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SHIMURA CORRESPONDENCE FOR FINITE GROUPS

Gordan Savin

Abstract. Let Q2s be the unique unramifed extension of the two-adic field Q2 of the

degree s. Let R be the ring of integers in Q2s Let G be a simply connected Chevalley
group corresponding to an irreducible simply laced root system. Then the finite group
G(R/4R) has a two-fold central extension G′(R/4R) constructed by means of the Hilbert

symbol on Q2s . In this paper, we construct a natural correspondence between genuine
representations of G′(R/4R) and representations of the Chevalley group G(R/2R).

1. Introduction

Let Φ be an irreducible simply laced root system and let G = Gsc be the simply
connected Chevalley group corresponding to Φ. Let F be a p-adic field and R its ring
of integers. Then G(F ) has a unique non-trivial central extension G′(F ) by μ2 = {±1}.
If p is odd, then the central extension splits (uniquely) over G(R). In particular, G(R)
can be viewed as a subgroup of G′(F ). On the other hand, if F = Q2s then for every
n > 1 the Hilbert symbol (u, v)2 defines a nontrivial central extension G′(R/2nR)
of G(R/2nR) and the inverse image of G(R) is a projective limit of G′(R/2nR), for
n > 1. Thus we are led to study genuine representations of G′(R/4R) in order to
understand the simplest types of genuine representations of G′(F ).

We now describe our results in more details. The kernel of the natural projection
from G(R/4R) to G(R/2R) can be identified with g(R/2R), the Lie algebra of G over
the residual field R/2R. Let g′(R/2R) be the preimage of g(R/2R) in G′(R/4R). The
group commutator of any two elements in g′(R/2R) is an element in μ2 and it depends
only on the projection of the two elements onto g(R/2R). Thus, the commutator
defines a bilinear μ2-valued form ω(x, y) on g(R/2R). Our first result is the description
of this form. Let κ be the Killing form on gZ, a Chevalley lattice in g. Then for all
x = X ⊗ u and y = Y ⊗ v in gZ ⊗ (R/2R) = g(R/2R),

ω(x, y) = (1 + 2u, 1 + 2v)κ(X,Y )
2 .

Let Z be the kernel of the form ω. Then Z ′, the inverse image of Z in g′(R/2R), is
the center of g′(R/2R). Let χ be a genuine character of Z ′. It is well known that there
exists a unique irreducible representation ρχ of g′(R/2R) with the central character
χ. Our second result is that the representation ρχ extends to a representation of
G′(R/4R), denoted by ρ′χ. This extension is unique unless G′(R/4R) = SL′(Z/4Z).
Now the classification of genuine representations of G′(R/4R) is easy. Indeed, since Z ′

is contained in the center of G′(R/4R) any irreducible representation π of G′(R/4R),

Received by the editors May 17, 2011.

1991 Mathematics Subject Classification. 20C33, 22E50.

461



462 GORDAN SAVIN

when restricted to g′(R/2R), is a multiple of ρχ for some character χ of Z ′. Thus one
can canonically write

π = Homg′(R/2R)(ρ′χ, π) ⊗ ρ′χ,

where G′(R/4R) acts on T ∈ Homg′(R/2R)(ρ′χ, π) by π(g) ◦ T ◦ ρ′χ(g−1). Since T
intertwines the action of g′(R/2R), this action descends to G(R/2R). In this way,
we have constructed a correspondence (in fact a functor) between representations
of G′(R/4R) on which Z ′ acts by the genuine character χ and representations of
G(R/2R). This correspondence gives a bijection between equivalence classes of irre-
ducible representations.

2. Finite Chevalley groups

Let (α|β) denote the inner product on Φ normalized such that (α|α) = 2 for long
roots. Co-roots can be identified with α∨ := 2α

(α|α) . Since Φ is simply laced, α∨ = α.
In particular, we can identify the root and the co-root lattices.

The root system Φ defines a split, simple Lie algebra g over Z. More precisely, we
have a Chevalley lattice

gZ = X ⊕α∈Φ Z · Eα,

where X is the co-root lattice. The co-roots, considered as elements in the Chevalley
lattice, will be denoted by Hα.

We can define an invariant (Killing) form on g by{
κ(Hα, Hβ) = (α∨|β∨),
κ(Eα, E−α) = 1,

and 0 for any other combinations of Chevalley generators as entries of κ. Let g(Z/2Z)
denote the Lie algebra over the finite field Z/2Z. Note that g(Z/2Z) is simply obtained
by reducing the Chevalley lattice modulo 2. The Killing form κ can now be viewed as
an invariant form on g(Z/2Z) with values in Z/2Z. Note that the kernel of κ is equal
to the kernel of the restriction of κ to X/2X. This kernel is trivial if and only if the
determinant of the Cartan matrix of the root system is odd.

Let G = Gsc be the simply connected Chevalley group corresponding to the root
system Φ. By fixing the Chevalley lattice, we have also fixed a structure of G as a
group scheme over Z. Recall that there is a maximal, split torus T in G preserving
root spaces in g under the adjoint action. If A is a ring, then T (A) ∼= X ⊗Z A×. We
shall also need the adjoint group Gad. Let Tad be the maximal split torus in Gad.
Then Tad(A) ∼= Y ⊗Z A×, where Y is the co-character lattice of Tad. In the simply
laced case Y is the dual lattice to X with respect to the product (α|β).

We shall be mostly interested in the case A = R/4R, where R is the ring of integers
in Q2s . Since R/4R is a local ring the group G(R/4R) is generated by one-parameter
subgroups Uα � R/4R for all α in Φ (see [1], Proposition 1.6). The choice of Chevalley
basis fixes an isomorphism of R/4R and Uα, u �→ eα(u) for every α ∈ Φ. For example,
if G = SL2 then eα(u) and e−α(u) are(

1 u
0 1

)
and

(
1 0
u 1

)
.
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For every v in (R/4R)× define elements{
wα(v) = eα(v) e−α(−v−1) eα(v),
hα(v) = wα(v) wα(−1).

If G = SL2 then wα(v) and hα(v) are(
0 v

−v−1 0

)
and

(
v 0
0 v−1

)
.

If Φ 
= A1, by a result of Stein ([8], Corollary 2.14), the group G(R/4R) is abstractly
generated by the one-parameter groups Uα modulo the relations

(2.1) [eα(u), eβ(v)] =

{
eα+β(±uv), if α + β is a root,
1, if not, and −α 
= β.

and

(2.2) hα(u)hα(v) = hα(uv).

The group G(R/4R) has a two-step filtration with G(R/2R) as a quotient and a
subgroup isomorphic to g(R/2R) = gZ⊗R/2R. This isomorphism is explicitly given by{

hα(1 + 2u) �→ Hα ⊗ u,
eα(2u) �→ Eα ⊗ u.

Note that the relation (2.1) implies that the groups G(R/4R) and G(R/2R) are perfect
if Φ 
= A1. The relation [hα(v), eα(u)] = eα((v2 − 1)u) implies that SL2(R/4R) and
SL2(R/2R) are also perfect if |R/2R| > 2.

3. Central extensions

Assume that Φ 
= A1. Since the group G(R/4R) is perfect, it has a universal central
extension. The universal central extension (with some low rank exceptions) is given
by the Steinberg group G′′(R/4R). The group G′′(R/4R) is generated by elements
e′′α(u), for all u ∈ R/4R and α ∈ Φ, satisfying e′′α(u)e′′α(v) = e′′α(u+v) and the relation
(2.1). Define h′′

α(v) in G′′(R/4R) in the same way as hα(v) was defined in G(R/4R).
Then h′′

α(v) do not necessarily satisfy the relation (2.2). Thus the Steinberg symbol
(u, v)S is defined as the obstruction to the relation (2.2):

(u, v)S = h′′
α(u)h′′

α(v)h′′
α(uv)−1.

The symbol does not depend on the choice of the root α. It is a central element in
G′′(R/4R). The elements (1 + 2v, 1 + 2u)S are of order at most 2 and generate the
kernel of the projection of G′′(R/4R) onto G(R/4R) ([8], Theorem 3.10).

Let (u, v)2 be the Hilbert symbol on Q2s . When restricted to (1 + 2R)× (1 + 2R),
the kernel of the Hilbert symbol is 1 + 4R and, by passing to the quotient 1 + 2R/1 +
4R ∼= R/2R, the symbol induces a non-degenerate bilinear form on R/2R. The group
G(R/4R) has a non-trivial central extension by μ2 = {±1}, denoted by G′(R/4R)
obtained by specializing the Steinberg symbol to the Hilbert symbol:

(u, v)S �→ (u, v)2.
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Let e′α(u) and h′
α(v) in G′(R/4R) be the projections of e′′α(u) and h′′

α(v) in G′′(R/4R),
respectively. The elements e′α(u) satisfy the relation (2.1). However, the relation (2.2)
is replaced by

h′
α(u)h′

α(v) = h′
α(uv) · (u, v)2.

The elements h′
α(u) and h′

β(v) generally do not commute. Their commutator is

[h′
α(u), h′

β(v)] = (u, v)(α
∨|β∨)

2 .

Define SL′
2(R/4R) as a subgroup of G′(R/4R) generated by elements e′α(u) and

e′−α(u), for all u ∈ R/4R and α one fixed root. This definition does not depend
on the choice of the root system Φ 
= A1 and the root α in Φ. In this way, we have
defined G′(R/4R) for all simply laced root systems including A1.

The group G′(R/4R) is perfect unless G′(R/4R) = SL′
2(Z/4Z), for the same reason

as G(R/4R). The conjugation action of G′(R/4R) on G′(R/4R) descends down to
an action of G(R/4R) on G′(R/4R). In fact, an element t = λ ⊗ v in T (R/4R) =
X ⊗ (Z/4Z)× acts on the generating elements of G′(R/4R) by

(3.1) te′α(u)t−1 = e′α(v(λ|α)u).

Moreover, since the formula (3.1) makes sense for any t = λ ⊗ s in Tad(4) = Y ⊗
(Z/4Z)×, the adjoint group Gad(R/4R) acts on G′(R/4R).

We have the following diagram of groups:

1 1
↑ ↑

G(R/2R) G(R/2R)
↑ ↑

1 → μ2 → G′(R/4R) → G(R/4R) → 1
↑ ↑

1 → μ2 → g′(R/2R) → g(R/2R) → 1
↑ ↑
1 1

We now describe the central extension g′(R/2R) of g(R/2R) appearing in the
diagram. (See [3] and [6] for more on the subject of extensions of elementary two-
groups.) We can define a symplectic form ω on g(R/2R) with values in μ2 by

ω(x, y) = [x′, y′],

where x′ and y′ are any two elements in g′(R/2R) that project to x and y, respectively,
and [x′, y′] denotes the group commutator.

Proposition 3.1. Let κ be the Killing form on gZ. Then, for any two elements X⊗u
and Y ⊗ v in gZ ⊗ R/2R = g(R/2R),

ω(X ⊗ u, Y ⊗ v) = (1 + 2u, 1 + 2v)κ(X,Y )
2 .

Proof. There are several cases to consider. Assume first that x = Hα ⊗ u and y =
Hβ ⊗ v. We can take x′ = h′

α(1 + 2u) and y′ = h′
β(1 + 2v). Since

[h′
α(1 + 2u), h′

β(1 + 2v)] = (1 + 2u, 1 + 2v)(α
∨|β∨)

2 ,
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this case has been checked. Next, assume that x = Eα ⊗ u and y = Eβ ⊗ v where
α 
= −β. Then κ(Eα, Eβ) = 0. We can take x′ = e′α(2u) and y′ = e′β(2v). Since

[e′α(2u), e′β(2v)] = e′α+β(±4uv) = 1

in G′(R/4R), this case has been also checked. If β = −α, then this is Corollary 2.9 in
[8]. The remaining cases are trivial. �

Let Z be the kernel of the form ω. In order to describe Z, it suffices to describe the
kernel of the Killing form considered modulo 2. Recall that the kernel of the Killing
form on g(Z/2Z) is equal to the kernel of the Killing form restricted on X/2X. Let
X̂ be a lattice, X ⊆ X̂ ⊆ Y , such that X̂/X is the two-torsion in Y/X. Since Y is
dual to X, it follows that 2X̂/2X is the kernel of the Killing form. It follows that

Z ∼= (2X̂/2X) ⊗ (1 + 2R/1 + 4R) ∼= (2X̂/X) ⊗ (R/2R).

Proposition 3.2. Let Z ′ be the center of the nilpotent group g′(R/2R).
(1) The group Z ′ is the preimage of Z, the kernel of ω.
(2) The group Z ′ is contained in the center of G′(R/4R).
(3) The adjoint action of Tad(R/4R) on Z ′ induces a transitive action on the set

of genuine characters of Z ′.

Proof. The first statement is obvious. Let t in T ′(R/4R) such that its image in
T (R/4R) is t = λ ⊗ v. Then the conjugation action of t on a generating element
e′α(u) is given by

te′α(u)t−1 = e′α(v(λ|α)u).

If t is in Z ′ then λ ∈ 2X̂ and v ∈ 1+2R. But then v(λ|α∨) = 1 and Z ′ is in the center
of G′(R/4R). This proves the second statement. Finally, the conjugation action of an
element t = λ ⊗ v in Tad(R/4R) ∼= Y ⊗ (R/4R)× on h′

α(u) is given by

th′
α(v)t−1 = h′

α(v) · (v, u)(λ|α
∨)

2 .

Since the lattice Y is dual to X this formula shows that the group Tad(R/4R) acts
transitively on the set of genuine characters of Z ′. �

4. Main results

Fix a genuine character χ of Z ′, the center of g′(R/2R). Let S ⊆ g(R/2R) be a maximal
subspace such that the bilinear form ω is trivial on S. Let S′ ⊆ g′(R/2R) be the inverse
image of S. Then S′ is a maximal abelian subgroup of g′(R/2R) and χ extends (in
more than one way) to a character of S′. Let χS be one extension. Define

ρχ = Indg′(R/2R)
S′ (χS).

It is not difficult to see that ρχ does not depend on the choice of χS and that it is the
unique irreducible representation of g′(R/2R) with the central character χ. Indeed,
the restriction of ρχ to S′ is the sum of all characters of S′ extending χ, thus the
claim follows from the Frobenius reciprocity and Mackey’s irreducibility criterion. We
note that the square of the dimension of ρχ is

dim(ρχ)2 =
|g′(R/2R)|

|Z ′| =
|g(R/2R)|

|Z| ,
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where, we remind the reader, Z is the kernel of the pairing ω on g(R/2R). In the
following table we give the size of Z:

Φ A2n−1 A2n D2n−1 D2n E6 E7 E8

|Z| 1 2s 2s 22s 1 2s 1

Proposition 4.1. The representation ρχ of g′(R/2R) extends to a representation of
G′(R/4R). This extension is denoted by ρ′χ. The extension is unique unless G(R/4R) =
SL2(Z/4Z).

Proof. We note that G(R/4R) acts by conjugation on irreducible representations of
g′(R/2R). Since the isomorphism class of ρχ depends on the central character χ, and
Z ′ is central in G′(R/4R), we see that the conjugation by G(R/4R) does not change
the isomorphism class of ρχ. In particular, ρχ gives rise to a projective representation
of G(R/4R). By Theorem 2.13 in [8], the Steinberg group G′′(R/4R) is universal if
the rank of Φ is at least 5. Assume this. Then the projective representation lifts to
a representation of G′′(R/4R). Let ρ′χ denote this representation. We claim that this
representation descends to G′(R/4R). Indeed, for every u ∈ R, e′′α(2u) ∈ G′′(R/4R)
and e′α(2u) ∈ g′(R/2R) are a scalar multiple of each other (when acting by ρ′χ and
ρχ respectively). In particular, their commutators coincide. Since

(1 + 2u, 1 + 2v)S = [e′′α(2u), e′′−α(2v)] = [e′α(2u), e′−α(2v)] = (1 + 2u, 1 + 2v)2,

we see that the Steinberg symbol acts through its Hilbert specialization, i.e., G′′(R/4R)
acts through its quotient G′(R/4R). Note, however, that the restriction of ρ′χ to
g′(R/2R) is not necessarily isomorphic to ρχ. It may be isomorphic to a twist of
ρχ by a character of g(R/2R). Any such twist is isomorphic to ρχ′ for a (possi-
bly) different genuine character χ′ of Z ′. Since the maximal torus Tad(R/4R) of the
adjoint group acts transitively on the set of all genuine characters of Z ′, we can con-
jugate by an element in Tad(R/4R), if necessary, to construct an extension of ρχ

to G′(R/4R). The uniqueness of extension is clear since G′(R/4R) is perfect unless
G′(R/4R) = SL′

2(Z/4Z).
To deal with low rank groups of type Am and Dm we proceed as follows. Let

Φ0 ⊆ Φ be a root subsystem of the same type as Φ but of the rank m − 1. Fix Φ+, a
set of positive roots. Let P = MU be a maximal parabolic subgroup of G such that
U is generated by the root groups Uα for α ∈ Φ+ \Φ0. Then G0 = [M, M ] is a simply
connected Chevalley group corresponding to Φ0.

Let Z ′
0 be the center of g′0(R/2R). If m is odd then Z ′ ⊆ Z ′

0 and every genuine
character χ of Z ′ is the restriction of 2s genuine characters χ1, . . . , χ2s of Z ′

0. Let
U2 be the subgroup of G′(R/4R) generated e′α(2u) for α ∈ Φ+ \ Φ0. Let ρU2

χ be the
subspace of U2-fixed vectors in ρχ. Then, as representations of g′0(R/2R),

ρU2
χ

∼= ρχ1 ⊕ · · · ⊕ ρχ2s .

Thus, if ρχ extends to a representation of G′(R/4R) then, by taking U2-fixed vectors,
G′

0(R/4R) acts naturally on ρχ1 , . . . , ρχ2s . Similarly, if m is even then Z ′
0 ⊆ Z ′ and

every genuine character χ of Z ′ is the restriction of 2s genuine characters χ1, . . . , χ2s



SHIMURA CORRESPONDENCE FOR FINITE GROUPS 467

of Z ′
0. Then, as representations of g′0(R/2R),

ρU2
χ1

∼= · · · ∼= ρU2
χ2s

∼= ρχ,

and G′
0(R/4R) acts naturally on ρχ. �

If σ is a representation of G(R/2R) then, after inflating σ to G′(R/4R), σ⊗ρ′χ is a
genuine representation of G′(R/4R). Clearly, σ ⊗ ρ′χ is an irreducible representation
of G′(R/4R) if and only if σ is an irreducible representation of G(R/2R).

Theorem 4.1. Let χ be a genuine character of Z ′, the center of g′(R/2R)⊆G′(R/4R).
The map σ �→ σ⊗ρ′χ gives a one to one correspondence between isomorphism classes of
irreducible representations of G(R/2R) and irreducible representations of G′(R/4R)
such that Z ′ acts by the character χ.

Proof. Let π be an irreducible representation of G′(R/4R) such that Z ′ acts by the
character χ. Clearly, the restriction of π to g′(R/2R) is a multiple of ρχ. Let

σ = Homg′(R/2R)(ρ′χ, π).

Note that σ is naturally a G′(R/4R)-module with the action of g in G′(R/4R) given
by

σ(g)(T ) = π(g) ◦ T ◦ ρ′χ(g−1),

for every T in σ. Since T intertwines the action of g′(R/2R), σ descends to a represen-
tation of G(R/2R). Moreover, the natural map T ⊗w �→ T (w) gives an isomorphism
of σ ⊗ ρ′χ and π. The theorem is proved. �

We finish this paper with a remark on the relevance of our results to the local
Shimura correspondence for two-adic groups. Let Z2 be the algebraic subgroup of
G defined as the two-torsion of the center of G. Let Ĝ be the algebraic group de-
fined as the quotient of G by Z2. The co-character lattice of Ĝ is X̂. We remind the
reader that X ⊆ X̂ ⊆ Y and X̂/X is the two-torsion in Y/X. In particular, if T̂ is
a maximal torus of Ĝ then T̂ (F ) ∼= X̂ ⊗ F×. One expects that there is a Shimura
correspondence between genuine representations of G′(Q2s) and representations of
the linear group Ĝ(Q2s), by analogy with real groups [2] and p-adic groups with p
odd [7]. Under this correspondence, once we have fixed the genuine character χ of Z ′,
irreducible generic representations of G′(Q2s) containing the type ρ′χ should corre-
spond to irreducible unramifed representations of Ĝ(Q2). More generally, irreducible
genuine representations of G′(Q2s) containing the type ρ′χ′ (now χ′ is any genuine
character of Z ′) should correspond to irreducible unramifed representations of Ĝ(Q2)
containing a one-dimensional type of conductor 4 depending on χ′. More precisely,
let Ĝ(R)der be the derived subgroup of Ĝ(R). Then

Ĝ(R)/Ĝ(R)der ∼= (X̂/X) ⊗ R×.

Since X̂/X is two-torsion, any character μ of Ĝ(R) is necessarily quadratic. Since
(R/2R)× is odd, μ is determined by its restriction on (X̂/X)⊗ (1+2R). We say that
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μ is of conductor 4 if it is trivial on (X̂/X) ⊗ (1 + 4R). Thus quadratic characters of
Ĝ(R) of conductor 4 correspond to characters of

(X̂/X) ⊗ (1 + 2R/1 + 4R) ∼= (X̂/X) ⊗ (R/2R) ∼= Z.

Thus, irreducible genuine representations of G′(Q2s) containing the type ρ′χ′ for
should correspond to irreducible unramifed representations of Ĝ(Q2) containing a
one-dimensional type μ where, abusing the notation, χ′ = χ · μ.
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