖T‖Lp(w)→Lp(w) ≤ ‖T‖Lp(w0)→Lp(w0)(1 + cδ),

where c is a constant depending on n, p and [w0]Ap , for all weights w in Ap that are
δ close to w0 in the d∗ metric.

We can also conclude the following:

Proposition 3.1. The set
{logw : w ∈ Ap}

is open in BMO for all 1 < p < +∞.

Proof. To see this fix w0 ∈ Ap and choose sufficiently small δ > 0. For f ∈ BMO with
‖f − logw0‖∗ ≤ δ, write f = log u, where u is a positive function. Then follow the
previous reasoning in the beginning of the proof, with w = u and write u = w1−t

0 W t,
for 0 < t < 1. It follows that W ∈ Ap, if δ > 0 is small depending only on the Ap

norm of w0, and so u = w1−t
0 W t is an Ap weight, by Hölder’s inequality. As we can

see, this is exactly the same argument as before. This result is new and could not be
obtained from the techniques used in [8]. �

Now we show that for a linear operator we have the estimate:

‖T‖Lp(w0)→Lp(w0) ≤ lim inf
d∗(w,w0)→0

‖T‖Lp(w)→Lp(w).

Here again the reasoning requires subtle, but not difficult modification from the one
given in [8]. Let us assume for simplicity that p = 2 and that ‖T‖L2(w0)→L2(w0) = 1.
Note that other p′s can be treated similarly. So far, we have proved that:

lim sup
d∗(w,w0)→0

‖T‖L2(w)→L2(w) ≤ 1

and:
d∗(w,w0) ≤ δ < 1 ⇒ ‖T‖L2(w)→L2(w) ≤ 1 + cδ.

Let Mφ denote the operation of multiplication by φ. To finish the proof of the conti-
nuity at w = w0 we are going to assume that:

lim inf
d∗(w,w0)→0

‖T‖L2(w)→L2(w) = lim inf
d∗(w,w0)→0

∥∥∥M
w

− 1
2

0 w
1
2
TM

w
1
2
0 w− 1

2

∥∥∥
L2(w0)→L2(w0)

< 1

and get a contradiction. This means that there is τ > 0 small, and a sequence of A2

weights wn such that d∗(wn, w0) → 0 as n→ ∞ and in addition:

(3.1) ‖w− 1
2

0 w
1
2
nTw

1
2
0 w

− 1
2

n g‖L2(w0) ≤ (1 − τ)‖g‖L2(w0)

for all functions g ∈ L2(w0).
Fix now any cube Q in R

n. Here we can make the normalization assumption
1

|Q|
∫

Q
wn

w0
dx = 1 for all n ∈ N. We claim two things:

(1∗) ‖w− 1
2

n −w− 1
2

0 ‖L2(w0,Q) → 0 as n→ ∞ where by L2(w0, Q) we mean the L2(w0)
norm over Q, and

(2∗) there exists a subsequence kn such that wkn → w0 almost everywhere in the
cube Q.
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Obviously (2∗) follows from (1∗). For a proof of 1∗, see lemma after the end of
this proof. Now without loss of generality we can assume that the subsequence is the
original sequence wn. Note that (1∗) implies ‖w− 1

2
n f −w

− 1
2

0 f‖L2(w0,Q) → 0 as n→ ∞
for all bounded f , and so for g = fw

− 1
2

0 , we get ‖T (w
1
2
0 w

− 1
2

n g) − Tg‖L2(w0,Q) → 0 as
n→ ∞ and this implies that for a subsequence of wn (which again we assume that is

the whole sequence), w− 1
2

0 w
1
2
nTw

1
2
0 w

− 1
2

n g → Tg almost everywhere in the cube Q. It is
time to apply Fatou’s lemma in inequality (3.1) and get:∥∥∥ lim inf

n→∞ w
− 1

2
0 w

1
2
nTw

1
2
0 w

− 1
2

n g
∥∥∥

L2(w0,Q)
≤ lim inf

n→∞

∥∥∥w− 1
2

0 w
1
2
nTw

1
2
0 w

− 1
2

n g
∥∥∥

L2(w0,Q)

≤ (1 − τ)‖g‖L2(w0,Q).

Here g = fw
− 1

2
0 with bounded f form a dense family in L2(w0, Q). For g from this

dense family it follows:

‖Tg‖L2(w0) ≤ (1 − τ)‖g‖L2(w0)

by letting the cube Q expand to infinity, for g in some dense subclass of L2(w0) . By
assumption ‖T‖L2(w0)→L2(w0) = 1 and this is how we have our contradiction. �

All that remains is the following lemma:

Lemma 3.1. Let w0, w ∈ A2 such that d∗(w,w0) ≤ ε, where ε is sufficiently small. Let

us have a normalization assumption 1
|Q|

∫
Q

w
w0
dx = 1. Then ‖w− 1

2
n −w

− 1
2

0 ‖L2(w0,Q) ≤
|Q| 12 c(ε) 1

2 , where c(ε) goes to 0 as ε goes to 0.

Proof. We want to estimate the expression:

1
|Q|

∥∥∥w− 1
2 − w

− 1
2

0

∥∥∥2

L2(w0,Q)
=

1
|Q|

∫
Q

w0

w
+ 1 − 2

|Q|
∫

Q

(w0

w

) 1
2
.

The last integral can be taken care of really easy, since by our normalization assump-
tion and Cauchy–Schwartz we get the following:

1
|Q|

∫
Q

(w0

w

) 1
2

=
1
|Q|

∫
Q

(
w

w0

)− 1
2

≥
(

1
|Q|

∫
Q

(
w

w0

) 1
2
)−1

≥
(

1
|Q|

∫
Q

w

w0

)− 1
2

= 1.

Therefore, the quantity that we need to estimate is bounded above by:

1
|Q|

∥∥∥w− 1
2 − w

− 1
2

0

∥∥∥2

L2(w0,Q)
≤ 1

|Q|
∫

Q

w0

w
− 1.

It is time to use the fact that d∗(w,w0) ≤ ε. We get that the weight w
w0

is in the

A2 class and actually because the BMO norm of log
(

w
w0

)
is really small, the A2

characteristic is bounded by 1+ c(ε), where c(ε) is a constant that goes to 0 as ε goes
to 0. So:

1
|Q|

∥∥∥w− 1
2 − w

− 1
2

0

∥∥∥2

L2(w0,Q)
≤

[ w
w0

]
A2

− 1 ≤ c(ε).
�



METRIC SPACE AND CONTINUITY OF WEIGHTED ESTIMATES 509

4. Comments and observations

Let us have a closer look to what the previous Theorem tells us. Consider any linear
operator T that satisfies the assumptions of Theorem 1.3. This means that for any
w ∈ Ap we have a number ‖T‖Lp(w)→Lp(w). So we have a map FT : Ap → R defined
by the formula:

FT (w) = ‖T‖Lp(w)→Lp(w).

First, we should observe that for w ∈ Ap this is well defined since ‖T‖Lp(w)→Lp(w) =
‖T‖Lp(cw)→Lp(cw) for all w ∈ Ap and all positive constants c > 0. By Theorem 1.3 we
have that this map is continuous, since:

lim
d∗(w,w0)→0

|FT (w) − FT (w0)| = 0

for all weights w,w0 ∈ Ap.
In [8] the authors showed that for the Hilbert transform, H, in S

1 we have that for
all sufficiently small δ’s, there is a weight w ∈ A2, with the properties that [w]A2 ≤
1 + δ < 2 and:

c
√
δ ≤ ‖H‖L2(w)→L2(w) − 1.

This means that Theorem 1.3 is sharp for p = 2 at the constant weight w0 = 1. This
is true also for the Hilbert transform in the line and for the Martingale transform. It
is a good point to mention that there are singular operators like the Riesz projection
P+ in S

1, that converge faster to their L2(dx) norm than the previous mentioned
operators (see [8]). Namely, there is universal constant c > 0 such that for all weights
[w]A2 ≤ 1 + δ < 2, we have:

‖P+‖L2(w)→L2(w) − 1 ≤ cδ.

In addition, there is a universal constant c1 > 0, such that for all sufficiently small
δ’s, there is weight w ∈ A2 with the properties [w]A2 ≤ 1 + δ and:

c1δ ≤ ‖P+‖L2(w)→L2(w) − 1.

We should also mention that in the proof of Theorem 1.3, there is only one time
(namely in the second step) that we really need to use the fact that our operator is
linear in order to get that:

‖T‖Lp(w0)→Lp(w0) ≤ lim inf
d∗(w,w0)→0

‖T‖Lp(w)→Lp(w).

It is used when we claim that the convergence ‖w− 1
2

n f−w− 1
2

0 f‖L2(w0,Q) → 0 as n→ ∞,

implies the convergence ‖T (w
1
2
0 w

− 1
2

n f) − Tf‖L2(w0,Q) → 0 as n→ ∞.
By [5, 6], we know that for any Calderón–Zygmund operator T , any 1 < p < ∞,

and any Ap weight w, we have the estimate:

‖T‖Lp(w)→Lp(w) ≤ c[w]
max{1, 1

p−1}
Ap

,

where c is a universal constant that does not depend on the weight, and so we see
that Theorem 1.3 can be applied for this class of operators, since the function F
that appears in the statement of this Theorem can be chosen to be equal to F (x) =
cxmax{1, 1

p−1}.
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