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ACTION-MINIMIZING PERIODIC AND QUASI-PERIODIC
SOLUTIONS IN THE n-BODY PROBLEM

Kuo-CHANG CHEN, TIANCHENG OUYANG AND ZHIHONG XIA

ABSTRACT. Considering any set of n-positive masses, n > 3, moving in R? under New-
tonian gravitation, we prove that action-minimizing solutions in the class of paths with
rotational and reflection symmetries are collision-free. For an open set of masses, the pe-
riodic and quasi-periodic solutions we obtained contain and extend the classical Euler—
Moulton relative equilibria. We also show several numerical results on these action-
minimizing solutions. Using a natural topological classification for collision-free paths
via their braid types in a rotating frame, these action-minimizing solutions change from
trivial to non-trivial braids as we vary masses and other parameters.

1. Introduction

Consider a system of n (>3) positive masses mq,ma, ..., m, moving in the complex
plane C under Newton’s law of gravitation:
(1.1) ty 0 U(x), k=1
. myir = —U(x), =1,...,n,
BTk = g

where x;, € C is the position of m; and

Ulx)=U(z1,...,24) = Z _mamy

Ti — T
1§i<j§n| v J

is the potential energy. The kinetic energy is given by
iy — L S,
(&) = iizzlm”xil :
Assume the mass center is at the origin and let V' be the configuration space:

V= ze@":imixi:o

=1

For any fixed positive constant T', equations (1.1) are the Euler-Lagrange equations
for the action functional Az : H (R,V) — RU {+o00} defined by

An(z) = /O K(#) + U(z) dt.
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By rescaling properties of the n-body problem, there is no loss of generality by fix-
ing T = 1.

In this paper, we are interested in searching for action-minimizing solutions that
return to their original configurations up to rotations, after a period of time T. A
path z in H! (R, V) is said to has ¢-rotational symmetry, ¢ € (0, ], if there exists
some T > 0 such that

z(t+T) = e®z(t)
for any t € R. The number T is called a relative period or simply a period of x. Let
Hyr:={re€ HL (R, V): x(t+T) = e z(t)}.

The conventional definition of inner product on the Sobolev space H*([0,T],V) also
defines an inner product on Hy r:

T
& y)or = / (1), y() + (i (8), (1)) dt.

Here (-,-) stands for the standard scalar product on (R?)". For any = in Hy 7, we
have (x(0),z(T)) = |2(0)||x(T)| cos ¢. The assumption ¢ € (0, 7] ensures that A is
coercive and attains its infimum on Hy 7 (see [2, Proposition 2], for instance). Critical
points of Az on Hy r are critical points of Az on H'([0,77],V). One can easily verify
that, for any x € Hy 7 and 7 € R,

T+T1
Ar(z) = / K@) + U) de,

TH4T1
(@, 9) g = / (), y(1)) + (@ (), 5(0)) dt.

Following these observations, any critical point « of Ar on Hy r is a solution of
(1.1), except when there are collisions. If we can show that x has no collision on [0,7),
then there is no collision at all and x indeed solves (1.1) for all ¢ € R. Moreover, z is
periodic if ¢/27 is rational, it is quasi-periodic if ¢/27 is irrational, provided that x
is not circular.

Fix T > 0 and ¢ € (0, 7]. Imagine that we are standing on the plane of motion which
rotates counterclockwise with angular velocity % By adding the time axis, collision-
free trajectories in Hy 7 draw out braids on n strands in the three-dimensional space-
time. These braids are pure braids; that is, each strand ends at the same space coor-
dinates as those at which it begins. We say two paths are having the same braid type
if one can be continuously deformed to the other among pure braids. This defines an
equivalence relation on collision-free paths in Hy 7 and the equivalence classes can be
identified as the normal subgroup of pure braids for the classical Artin braid group
on n strands. This point of view, introduced in [13] where the inertia plane is not
rotating (¢ = 0), is an analogy of Poincaré’s [17] classification using homology types.
It provides a natural topological classification for collision-free planar motions.

The most well-known solutions with rotational symmetry are relative equilibria.
These are the only solutions satisfying ¢-rotational symmetry for every ¢ € (0, «], and
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they are all topologically equivalent in the sense that they all draw out trivial braids
in an appropriate rotating frame. For very small ¢ the classical Poincaré continuation
method [16,19] has been used to construct certain solutions with non-trivial braids.
The perturbative nature of this approach requires either the presence of nearly zero
masses or a very tight subsystem.

In this paper, our major focus is on the existence and minimizing properties of
solutions that are not included by these classical results. The angle ¢ is not assumed
to be small and in most cases all masses are comparable in size. In particular, for an
open set of masses including equal masses, we prove the existence of a class of periodic
and quasi-periodic solutions that contain and extend the classical Euler—-Moulton
relative equilibria. Our main theorems will be stated in the next section and the
proofs will be given in Sections 3 and 4. Section 5 contains several related numerical
results. Minimizing arguments have been previously used to construct miscellaneous
solutions, mostly with equal masses. We refer the readers to the excellent survey [7]
and references therein for these relevant results.

2. Main theorems

Throughout this paper it is always assumed ¢ € (0,7]. Without any constraint on
the space Hy 7, the action minimizers for Ar on Hy 7 are planar relative equilibria.
This was proved in [8] for the case ¢ = m, and general cases can be obtained by
imitating the proof in there. For the three-body problem, these action-minimizers
are Lagrange equilateral solutions; for general n-body problem, action-minimizers are
planar relative equilibria with the smallest normalized potential.

In order to obtain solutions other than relative equilibria, we impose a reflection
symmetry on the path space Hy 7. Fix ¢ and T, a path x in Hy 7 is said to has
reflection symmetry if

2(t) = 2(-0),

for all t € R, where z(t) denotes the complex conjugate of z(t).

Let Hy 1 r be the set of paths in Hg 7 with the reflection symmetry. By Palais’
principle of symmetric criticality [15], critical points of Ap on Hy 1 g are also critical
points on Hy 7. Due to the reflection symmetry, [0,7/2] is a fundamental domain for
the curves in Hy 1 g; that is, the canonical projection Hyrr — H'([0,T/2],V) is
injective and there is no proper closed subinterval of [0,7'/2] with this property. It is
an easy exercise to check that for curves in Hy 7 gr, the n-bodies are collinear at ¢ = 0
and t = T'/2. This greatly simplifies our minimization process. To simply put it, what
we are looking for are the action-minimizers among the paths of the n-body problem
that start from a collinear configuration and return to a collinear configuration at
t=T/2.

Our first result is:

Theorem 2.1. For any fized set of n (>3) positive masses my, ma, ..., My and any
fized ¢ € (0, 7], the minimum of Ar on Hy 1 g is attained and the minimizing trajec-
tories are collision-free.
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Observe that the collinear relative equilibria, also called Euler—-Moulton relative
equilibria [9, 14], are critical points of A7 in Hg 7 r. This may suggest that the
action-minimizer in the above theorem could very well be these known, hence trivial,
solutions. Indeed, for ¢ small, the solutions given by the theorem are Euler-Moulton
relative equilibria. However, for an open set of masses, for larger values of ¢, it can
be proved that they are not relative equilibria, and consequently what we obtained
is a larger class of new solutions that contains the classical Euler—-Moulton relative
equilibria.

Theorem 2.2. There is an open set M of masses containing equal masses with
the following properties: for any m = (mq,ma,...,my,) € M there corresponds a
¢c € (0,7), called the critical angle of m, such that Fuler—Moulton relative equilibria
are absolute minimizers of Ar in Hy p g provided 0 < ¢ < ¢, but cease to be absolute
mianimizers of Ar in Hy T r when ¢ < ¢ < .

We have restricted ¢ to (0,7] for simplicity. If ¢ is larger than m, then action-
minimizers may be attained by a shorter path through a clockwise rotation. It may
happen that, for some set of masses, the global action-minimizers are always Euler—
Moulton solutions. However, numerical results suggest that for most, if not all, positive
masses, the critical angle ¢. is less than 7.

As discussed before, Euler—-Moulton solutions all have the trivial braid type. To
better illustrate some of the interesting braids, we take the simple case, n = 3. The first
simple braid types are those of the so-called prograde and retrograde trajectories. The
prograde (respectively, retrograde) trajectories are the ones such that two particles
revolves around each other in one direction, while the center of their masses revolves
around the third particle in the same direction (respectively, opposite direction). We
can further classify the trajectories according to the number of rotations of the close
binaries within one period. Let By, k € Z, be the braid type of the trajectories where
the binaries complete k revolutions within [0, 7"]. We use positive k’s for prograde and
negative k’s for retrograde. By is the trivial braid type. The class of paths with trivial
braid type for n > 3 will be also denoted by By.

Let B be a pure braid on n strands and Hy 7 g, be the set of all collision-free
paths in Hy 7 r whose braid type is B. It is natural to ask whether the minimum
of Ar over Hy 1 g p can be attained in the interior of Hg 7 r p. This is essen-
tially the question raised by Poincaré [17] in 1896. These minimizers, if exist, can
be different from the more global minimizers provided in Theorem 2.1. Obviously,
collision trajectories are the only possible obstruction for us to obtain these braid-
type minimizers. In [4] it was proved that, for n = 3 and ¢ away from zero, action-
minimizers within the class of retrograde paths exist for most masses. On the other
hand, the results in [21] suggest that action-minimizers do not exist in most braid
classes.

3. Action-minimizers are collision-free

This section is devoted to proving Theorem 2.1, which states that that action-
minimizers in Hy 7 r are collision-free.
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First we consider the minimizing problem with fixed ends:

(3.1)  inf {/T K@)+ Uly)dt : y € H(jr, 7], €, y(m) = &1, y(7) = 52} .

A fundamental result by Marchal [12] (see Chenciner [6] for a more complete proof)
states

Marchal’s theorem. Given any &1, & € C™. Minimizers of the fived-ends problem
(3.1) are collision-free on the interval (1, T2).

Note that the space C™ in (3.1) and Marchal’s theorem can be replaced by the
configuration space V. This is because any minimizer for the fixed-ends problem is a
solution to (1.1), then the linear momentum is conserved, and therefore it has to stay
on V at any instant if both & and & belong to V.

In this and the next section, the proofs of our main results require analysis on how
the values of A7 vary as one collision path is deformed to a non-collision one. For the
convenience of this deformation argument, we “enlarge” the space Hy 1 and Hy 1 R
by replacing V' with C™. Actually, the rotational symmetry assumption automatically
implies that action-minimizers stay entirely in V.

Near an isolated collision, it is well known that the bodies involved in this collision
will approach the set of central configurations [18]. We can tell more if the solution
under concern is action-minimizing:

Lemma 3.1. (Venturelli [22, Theorem 4.1.18], Chenciner [6, Section 3.2.1]).

If a minimizer x of the fived-ends problem on time interval [11,T2] has an isolated
collision of k < n bodies, then there is a parabolic homothetic collision—ejection solu-
tion T of the k-body problem, which is also a minimizer of the fixed-ends problem on

[T1, T2].

Let v(t) € Hy r,r be a minimizer of Ap. By Marchal’s theorem, ~(t) is collision-
free for t € (0,7'/2). Therefore, the only possible collisions occur at ¢t = 0 (mod T') or
t =T/2 (mod T') or both. We will show first, as a simple case, that it is impossible
to have binary collisions and then we will show that it is impossible to have any
collisions.

Lemma 3.2. Let y(t) € Hyr,r be a minimizer of Ar. Then (t) has no binary
collision.

Proof. As stated above, we only need to exclude binary collisions at ¢ = 0, 7'/2. By
the minimizing properties of ~(¢), v(t) is a solution to the Euler-Lagrange equation
for t € (0,7/2). Without loss of generality, assume m; and mq collide at ¢ = 0. The
case a binary collision occurs at t = T'/2 is similar. We will show that, by replacing
7v(t) with a different but collision-free path in Hy 7 g, the action can be reduced, hence
contradicting that ~(¢) is an action-minimizer.
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Let q1(t) € R? and ¢2(t) € R? be the position of m; and mg relative to their center
of masses; i.e.,

qz(t) = xl(t) — (mlxl(t) + mng(t))/(ml + mg), 1= 1, 2.

According to Lemma 3.1 and the fact that v(¢) is an action-minimizer for fixed-ends
problem on small time interval [0,7], to prove by contradiction, we only need to
handle the case ¢ = (¢1,¢2) has zero energy and approaches homothetically to zero
as t approaches zero. By Sundman’s estimate [20], there is a unit vector v € R? and
a non-zero number a such that

@1 (t) = ama (% + o(t*/%))v

and
q2(t) = —amy (t2/3 + o(tQ/S))v.
Moreover,
@1(t) = %amg (t_1/3 + O(t_1/3))v
and

: 2 _ _
Go(t) = —gaml(t U3 4o(t 1/3))11.

By switching m and mq if necessary, we may assume that ¢ > 0. The motion of
the binary is parabolic, this implies that a® = Wimz)z. Let A1% be the action of
the binary m; and mgy with respect to their center of masses for ¢ € [0, 7]. Then

lqi(t) — q2(t)]

= §a2m1m2 (m1 + m2)71/3 + O(Tl/s).

We now change the path within our path space so as to reduce the binary ac-
tion, thereby contradicting the assumption that «(¢) is an action-minimizer. First,
we remark that near collisions, the collision particles contribute most to the action,
of the order of O(7'/3), whereas the other particles only contribute of the order of
O(7). When the direction of the binary collision is parallel to the z-axis, v = (1,0),
we fix 7 small and choose the new path (g1, g2) that is stationary: ¢1(t) = q1(7) =
(ama7?/3,0) + o(7%/3) and Ga(t) = qo(1) = (—amy7%/3,0) + o(72/3), for all t € (0, 7).
The new action

1 _ 1 .
A(aae) = [ gmildr)F + gmalia) + at
0

L 2
A}'Q(qla QQ) = §a2m1m2(m1 + m2)7—1/3 + 0(7_1/3)

is approximately one sixth of the original action. More generally, when the collision
direction v = (&, ) is not perpendicular to the x-axis, consider the new path (g1, G2)

G1(t) = (Req1(7),Imq, (¢¥)) = (am2572/3,am277t2/3) + 0(72/3,152/3),
G2(t) = (Rega(7),Im gz (t)) = —(amlsz/g, amlntz/g) + 0(7'2/3,152/3),

t € [0,7]. For small 7, it clearly reduces the original action because both kinetic and
potential energy are reduced.
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When the collision direction is perpendicular to the z-axis, v = (0,1), it is harder
in this case to reduce the action, for we need to bring the particles to the z-axis at
t = 0. We may naively take a circular trajectory starting at ¢ = 7. It turns out that
the action is not reduced by this path. Instead, we take a straight line with constant
speed:

Qi(t) =Tmqy(7)(1 = t/7, t/7) = amor® (1 = t/7, t/7) + o(r?/?),
G@o(t) = Tmqa(7)(1 = t/7, t/7) = amy 73 (=1 + t/7, =t/7) + o(7*/?),

for ¢t € (0,7). Again, we compute the action of the binary under this new path.

3vV2 2\ 4

A2(q1, ) < (
which is very close to, but smaller than the original action. In the original binary
action, the kinetic part and the potential part in the Lagrangian contributes equally
to the action. In this new path, the kinetic part of the action is about 3\@/4 of
the original action and the contribution from the potential part is less than \/5/3
of the original potential contribution. Here we used the shortest distance in (0, 7) for
the upper bound of the potential function. There are other paths that reduce both
kinetic and potential actions.

When the collision direction is other than x- or y-axis, we choose the shorter path
moving the particles to the z-axis, then the action is smaller than when the collision
direction is in the y-axis.

This proves that no binary collision is possible for the action-minimizer. O

We now suppose that there is a k-tuple collision, involving mi,mo,...,mg, at
t = 0 for the action-minimizer (¢). Again, according to Lemma 3.1, we only need to
rule out the case that mi, mo, ..., my forms a central configuration and approaches
homothetically to the k-tuple collision as t — 0" with zero total energy. Let ¢ (t),
q2(t), ..., qi(t) be the positions of the k bodies relative to their center of masses.
Then there exist vectors ai, as, ..., ax in R? such that ¢;(t) = a; (t2/3 + o(t2/3)) and
Gi(t) = 2a;(t713 + o(t71/3)), for i = 1,2,...,k. The vectors a1, as,...,a; form a
central configuration for the k particles with the energy constraint:

2

k
1 m4im; o
My - —— =0
— 2 — _|a; — a,|
i=1 1<i<j<k

2
Za;
3

If a1, ao, ..., ax form a collinear central configuration, then we can do the same
as we did for the binary collisions to reduce the action through a collision-free path.
Therefore, we assume that ai, ao,...,ar are not collinear. Let a; = (§,m:), i =
1,2,..., k. We take the following new path, for ¢ € (0, 7):

QZ(t) = (Reqi (T)7 Imql(t)) = (Ei72/37 77@'t2/3) + 0(7—2/37 t2/3)7 1= 17 27 teey k.
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Obviously, both the kinetic energy and the potential energy are reduced under the
new path and therefore the action is reduced for ¢ € (0,7). Since aq,as,...,a are
not collinear, the number of the particles involved in a possible collision at ¢t = 0 is
less than k.

By induction, there cannot be any collision for the action-minimizer at ¢ = 0. This
proves Theorem 2.1.

4. Bifurcation from Euler—Moulton relative equilibria

Action-minimizers described in Theorem 2.1 could be the Euler—-Moulton relative
equilibria, and this is indeed the case for small ¢. In this section, we will show that,
by treating ¢ as a parameter, for an open set of masses the action-minimizers undergo
a bifurcation from Euler—-Moulton relative equilibria to other classes of solutions. This
will imply Theorem 2.2 and the existence of different classes of solutions.

The first claim in Theorem 2.2 follows from a classical Weierstrass theorem, which
states that for positive-definite Lagrangian systems, all solutions are action-minimizers
for small time intervals. Even though we fixed the period T', which is not necessarily
small, we can rescale the n-body system so that the Euler-Moulton solution, with
small angle ¢ and large size, can be regarded as Euler—-Moulton solution with fixed
size, small T". Therefore, for ¢ small enough, they are action-minimizers.

For the rest of the theorem, we first take n = 3 and let m; = mas = mg = 1, the
Fuler circular solution is given by

x1(t) = (—acoswt, —asinwt),
.’Eg(t) = (070)7

x3(t) = (acoswt, asinwt),

where
a*w? =5/4.

If we take ¢ = m and T = 1, for the solution to be in Hy 1 g, we have w =
and therefore a® = 5/(47?). Calculating the action of this trajectory is easy. It is
approximately 7.467.

Now we replace it with a different path,

z1(t) = (—0.5 coswt, —0.5sin wt),
xo(t) = (0,0.5sinwt),
x3(t) = (0.5 coswt, 0),

This new path and the Euler solution belong to different braid classes. It is a ret-
rograde path; that is, its braid type is B_;. The action of this path is approxi-
mately 7.213, which is smaller than the action of the Euler solution. By continuity,
this implies that the Euler solution is not an action-minimizer in Hy 7 for an open
set of masses and an open set of ¢ containing 7. This proves Theorem 2.2 for the
case n = 3.

Now for arbitrary n > 4, we again take m; = mg = --- =m, =1l and T = 1.
Let by < by < --- < b, be a collinear central configuration. The collinear central
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configurations are symmetric for equal masses and therefore b; = —b,1_; for i =
1,2,...,n. The Euler—-Moulton relative equilibrium solution is given by

x;(t) = (ab; coswt, ab; sinwt), 1<i<n,
where again a®w? is equal to a fixed constant depending on the chosen central config-
uration, so as to balance the centrifugal force with the gravitational force.

To reduce the action, we keep all the paths for msy, ms, ..., m,_1 and change the

path for my and m,, to:
x1.0(t) = (aby n coswt, —aby , sinwt).
The pair m; and m,, rotate clockwise as oppose to counterclockwise rotations for all
other bodies:
x;(t) = (ab; coswt, ab; sinwt), 2<i<n-—1.

The kinetic energy for the new pair stay the same. However, the potential energy is
reduced, for one easily verifies that under the new path

a a 1 1
I I P e TN B T A R Y
for 2 <i<mnj/2.
Therefore, for equal masses or close to equal masses, the critical angle ¢. < 7. This
completes the proof of Theorem 2.2.

Same arguments can be applied to many other set of masses. Numerical evidences
suggest that Theorem 2.2 holds for all masses. See Section 5 for examples.

Remark 4.1. The idea of proof for Theorem 2.2 comes from the observation that
retrograde paths can have lower action than Euler—-Moulton solutions when ¢ is close
to . However, determining the braid types of the solutions (other than relative equi-
libria) obtained in Theorem 2.2 is a non-trivial task. For most choices of masses in
the three-body problem, existence of solutions in Hy 7 r p , (that is, the space of
retrograde paths in Hy 1 g) with ¢ away from zero was proved in [4] (see also [5]). We
conjecture that, for any n, the action-minimizing solutions obtained in Theorem 2.2
for ¢ € (¢¢, | have non-trivial braid types.

5. Some numerical results

This section includes some numerical solutions for the three- and four-body problems
in the function space H, 1 r. For convenience we set 7' = 1. As we shall see, for
various choices of masses, the critical angles ¢. described in Theorem 2.2 fall inside
the interval (7/2, ).

Figure 1 shows some action-minimizing retrograde orbits with action lower than all
Euler solutions. See [4,5] for a rigorous existence proof for such orbits. The upper left
orbit was first numerically obtained by Hénon [11]. Below the other three orbits, there
are values of A; for the Euler solutions with the same initial ordering as the designated
retrograde orbits. For instance, below the upper right orbit, the value of A; for the
Euler solution x € Hy 1,z with (mq, ma, mg) = (1,1, 10) and x1(0) > x2(0) > 23(0) is
approximately 31.6355. However, this is not the Fuler solution with minimum possible
action. The one with minimum action is initially ordered z1(0) > x3(0) > x4(0), for
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FIGURE 1. Action-minimizing retrograde orbits with ¢ = .

which we have A4; ~ 30.3648. This is still greater than the action of the retrograde
path we obtained. Therefore, the set M described in Theorem 2.2 may include a
neighborhood of m = (1,1, 10) (and any other ordered triple consisting of 1,1,10).

The two orbits in Figure 1 with (my, ma, m3) = (1,5,10) are both retrograde but
in Hy 1 r they are topologically distinct. When viewed from a rotation frame, as
described in Section 1, the one on the left has msy, ms wind around each other in
clockwise direction, whereas the one on the right has m; in place of ms. The value of
A =~ 87.5596 for the Euler solution is for the case x1(0) > 22(0) > 23(0). The Euler
solution with minimum action is ordered z1(0) > 23(0) > 22(0). In this case, the
value of A; is approximately 86.3204, which is still greater than the action of both
retrograde orbits. Therefore, the set M described in Theorem 2.2 may also contain
neighborhoods for ordered triples consisting of {1,5,10}.
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Aj(z) = 59.9617 (Euler solution Aj ~ 55.1591) A1 (x) = 97.6040 (Euler solution A1 ~ 55.1591)

FIGURE 2. Some retrograde orbits with ¢ < 7.

Figure 2 shows some retrograde orbits that are local action-minimizers with 7/2 <
¢ < m. The upper left orbit is also included in Hénon’s family [11]. The upper right
orbit is quasi-periodic since the angle ¢ is not commensurable with 7. None of these
orbits is absolute minimizer since their actions are all greater than the actions of the
FEuler solutions with the same initial ordering. This suggests that the critical angle ¢,
described in Theorem 2.2 are most likely to fall inside (7/2, 7).

In Figure 3, except the lower right orbit, the other three orbits are “double retro-
grade” in the sense that their braids are constituted by two separate pairs of retrograde
braids. To be more precise, their braid type is the one on the left of Figure 4. The
lower right orbit, on the other hand, has the more complicated braid depicted on
the right of Figure 4. This orbit periodically changes its shape between collinear and
square configurations. The proof for its existence can be found in [1,2]. The upper
two orbits can be found in [3,10]. The value of A; for the Euler-Moulton solution
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z) ~ 13.365 (Euler Moulton A ~ 14.6132

FiGURE 3. Action-minimizing orbits with four bodies.
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FI1GURE 4. Braid types of the solutions in Figure 3.
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Aj(z) ~ 110.467 (Euler-Moulton A; = 115.1587) Aj(z) = 91.575 (Euler-Moulton A = 72.5454)

FIGURE 5. Double retrograde orbits with four distinct masses.

below the lower left orbit is already the minimum among all Euler—Moulton solutions
with masses {1,1,2,2}.

Figure 5 illustrates again some admissible masses described in Theorem 2.2. Assume
¢ = m. For the case {my, ma, mg,my} = {0.7,1,7,10}, the minimum possible action
among all Euler—-Moulton solutions is approximately 129.0106, which is greater than
the action of the upper left orbit. As for the case {mi, ma, ms,ms} = {1,2,5,8},
the value of A; for the Euler—-Moulton solution below the lower left orbit is already
the minimum among Euler—-Moulton solutions. Apart from (1,1,1,1) and all ordered
quadruples for {1,1,2,2}, as we saw from Figure 3, the set M in Theorem 2.2
may also include a neighborhood of any ordered quadruple from {0.7,1,7,10} or
{1,2,5,8}.
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