SHIMURA CORRESPONDENCE FOR FINITE GROUPS

GORDAN SAVIN

ABSTRACT. Let \mathbb{Q}_{2^s} be the unique unramifed extension of the two-adic field \mathbb{Q}_2 of the degree s. Let R be the ring of integers in \mathbb{Q}_{2^s} Let G be a simply connected Chevalley group corresponding to an irreducible simply laced root system. Then the finite group G(R/4R) has a two-fold central extension G'(R/4R) constructed by means of the Hilbert symbol on \mathbb{Q}_{2^s} . In this paper, we construct a natural correspondence between genuine representations of G'(R/4R) and representations of the Chevalley group G(R/2R).

1. Introduction

Let Φ be an irreducible simply laced root system and let $G = G_{\rm sc}$ be the simply connected Chevalley group corresponding to Φ . Let F be a p-adic field and R its ring of integers. Then G(F) has a unique non-trivial central extension G'(F) by $\mu_2 = \{\pm 1\}$. If p is odd, then the central extension splits (uniquely) over G(R). In particular, G(R) can be viewed as a subgroup of G'(F). On the other hand, if $F = \mathbb{Q}_{2^s}$ then for every n > 1 the Hilbert symbol $(u, v)_2$ defines a nontrivial central extension $G'(R/2^nR)$ of $G(R/2^nR)$ and the inverse image of G(R) is a projective limit of $G'(R/2^nR)$, for n > 1. Thus we are led to study genuine representations of G'(F).

We now describe our results in more details. The kernel of the natural projection from G(R/4R) to G(R/2R) can be identified with $\mathfrak{g}(R/2R)$, the Lie algebra of G over the residual field R/2R. Let $\mathfrak{g}'(R/2R)$ be the preimage of $\mathfrak{g}(R/2R)$ in G'(R/4R). The group commutator of any two elements in $\mathfrak{g}'(R/2R)$ is an element in μ_2 and it depends only on the projection of the two elements onto $\mathfrak{g}(R/2R)$. Thus, the commutator defines a bilinear μ_2 -valued form $\omega(x,y)$ on $\mathfrak{g}(R/2R)$. Our first result is the description of this form. Let κ be the Killing form on $\mathfrak{g}_{\mathbb{Z}}$, a Chevalley lattice in \mathfrak{g} . Then for all $x = X \otimes u$ and $y = Y \otimes v$ in $\mathfrak{g}_{\mathbb{Z}} \otimes (R/2R) = \mathfrak{g}(R/2R)$,

$$\omega(x,y) = (1 + 2u, 1 + 2v)_2^{\kappa(X,Y)}.$$

Let Z be the kernel of the form ω . Then Z', the inverse image of Z in $\mathfrak{g}'(R/2R)$, is the center of $\mathfrak{g}'(R/2R)$. Let χ be a genuine character of Z'. It is well known that there exists a unique irreducible representation ρ_{χ} of $\mathfrak{g}'(R/2R)$ with the central character χ . Our second result is that the representation ρ_{χ} extends to a representation of G'(R/4R), denoted by ρ'_{χ} . This extension is unique unless $G'(R/4R) = \operatorname{SL}'(\mathbb{Z}/4\mathbb{Z})$. Now the classification of genuine representations of G'(R/4R) is easy. Indeed, since Z' is contained in the center of G'(R/4R) any irreducible representation π of G'(R/4R),

Received by the editors May 17, 2011.

1991 Mathematics Subject Classification. 20C33, 22E50.

when restricted to $\mathfrak{g}'(R/2R)$, is a multiple of ρ_{χ} for some character χ of Z'. Thus one can canonically write

$$\pi = \operatorname{Hom}_{\mathfrak{g}'(R/2R)}(\rho'_{\chi}, \pi) \otimes \rho'_{\chi},$$

where G'(R/4R) acts on $T \in \operatorname{Hom}_{\mathfrak{g}'(R/2R)}(\rho_{\chi}',\pi)$ by $\pi(g) \circ T \circ \rho_{\chi}'(g^{-1})$. Since T intertwines the action of $\mathfrak{g}'(R/2R)$, this action descends to G(R/2R). In this way, we have constructed a correspondence (in fact a functor) between representations of G'(R/4R) on which Z' acts by the genuine character χ and representations of G(R/2R). This correspondence gives a bijection between equivalence classes of irreducible representations.

2. Finite Chevalley groups

Let $(\alpha|\beta)$ denote the inner product on Φ normalized such that $(\alpha|\alpha) = 2$ for long roots. Co-roots can be identified with $\alpha^{\vee} := \frac{2\alpha}{(\alpha|\alpha)}$. Since Φ is simply laced, $\alpha^{\vee} = \alpha$. In particular, we can identify the root and the co-root lattices.

The root system Φ defines a split, simple Lie algebra \mathfrak{g} over \mathbb{Z} . More precisely, we have a Chevalley lattice

$$\mathfrak{g}_{\mathbb{Z}} = X \oplus_{\alpha \in \Phi} \mathbb{Z} \cdot E_{\alpha},$$

where X is the co-root lattice. The co-roots, considered as elements in the Chevalley lattice, will be denoted by H_{α} .

We can define an invariant (Killing) form on \mathfrak{g} by

$$\begin{cases} \kappa(H_{\alpha}, H_{\beta}) = (\alpha^{\vee} | \beta^{\vee}), \\ \kappa(E_{\alpha}, E_{-\alpha}) = 1, \end{cases}$$

and 0 for any other combinations of Chevalley generators as entries of κ . Let $\mathfrak{g}(\mathbb{Z}/2\mathbb{Z})$ denote the Lie algebra over the finite field $\mathbb{Z}/2\mathbb{Z}$. Note that $\mathfrak{g}(\mathbb{Z}/2\mathbb{Z})$ is simply obtained by reducing the Chevalley lattice modulo 2. The Killing form κ can now be viewed as an invariant form on $\mathfrak{g}(\mathbb{Z}/2\mathbb{Z})$ with values in $\mathbb{Z}/2\mathbb{Z}$. Note that the kernel of κ is equal to the kernel of the restriction of κ to X/2X. This kernel is trivial if and only if the determinant of the Cartan matrix of the root system is odd.

Let $G = G_{\rm sc}$ be the simply connected Chevalley group corresponding to the root system Φ . By fixing the Chevalley lattice, we have also fixed a structure of G as a group scheme over \mathbb{Z} . Recall that there is a maximal, split torus T in G preserving root spaces in \mathfrak{g} under the adjoint action. If A is a ring, then $T(A) \cong X \otimes_{\mathbb{Z}} A^{\times}$. We shall also need the adjoint group $G_{\rm ad}$. Let $T_{\rm ad}$ be the maximal split torus in $G_{\rm ad}$. Then $T_{\rm ad}(A) \cong Y \otimes_{\mathbb{Z}} A^{\times}$, where Y is the co-character lattice of $T_{\rm ad}$. In the simply laced case Y is the dual lattice to X with respect to the product $(\alpha|\beta)$.

We shall be mostly interested in the case A = R/4R, where R is the ring of integers in \mathbb{Q}_{2^s} . Since R/4R is a local ring the group G(R/4R) is generated by one-parameter subgroups $U_{\alpha} \simeq R/4R$ for all α in Φ (see [1], Proposition 1.6). The choice of Chevalley basis fixes an isomorphism of R/4R and U_{α} , $u \mapsto e_{\alpha}(u)$ for every $\alpha \in \Phi$. For example, if $G = \mathrm{SL}_2$ then $e_{\alpha}(u)$ and $e_{-\alpha}(u)$ are

$$\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 & 0 \\ u & 1 \end{pmatrix}$.

For every v in $(R/4R)^{\times}$ define elements

$$\begin{cases} w_{\alpha}(v) = e_{\alpha}(v) e_{-\alpha}(-v^{-1}) e_{\alpha}(v), \\ h_{\alpha}(v) = w_{\alpha}(v) w_{\alpha}(-1). \end{cases}$$

If $G = \operatorname{SL}_2$ then $w_{\alpha}(v)$ and $h_{\alpha}(v)$ are

$$\begin{pmatrix} 0 & v \\ -v^{-1} & 0 \end{pmatrix}$$
 and $\begin{pmatrix} v & 0 \\ 0 & v^{-1} \end{pmatrix}$.

If $\Phi \neq A_1$, by a result of Stein ([8], Corollary 2.14), the group G(R/4R) is abstractly generated by the one-parameter groups U_{α} modulo the relations

(2.1)
$$[e_{\alpha}(u), e_{\beta}(v)] = \begin{cases} e_{\alpha+\beta}(\pm uv), & \text{if } \alpha+\beta \text{ is a root,} \\ 1, & \text{if not, and } -\alpha \neq \beta. \end{cases}$$

and

$$(2.2) h_{\alpha}(u)h_{\alpha}(v) = h_{\alpha}(uv).$$

The group G(R/4R) has a two-step filtration with G(R/2R) as a quotient and a subgroup isomorphic to $\mathfrak{g}(R/2R) = \mathfrak{g}_{\mathbb{Z}} \otimes R/2R$. This isomorphism is explicitly given by

$$\begin{cases} h_{\alpha}(1+2u) \mapsto H_{\alpha} \otimes u, \\ e_{\alpha}(2u) \mapsto E_{\alpha} \otimes u. \end{cases}$$

Note that the relation (2.1) implies that the groups G(R/4R) and G(R/2R) are perfect if $\Phi \neq A_1$. The relation $[h_{\alpha}(v), e_{\alpha}(u)] = e_{\alpha}((v^2 - 1)u)$ implies that $\mathrm{SL}_2(R/4R)$ and $\mathrm{SL}_2(R/2R)$ are also perfect if |R/2R| > 2.

3. Central extensions

Assume that $\Phi \neq A_1$. Since the group G(R/4R) is perfect, it has a universal central extension. The universal central extension (with some low rank exceptions) is given by the Steinberg group G''(R/4R). The group G''(R/4R) is generated by elements $e''_{\alpha}(u)$, for all $u \in R/4R$ and $\alpha \in \Phi$, satisfying $e''_{\alpha}(u)e''_{\alpha}(v) = e''_{\alpha}(u+v)$ and the relation (2.1). Define $h''_{\alpha}(v)$ in G''(R/4R) in the same way as $h_{\alpha}(v)$ was defined in G(R/4R). Then $h''_{\alpha}(v)$ do not necessarily satisfy the relation (2.2). Thus the Steinberg symbol $(u, v)_S$ is defined as the obstruction to the relation (2.2):

$$(u, v)_S = h''_{\alpha}(u)h''_{\alpha}(v)h''_{\alpha}(uv)^{-1}.$$

The symbol does not depend on the choice of the root α . It is a central element in G''(R/4R). The elements $(1+2v,1+2u)_S$ are of order at most 2 and generate the kernel of the projection of G''(R/4R) onto G(R/4R) ([8], Theorem 3.10).

Let $(u, v)_2$ be the Hilbert symbol on \mathbb{Q}_{2^s} . When restricted to $(1 + 2R) \times (1 + 2R)$, the kernel of the Hilbert symbol is 1 + 4R and, by passing to the quotient $1 + 2R/1 + 4R \cong R/2R$, the symbol induces a non-degenerate bilinear form on R/2R. The group G(R/4R) has a non-trivial central extension by $\mu_2 = \{\pm 1\}$, denoted by G'(R/4R) obtained by specializing the Steinberg symbol to the Hilbert symbol:

$$(u,v)_S \mapsto (u,v)_2.$$

Let $e'_{\alpha}(u)$ and $h'_{\alpha}(v)$ in G'(R/4R) be the projections of $e''_{\alpha}(u)$ and $h''_{\alpha}(v)$ in G''(R/4R), respectively. The elements $e'_{\alpha}(u)$ satisfy the relation (2.1). However, the relation (2.2) is replaced by

$$h'_{\alpha}(u)h'_{\alpha}(v) = h'_{\alpha}(uv) \cdot (u,v)_2.$$

The elements $h'_{\alpha}(u)$ and $h'_{\beta}(v)$ generally do not commute. Their commutator is

$$[h'_{\alpha}(u), h'_{\beta}(v)] = (u, v)_{2}^{(\alpha^{\vee}|\beta^{\vee})}.$$

Define $\operatorname{SL}_2'(R/4R)$ as a subgroup of G'(R/4R) generated by elements $e'_{\alpha}(u)$ and $e'_{-\alpha}(u)$, for all $u \in R/4R$ and α one fixed root. This definition does not depend on the choice of the root system $\Phi \neq A_1$ and the root α in Φ . In this way, we have defined G'(R/4R) for all simply laced root systems including A_1 .

The group G'(R/4R) is perfect unless $G'(R/4R) = \operatorname{SL}'_2(\mathbb{Z}/4\mathbb{Z})$, for the same reason as G(R/4R). The conjugation action of G'(R/4R) on G'(R/4R) descends down to an action of G(R/4R) on G'(R/4R). In fact, an element $t = \lambda \otimes v$ in $T(R/4R) = X \otimes (\mathbb{Z}/4\mathbb{Z})^{\times}$ acts on the generating elements of G'(R/4R) by

(3.1)
$$te'_{\alpha}(u)t^{-1} = e'_{\alpha}(v^{(\lambda|\alpha)}u).$$

Moreover, since the formula (3.1) makes sense for any $t = \lambda \otimes s$ in $T_{\rm ad}(4) = Y \otimes (\mathbb{Z}/4\mathbb{Z})^{\times}$, the adjoint group $G_{\rm ad}(R/4R)$ acts on G'(R/4R).

We have the following diagram of groups:

We now describe the central extension $\mathfrak{g}'(R/2R)$ of $\mathfrak{g}(R/2R)$ appearing in the diagram. (See [3] and [6] for more on the subject of extensions of elementary two-groups.) We can define a symplectic form ω on $\mathfrak{g}(R/2R)$ with values in μ_2 by

$$\omega(x,y) = [x',y'],$$

where x' and y' are any two elements in $\mathfrak{g}'(R/2R)$ that project to x and y, respectively, and [x', y'] denotes the group commutator.

Proposition 3.1. Let κ be the Killing form on $\mathfrak{g}_{\mathbb{Z}}$. Then, for any two elements $X \otimes u$ and $Y \otimes v$ in $\mathfrak{g}_{\mathbb{Z}} \otimes R/2R = \mathfrak{g}(R/2R)$,

$$\omega(X \otimes u, Y \otimes v) = (1 + 2u, 1 + 2v)_2^{\kappa(X,Y)}.$$

Proof. There are several cases to consider. Assume first that $x = H_{\alpha} \otimes u$ and $y = H_{\beta} \otimes v$. We can take $x' = h'_{\alpha}(1 + 2u)$ and $y' = h'_{\beta}(1 + 2v)$. Since

$$[h'_{\alpha}(1+2u), h'_{\beta}(1+2v)] = (1+2u, 1+2v)_2^{(\alpha^{\vee}|\beta^{\vee})},$$

this case has been checked. Next, assume that $x = E_{\alpha} \otimes u$ and $y = E_{\beta} \otimes v$ where $\alpha \neq -\beta$. Then $\kappa(E_{\alpha}, E_{\beta}) = 0$. We can take $x' = e'_{\alpha}(2u)$ and $y' = e'_{\beta}(2v)$. Since

$$[e'_{\alpha}(2u), e'_{\beta}(2v)] = e'_{\alpha+\beta}(\pm 4uv) = 1$$

in G'(R/4R), this case has been also checked. If $\beta = -\alpha$, then this is Corollary 2.9 in [8]. The remaining cases are trivial.

Let Z be the kernel of the form ω . In order to describe Z, it suffices to describe the kernel of the Killing form considered modulo 2. Recall that the kernel of the Killing form on $\mathfrak{g}(\mathbb{Z}/2\mathbb{Z})$ is equal to the kernel of the Killing form restricted on X/2X. Let \hat{X} be a lattice, $X \subseteq \hat{X} \subseteq Y$, such that \hat{X}/X is the two-torsion in Y/X. Since Y is dual to X, it follows that $2\hat{X}/2X$ is the kernel of the Killing form. It follows that

$$Z \cong (2\hat{X}/2X) \otimes (1 + 2R/1 + 4R) \cong (2\hat{X}/X) \otimes (R/2R).$$

Proposition 3.2. Let Z' be the center of the nilpotent group $\mathfrak{g}'(R/2R)$.

- (1) The group Z' is the preimage of Z, the kernel of ω .
- (2) The group Z' is contained in the center of G'(R/4R).
- (3) The adjoint action of $T_{\rm ad}(R/4R)$ on Z' induces a transitive action on the set of genuine characters of Z'.

Proof. The first statement is obvious. Let t in T'(R/4R) such that its image in T(R/4R) is $t = \lambda \otimes v$. Then the conjugation action of t on a generating element $e'_{\alpha}(u)$ is given by

$$te'_{\alpha}(u)t^{-1} = e'_{\alpha}(v^{(\lambda|\alpha)}u).$$

If t is in Z' then $\lambda \in 2\hat{X}$ and $v \in 1+2R$. But then $v^{(\lambda|\alpha^{\vee})} = 1$ and Z' is in the center of G'(R/4R). This proves the second statement. Finally, the conjugation action of an element $t = \lambda \otimes v$ in $T_{\rm ad}(R/4R) \cong Y \otimes (R/4R)^{\times}$ on $h'_{\alpha}(u)$ is given by

$$th'_{\alpha}(v)t^{-1} = h'_{\alpha}(v) \cdot (v, u)_2^{(\lambda|\alpha^{\vee})}.$$

Since the lattice Y is dual to X this formula shows that the group $T_{\rm ad}(R/4R)$ acts transitively on the set of genuine characters of Z'.

4. Main results

Fix a genuine character χ of Z', the center of $\mathfrak{g}'(R/2R)$. Let $S \subseteq \mathfrak{g}(R/2R)$ be a maximal subspace such that the bilinear form ω is trivial on S. Let $S' \subseteq \mathfrak{g}'(R/2R)$ be the inverse image of S. Then S' is a maximal abelian subgroup of $\mathfrak{g}'(R/2R)$ and χ extends (in more than one way) to a character of S'. Let χ_S be one extension. Define

$$\rho_{\chi} = \operatorname{Ind}_{S'}^{\mathfrak{g}'(R/2R)}(\chi_S).$$

It is not difficult to see that ρ_{χ} does not depend on the choice of χ_{S} and that it is the unique irreducible representation of $\mathfrak{g}'(R/2R)$ with the central character χ . Indeed, the restriction of ρ_{χ} to S' is the sum of all characters of S' extending χ , thus the claim follows from the Frobenius reciprocity and Mackey's irreducibility criterion. We note that the square of the dimension of ρ_{χ} is

$$\dim(\rho_\chi)^2 = \frac{|\mathfrak{g}'(R/2R)|}{|Z'|} = \frac{|\mathfrak{g}(R/2R)|}{|Z|},$$

where, we remind the reader, Z is the kernel of the pairing ω on $\mathfrak{g}(R/2R)$. In the following table we give the size of Z:

Φ	A_{2n-1}	A_{2n}	D_{2n-1}	D_{2n}	E_6	E_7	E_8
	1	2^s	2^s	2^{2s}	1	2^s	1

Proposition 4.1. The representation ρ_{χ} of $\mathfrak{g}'(R/2R)$ extends to a representation of G'(R/4R). This extension is denoted by ρ'_{χ} . The extension is unique unless $G(R/4R) = \operatorname{SL}_2(\mathbb{Z}/4\mathbb{Z})$.

Proof. We note that G(R/4R) acts by conjugation on irreducible representations of $\mathfrak{g}'(R/2R)$. Since the isomorphism class of ρ_{χ} depends on the central character χ , and Z' is central in G'(R/4R), we see that the conjugation by G(R/4R) does not change the isomorphism class of ρ_{χ} . In particular, ρ_{χ} gives rise to a projective representation of G(R/4R). By Theorem 2.13 in [8], the Steinberg group G''(R/4R) is universal if the rank of Φ is at least 5. Assume this. Then the projective representation lifts to a representation of G''(R/4R). Let ρ'_{χ} denote this representation. We claim that this representation descends to G'(R/4R). Indeed, for every $u \in R$, $e''_{\alpha}(2u) \in G''(R/4R)$ and $e'_{\alpha}(2u) \in \mathfrak{g}'(R/2R)$ are a scalar multiple of each other (when acting by ρ'_{χ} and ρ_{χ} respectively). In particular, their commutators coincide. Since

$$(1+2u,1+2v)_S = [e''_{\alpha}(2u),e''_{-\alpha}(2v)] = [e'_{\alpha}(2u),e'_{-\alpha}(2v)] = (1+2u,1+2v)_2,$$

we see that the Steinberg symbol acts through its Hilbert specialization, i.e., G''(R/4R) acts through its quotient G'(R/4R). Note, however, that the restriction of ρ'_{χ} to $\mathfrak{g}'(R/2R)$ is not necessarily isomorphic to ρ_{χ} . It may be isomorphic to a twist of ρ_{χ} by a character of $\mathfrak{g}(R/2R)$. Any such twist is isomorphic to $\rho_{\chi'}$ for a (possibly) different genuine character χ' of Z'. Since the maximal torus $T_{\rm ad}(R/4R)$ of the adjoint group acts transitively on the set of all genuine characters of Z', we can conjugate by an element in $T_{\rm ad}(R/4R)$, if necessary, to construct an extension of ρ_{χ} to G'(R/4R). The uniqueness of extension is clear since G'(R/4R) is perfect unless $G'(R/4R) = \mathrm{SL}'_2(\mathbb{Z}/4\mathbb{Z})$.

To deal with low rank groups of type A_m and D_m we proceed as follows. Let $\Phi_0 \subseteq \Phi$ be a root subsystem of the same type as Φ but of the rank m-1. Fix Φ^+ , a set of positive roots. Let P=MU be a maximal parabolic subgroup of G such that U is generated by the root groups U_α for $\alpha \in \Phi^+ \setminus \Phi_0$. Then $G_0 = [M, M]$ is a simply connected Chevalley group corresponding to Φ_0 .

Let Z'_0 be the center of $\mathfrak{g}'_0(R/2R)$. If m is odd then $Z' \subseteq Z'_0$ and every genuine character χ of Z' is the restriction of 2^s genuine characters $\chi_1, \ldots, \chi_{2^s}$ of Z'_0 . Let U_2 be the subgroup of G'(R/4R) generated $e'_{\alpha}(2u)$ for $\alpha \in \Phi^+ \setminus \Phi_0$. Let $\rho_{\chi}^{U_2}$ be the subspace of U_2 -fixed vectors in ρ_{χ} . Then, as representations of $\mathfrak{g}'_0(R/2R)$,

$$\rho_{\chi}^{U_2} \cong \rho_{\chi_1} \oplus \cdots \oplus \rho_{\chi_{2^s}}.$$

Thus, if ρ_{χ} extends to a representation of G'(R/4R) then, by taking U_2 -fixed vectors, $G'_0(R/4R)$ acts naturally on $\rho_{\chi_1}, \ldots, \rho_{\chi_{2^s}}$. Similarly, if m is even then $Z'_0 \subseteq Z'$ and every genuine character χ of Z' is the restriction of 2^s genuine characters $\chi_1, \ldots, \chi_{2^s}$

of Z'_0 . Then, as representations of $\mathfrak{g}'_0(R/2R)$,

$$\rho_{\chi_1}^{U_2} \cong \cdots \cong \rho_{\chi_{2^s}}^{U_2} \cong \rho_{\chi},$$

and $G'_0(R/4R)$ acts naturally on ρ_{χ} .

If σ is a representation of G(R/2R) then, after inflating σ to G'(R/4R), $\sigma \otimes \rho'_{\chi}$ is a genuine representation of G'(R/4R). Clearly, $\sigma \otimes \rho'_{\chi}$ is an irreducible representation of G'(R/4R) if and only if σ is an irreducible representation of G(R/2R).

Theorem 4.1. Let χ be a genuine character of Z', the center of $\mathfrak{g}'(R/2R) \subseteq G'(R/4R)$. The map $\sigma \mapsto \sigma \otimes \rho'_{\chi}$ gives a one to one correspondence between isomorphism classes of irreducible representations of G'(R/2R) and irreducible representations of G'(R/4R) such that Z' acts by the character χ .

Proof. Let π be an irreducible representation of G'(R/4R) such that Z' acts by the character χ . Clearly, the restriction of π to $\mathfrak{g}'(R/2R)$ is a multiple of ρ_{χ} . Let

$$\sigma = \operatorname{Hom}_{\mathfrak{g}'(R/2R)}(\rho_{\chi}', \pi).$$

Note that σ is naturally a G'(R/4R)-module with the action of g in G'(R/4R) given by

$$\sigma(g)(T) = \pi(g) \circ T \circ \rho_{\chi}'(g^{-1}),$$

for every T in σ . Since T intertwines the action of $\mathfrak{g}'(R/2R)$, σ descends to a representation of G(R/2R). Moreover, the natural map $T \otimes w \mapsto T(w)$ gives an isomorphism of $\sigma \otimes \rho'_{\chi}$ and π . The theorem is proved.

We finish this paper with a remark on the relevance of our results to the local Shimura correspondence for two-adic groups. Let Z_2 be the algebraic subgroup of G defined as the two-torsion of the center of G. Let \hat{G} be the algebraic group defined as the quotient of G by Z_2 . The co-character lattice of \hat{G} is \hat{X} . We remind the reader that $X \subseteq \hat{X} \subseteq Y$ and \hat{X}/X is the two-torsion in Y/X. In particular, if \hat{T} is a maximal torus of \hat{G} then $\hat{T}(F) \cong \hat{X} \otimes F^{\times}$. One expects that there is a Shimura correspondence between genuine representations of $G'(\mathbb{Q}_{2^s})$ and representations of the linear group $\hat{G}(\mathbb{Q}_{2^s})$, by analogy with real groups [2] and p-adic groups with p odd [7]. Under this correspondence, once we have fixed the genuine character χ of Z', irreducible generic representations of $G'(\mathbb{Q}_{2^s})$ containing the type ρ'_{χ} should correspond to irreducible unramifed representations of $\hat{G}(\mathbb{Q}_2)$. More generally, irreducible genuine representations of $G'(\mathbb{Q}_2)$ containing the type $\rho'_{\chi'}$ (now χ' is any genuine character of Z') should correspond to irreducible unramifed representations of $\hat{G}(\mathbb{Q}_2)$ containing a one-dimensional type of conductor 4 depending on χ' . More precisely, let $\hat{G}(R)^{\text{der}}$ be the derived subgroup of $\hat{G}(R)$. Then

$$\hat{G}(R)/\hat{G}(R)^{\mathrm{der}} \cong (\hat{X}/X) \otimes R^{\times}.$$

Since \hat{X}/X is two-torsion, any character μ of $\hat{G}(R)$ is necessarily quadratic. Since $(R/2R)^{\times}$ is odd, μ is determined by its restriction on $(\hat{X}/X) \otimes (1+2R)$. We say that

 μ is of conductor 4 if it is trivial on $(\hat{X}/X) \otimes (1+4R)$. Thus quadratic characters of $\hat{G}(R)$ of conductor 4 correspond to characters of

$$(\hat{X}/X) \otimes (1 + 2R/1 + 4R) \cong (\hat{X}/X) \otimes (R/2R) \cong Z.$$

Thus, irreducible genuine representations of $G'(\mathbb{Q}_{2^s})$ containing the type $\rho'_{\chi'}$ for should correspond to irreducible unramifed representations of $\hat{G}(\mathbb{Q}_2)$ containing a one-dimensional type μ where, abusing the notation, $\chi' = \chi \cdot \mu$.

Acknowledgments

This paper has been motivated by the case $G = \operatorname{SL}_2$ and $F = \mathbb{Q}_2$ discussed in a joint work with Loke [5]. The work of Gurevich and Hadani [4] provides a version of Proposition 4.1 for the root system C_n . I would like to thank Zeev Rudnick for pointing out this reference to me. Thanks are also due to Dick Gross for an enlightening discussion on central extensions of elementary 2-groups, and to the referee. This work has been supported by an NSF grant DMS-0852429.

References

- [1] E. Abe, Chevalley groups over local rings, Tôhoku Math. J. 21 (1969), 474–494.
- [2] J. Adam, D. Barbasch, A. Paul, P. Trapa and D. Vogan, Unitary Shimura correspondences for split real groups, J. Amer. Math. Soc. 20 (2007), 701-751.
- [3] R. Greiss, Automorphisms of extra-special groups and non-vanishing degree 2 cohomology, Pacific J. Math. 48 (1973), 403–422.
- [4] S. Gurevich and R. Hadani, The Weil representation in characteristic two, Adv. Math. 230 (2012), 894–926.
- [5] H. Y. Loke and G. Savin, Representations of the two-fold central extension of SL₂(Q₂), Pacific J. Math. 247(2) (2010), 435–454.
- [6] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1977), 197–212.
- [7] G. Savin, On unramified representations of covering groups, J. Reine Angew. Math. 566 (2004), 111–134.
- [8] M. Stein, Surjective stability in dimension 0 for K₂ and related functors, Trans. Amer. Math. Soc. 178 (1973), 165-191.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UT 84112, USA E-mail address: savin@math.utah.edu