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COUNTING FUNCTION OF THE EMBEDDED EIGENVALUES
FOR SOME MANIFOLD WITH CUSPS, AND MAGNETIC

LAPLACIAN

Abderemane Morame and Françoise Truc

Abstract. We consider a non-compact, complete manifold M of finite area with cuspi-
dal ends. The generic cusp is isomorphic to X× ]1, +∞[ with metric ds2 = (h+dy2)/y2δ .

X is a compact manifold equipped with the metric h. For a one-form A on M such that
in each cusp A is a non-exact one-form on the boundary at infinity, we prove that the
magnetic Laplacian −ΔA = (id+A)�(id+A) satisfies the Weyl asymptotic formula with

sharp remainder. We deduce an upper bound for the counting function of the embedded
eigenvalues of the Laplace–Beltrami operator −Δ = −Δ0.

1. Introduction

We consider a smooth, connected n-dimensional Riemannian manifold (M,g), (n ≥
2), such that

(1.1) M =
J⋃

j=0

Mj (J ≥ 1),

where the Mj are open sets of M. We assume that the closure of M0 is compact and
that the other Mj are cuspidal ends of M.

This means that Mj ∩ Mk = ∅, if 1 ≤ j < k, and that there exists, for any
j, 1 ≤ j ≤ J , a closed compact (n − 1)-dimensional Riemannian manifold (Xj ,hj)
such that Mj is isometric to Xj × ]a2

j , +∞[ , (aj > 0) equipped with the metric

(1.2) ds2
j = y−2δj (hj + dy2 ); (1/n < δj ≤ 1).

So there exists a smooth real one-form Aj ∈ T �(Xj), non-exact, such that

(1.3)

⎧
⎨

⎩

(i) dAj �= 0
or
(ii) dAj = 0 and [Aj ] is not integer.

In (ii), we mean that there exists a smooth closed curve γ in Xj such that
∫

γ

Aj /∈ 2πZ.

Then one can always find a smooth real one-form A ∈ T �(M) such that

(1.4) ∀ j, 1 ≤ j ≤ J, A = Aj on Mj .

We define the magnetic Laplacian, the Bochner Laplacian

(1.5) −ΔA = (i d + A)�(i d + A),
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(i =
√−1, (i d + A)u = i du + uA, ∀ u ∈ C∞

0 (M; C), the upper star, �, stands
for the adjoint between the square-integrable one-forms and L2(M)), so d�(Z) is the
usual Hodge–de Rham codifferential, and

A�(Z) =< A; Z >T �M, ∀Z ∈ Λ1
0(M),

where Λ1
0(M) denotes the vector space of smooth one-forms with compact support.

As M is a complete metric space, by Hopf–Rinow theorem M is geodesically
complete, so it is well known, (see [Shu]), that −ΔA has a unique self-adjoint ex-
tension on L2(M), containing in its domain C∞

0 (M; C), the space of smooth and
compactly supported functions. The spectrum of −ΔA is gauge invariant: for any
f ∈ C1(M; R),−ΔA and −ΔA+df are unitary equivalent, hence they have the same
spectrum.

For a self-adjoint operator P on a Hilbert space H,

sp(P ), spess(P ), spp(P ), spd(P )

will denote respectively the spectrum, the essential spectrum, the point spectrum and
the discrete spectrum of P . We recall that

sp(P ) = spess(P ) ∪ spd(P ), spd(P ) ⊂ spp(P ) and spess(P ) ∩ spd(P ) = ∅.
Theorem 1.1. Under the above assumptions on M, the essential spectrum of the
Laplace–Beltrami operator on M, −Δ = −Δ0 is given by

(1.6)

{
spess(−Δ) = [0, +∞[, if 1/n < δ < 1,

spess(−Δ) = [ (n−1)2

4 , +∞[, if δ = 1.

(δ = min1≤j≤J δj ).
When (1.3) and (1.4) are satisfied, the magnetic Laplacian −ΔA has a compact

resolvent. The spectrum sp(−ΔA) = spd(−ΔA) is a sequence of non-decreasing eigen-
values (λj)j∈N, λj ≤ λj+1, lim

j→+∞
λj = +∞, such that the sequence of normalized

eigenfunctions (ϕj)j∈N is a Hilbert basis of L2(M). Moreover λ0 > 0. (N denotes the
set of natural numbers.)

This theorem is not new. The case A = 0 was proved in [Don2], and the other case
in [Go-Mo], but in the two cases, for a wider class of Riemann metrics. We will give a
short proof for our simple class of Riemann metrics, by following the classical method
used in [Don1,Don2,Do-Li].

For any self-adjoint operator P with compact resolvent, and for any real λ, N(λ, P )
will denote the number of eigenvalues, (repeated according to their multiplicity), of
P less then λ,

(1.7) N(λ, P ) = trace (χ]−∞,λ[(P )),

(for any I ⊂ R, χI(x) = 1 if x ∈ I and χI(x) = 0 if x ∈ R \ I).
The asymptotic behavior of N(λ,−ΔA) satisfies the Weyl formula with the fol-

lowing sharp remainder.

Theorem 1.2. Under the above assumptions on M and on A, we have the Weyl
formula with remainder as λ → +∞,

(1.8) N(λ,−ΔA) = |M| ωn

(2π)n
λn/2 + O(r(λ)),
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with

(1.9) r(λ) =
{

λ(n−1)/2 ln(λ), if 1/(n − 1) ≤ δ,
λ1/(2δ), if 1/n < δ < 1/(n − 1),

δ = min1≤j≤J δj , |M| is the Riemannian measure of M and ωd is the euclidian volume

of the unit ball of R
d, ωd =

πd/2

Γ
(
1 + d

2

) .

The asymptotic formula (1.8) without remainder is given in [Go-Mo], and with
remainder but only for n = 2 (and δj = 1 for any 1 ≤ j ≤ J) in [Mo-Tr].

The Laplace–Beltrami operator −Δ = −Δ0 may have embedded eigenvalues in its
essential spectrum spess(−Δ). Let Ness(λ,−Δ) denote the number of eigenvalues of
−Δ, (counted according to their multiplicity), less then λ.

Theorem 1.3. There exists a constant CM such that, for any λ � 1,

(1.10) Ness(λ,−Δ) ≤ |M| ωn

(2π)n
λn/2 + CMr0(λ) ,

with r0(λ) defined by

(1.11) r0(λ) =

{
λ

n−1
2 ln(λ), if 2/n ≤ δ ≤ 1,

λ
n−(nδ−1)

2 , if 1/n < δ < 2/n,

δ is the one defined in Theorem 1.2.

The above upper bound proves that any eigenvalue of −Δ has finite multiplicity.
There exist shorter proofs of the multiplicity, see for example [Don1] or Lemma B1
in [Go-Mo].

The estimate (1.10) is sharp when n = 2. There exist hyperbolic surfaces M of
finite area so that

Ness(λ,−Δ) = |M| ω2

(2π)2
λ + ΓMλ1/2 ln(λ) + O(λ1/2),

for some constant ΓM. See [Mul] for such examples.
Still in the case of surfaces, a compact perturbation of the metric of non-compact

hyperbolic surface M of finite area can destroy all embedded eigenvalues, see [Col1].
For the proof of Theorem 1.2, we will follow the standard method of partitioning M

and using min–max principle to estimate the number of eigenvalues by the sum of the
ones of the Dirichlet operators and Neumann operators associated to the partition. In
a cusp partition, we will diagonalize −ΔA to an infinite sum of Schrödinger operators
in a half-line, and then we can use standard estimates of the number of eigenvalues
for those Schrödinger operators.

For the proof of Theorem 1.3, we will prove that Theorem 1.2 is still valid when
one changes A into λ−ρA, for some one-form A. Then we will show that the number
of embedded eigenvalues of −Δ less than λ is bounded above by the number of
eigenvalues of −Δ(λ−ρA) less than λ.
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2. Proofs

Since by the Persson [Per] argument used in [Do-Li], the essential spectrum of an
elliptic operator on a manifold is invariant by compact perturbation of the manifold,
(see also Proposition C3 in [Go-Mo]), we can write

(2.1) spess(−ΔA) =
J⋃

j=1

spess

(
−ΔMj ,D

A

)
,

where −ΔMj ,D
A denotes the self-adjoint operator on L2(Mj) associated to −ΔA with

Dirichlet boundary conditions on the boundary ∂Mj of Mj .

2.1. Diagonalization of the magnetic Laplacian. Let us consider a cusp Mj =
Xj × ]a2

j , +∞[ equipped with the metric (1.2). Then for any u ∈ C2(Mj),

(2.2) −ΔAu = −y2δj ΔXj

Aj
u − ynδj ∂y(y(2−n)δj ∂yu),

where ΔXj

Aj
is the magnetic Laplacian on Xj : if for local coordinates

hj =
∑

k,�
Gk� dxkdx�

and Aj =
∑n−1

k=1
aj,k dxk, then

−ΔXj

Aj
=

1√
det(G)

∑

k,�

(i∂xk
+ aj,k)

(√
det(G)Gk�(i∂x�

+ aj,�)
)

.

We perform the change of variables y = et, and define the unitary operator
U : L2(Xj×]2 ln(aj), +∞[) → L2(Mj), where ]2 ln(aj), +∞[ is equipped with the
standard euclidian metric dt2, by U(f) = y(nδj−1)/2f . Thus L2(Mj) is unitarily equiv-
alent to L2(Xj×]2 ln(aj), +∞[), and

(2.3)

−U�ΔAUf = − e2δjtΔXj

Aj
f +

(nδj − 1)[3 + δj(n − 4)]
4

e2t(δj−1)f − ∂t(e2t(δj−1)∂tf).

Let us denote by (μ�(j))�∈N the increasing sequence of eigenvalues of −ΔXj

Aj
, each

eigenvalue repeated according to its multiplicity.

Then −ΔMj ,D
A is unitarily equivalent to

⊕+∞
�=0

LD
j,�,

(2.4) sp(−ΔMj ,D
A ) = sp

(
+∞⊕

�=0

LD
j,�

)
,

where LD
j,� is the Dirichlet operator on L2(]2 ln(aj), +∞[) associated to

(2.5) Lj,� = e2δjtμ�(j) +
(nδj − 1)

4
[3 + δj(n − 4)]e2t(δj−1) − ∂t(e2t(δj−1)∂t).

The operator LD
j,� depends on Aj since μ�(j) depends on Aj but we skip this depen-

dence in notations for the sake of simplicity,

0 ≤ μ�(j) ≤ μ�+1(j) and lim
�→∞

μ�(j) = +∞.
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It is well known that assumption (1.3) implies that

0 < μ0(j).

As a matter of fact, if μ0(j) = 0 and u0 is an associated eigenfunction, then idu0 =
−u0Aj , so Re(u0du0) = 0, and then |u0| is constant. We can assume that u0 = e−iϕ

with ϕ a real function. Then locally dϕ = Aj , which yields dAj = 0, so for any
x0 ∈ Xj , and for any regular curve Γx0,x joining x0 to x, we have ϕ(x) =

∮
Γx0,x

Aj .

Therefore eiϕ will be a well-defined function on Xj iff part (ii) of (1.3) is not satisfied,
(see for example [Hel]).

When 1/n < δj < 1, another change of variables can be done. Precisely, we set
y = [(1 − δj)t]1/(1−δj), and define the unitary operator

U : L2

(
Xj ×

]
a
2(1−δj)
j

1 − δj
, +∞

[)
→ L2(Mj), by U(f) = y(n−1)δj/2f.

Then we compute

−U�ynδj ∂y[y(2−n)δj ∂yU(f)] = −y(n+1)δj/2∂y[y(3−n)δj/2∂yf ] − (n − 1)δj

2
y2δj−1∂yf

+
(n − 1)δj [(n − 3)δj + 2]

4
y−2(1−δj)f,

so using that yδj ∂y = ∂t and that tρ∂t = ∂t(tρ.) − ρtρ−1, we get easily that

(2.6) −U�ΔAUf = −[(1 − δj)t]
2δj

1−δj ΔXj

Aj
f +

(n − 1)δj [(n − 3)δj + 2]
4(1 − δj)2t2

f − ∂2
t f.

Thus, in the case 1/n < δj < 1, equality (2.4) holds also when LD
j,� is the Dirichlet

operator on L2
(]

a2(1−δj)

1−δj
, +∞

[)
associated to

(2.7) Lj,� = μ�(j)[(1 − δj)t]
2δj

1−δj +
(n − 1)δj [(n − 3)δj + 2]

4(1 − δj)2t2
− ∂2

t .

2.2. Proof of Theorem 1.1. To study the spectrum, we use the first diagonalization
given by (2.4) and (2.5).

If μ�(j) > 0 then sp(LD
j,�) = spd(LD

j,�) = {μ�,k(j); k ∈ N}, where (μ�,k(j))k∈N is
the increasing sequence of eigenvalues of LD

j,�, limk→+∞ μ�,k(j) = +∞.
If μ�(j) = 0 then sp(LD

j,�) = spess(LD
j,�) = [αn, +∞[, with αn = 0 if δj < 1, and

αn = (n − 1)2/4 if δj = 1, (by (2.5), if δj = 1, LD
j,�u = −∂2

t u + (n − 1)2/4u, and by
(2.5), if 1/n < δj < 1, LD

j,�u = −∂2
t u + V (t)u with limt→∞ V (t) = 0).

Since we have μ0(j) = 0 when A = 0, we get that spess(−Δ0) = [αn, +∞[.
If A satisfies assumptions (1.3) and (1.4), we have seen that 0 < μ0(j), then

0 < μ�(j) for all j and �, and then

sp(−ΔMj ,D
A ) = {μ�,k(j); (�, k) ∈ N

2}.
As μ�(j) ≤ μ�,k(j) < μ�,k+1(j) with lim�→+∞ μ�(j) = +∞ and limk→+∞ μ�,k(j) =

+∞, each μ�,k(j) is an eigenvalue of −ΔMj ,D
A of finite multiplicity, so sp

(
−ΔMj ,D

A

)
=

spd

(
−ΔMj ,D

A

)
. Therefore, we get that spess(−ΔA) = ∅. �
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2.3. Proof of Theorem 1.2. We proceed as in [Mo-Tr].
We begin by establishing for Mj , 1 ≤ j ≤ J , formula (1.8) with −ΔMj ,D

A defined
in (2.1) instead of −ΔA. When δj = 1 we use the decomposition given by (2.4) and
(2.5), but when 1/n < δj < 1, we use the decomposition given by (2.4) and (2.7).

From now on, any constant depending only on δj and on min
j

μ0(j) will be invariably

denoted by C.
As in [Mo-Tr], we will follow Titchmarsh’s method. Using Theorem 7.4 in [Tit, page

146], we prove the following lemma.

Lemma 2.1. There exists C > 1 so that for any λ � 1 and any � ∈ Kλ ={
l ∈ N; μ�(j) ∈

[
0, λ/ min

j
a
4δj

j

[}
,

(2.8)
∣∣∣∣N(λ, LD

j,�) − 1
π

wj,�(λ)
∣∣∣∣ ≤ C ln(λ),

with wj,�(μ) =
∫ +∞

αj

[μ − Vj,�(t)]
1/2
+ dt =

∫ Tj(μ)

αj

[μ − Vj,�(t)]
1/2
+ dt.

The potential Vj,� is defined as follows:

(2.9)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if δj = 1
Vj,�(t) = μ�(j)e2t + (n−1)2

4 ,
if 1/n < δj < 1

Vj,�(t) = μ�(j)[(1 − δj)t]
2δj

1−δj + (n−1)δj [(n−3)δj+2]
4(1−δj)2

t−2,

and

(2.10)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if δj = 1

αj = 2 ln(aj), Tj(μ) =
1
2

ln(μ/μ0(j)) ,

if 1/n < δj < 1

αj =
a
2(1−δj)
j

1−δj
, Tj(μ) =

1
1 − δj

(
μ

μ0(j)

) 1−δj
2δj

.

Proof. When 1/n < δj < 1, by enlarging M0 and reducing Mj , we can take αj large
enough so that Vj,�(t) is an increasing function on [αj , +∞[ and λ/μ�(j) � 1 when
� ∈ Kλ. Then, if αj ≤ Y < X(λ) = V −1

j,� (λ), following the proof of Theorem 7.4
in [Tit, pages 146–147], we get that

∣∣∣∣N(λ, LD
j,�) −

1
π

wj,�(λ)
∣∣∣∣(2.11)

≤ C[ln(λ − Vj,�(αj)) − ln(λ − Vj,�(Y )) + (X(λ) − Y )(λ − Vj,�(Y )) + 1].

When δj = 1, we choose Y = X(λ) −
√

ln λ√
λ

.

When 1/n < δj < 1, we choose Y = X(λ) −
√

ln λ√
λ

(
λ

μ�(j)

) 1−δj
4δj

;
(

X(λ) ∼ 1
1−δj

(
λ

μ�(j)

) 1−δj
2δj

)
. �
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Let us apply to −ΔXj

Aj
, the magnetic Laplacian which lies on Xj , on a “boundary at

infinity”, the sharp asymptotic Weyl formula of Hörmander [Hor1] (see also [Hor2]),

Theorem 2.1. There exists C > 0 so that for any μ � 1

(2.12)
∣∣∣∣N(μ,−ΔXj

Aj
) − ωn−1

(2π)n−1
|Xj |μ(n−1)/2

∣∣∣∣ ≤ Cμ(n−2)/2.

Lemma 2.2. There exists C > 0 such that for any λ � 1
∣∣∣∣N(λ,−ΔMj ,D

A ) − ωn

(2π)n
|Mj |λn/2

∣∣∣∣(2.13)

≤ C

{
λ(n−1)/2 ln(λ), if 1/(n − 1) ≤ δj ≤ 1,
λ1/(2δj), if 1/n < δj < 1/(n − 1).

Proof. By formula (2.4),

(2.14) N
(
λ,−ΔMj ,D

A

)
=

+∞∑

�=0

N(λ, LD
j,�).

When � /∈ Kλ, (Kλ is defined in Lemma 2.1), and thanks to formula (2.9) we have
Vj,� ≥ μ�(j)a

4δj

j ≥ λ so N(λ, LD
j,�) = 0. Therefore the estimates (2.8), (2.12) and

formula (2.14) prove that

(2.15)

∣∣∣∣∣N
(
λ,−ΔMj ,D

A

)
−

+∞∑

�=0

1
π

wj,�(λ)

∣∣∣∣∣ ≤ Cλ(n−1)/2 ln(λ).

Let us denote

(2.16) Θj(λ) =
+∞∑

�=0

1
π

wj,�(λ) and Rj(μ) =
+∞∑

�=0

[μ − μ�(j)]
1/2
+ .

As Rj(μ) =
1
2

∫ +∞

0

[μ− s]−1/2
+ N(s,−ΔXj

Aj
)ds, the Hörmander estimate (2.12) entails

the following one.
There exists a constant C > 0 such that, for any μ � 1,

(2.17) |Rj(μ) − ωn−1

2(2π)n−1
|Xj |

∫ +∞

0

[μ − s]−1/2
+ s(n−1)/2ds| ≤ Cμ(n−1)/2.

Writing in (2.9)

(2.18) Vj,�(t) = μ�(j)Vj(t) + Wj(t),

we get that Θj(λ) =
1
π

∫ Tj(λ)

αj

V
1/2
j (t)Rj

(
λ − Wj(t)

Vj(t)

)
dt.

So according to (2.17)
∣∣∣∣∣Θj(λ) − ωn−1Γ

(
1
2

)
Γ
(

n+1
2

)

(2π)nΓ
(
1 + n

2

) |Xj |
∫ Tj(λ)

αj

(λ − Wj(t))n/2

V
(n−1)/2
j (t)

dt

∣∣∣∣∣(2.19)

≤ C

∫ Tj(λ)

αj

(λ − Wj(t))(n−1)/2

V
(n−2)/2
j (t)

dt.
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From Definitions (2.9) and (2.18), we get that

(2.20)

∣∣∣∣∣

∫ Tj(λ)

αj

(λ − Wj(t))n/2

V
(n−1)/2
j (t)

dt − λn/2 1

(δjn − 1)a2(δjn−1)
j

∣∣∣∣∣ ≤ Cλ(n−1)/2,

and
∫ Tj(λ)

αj

(λ − Wj(t))(n−1)/2

V
(n−2)/2
j (t)

dt(2.21)

≤ C

⎧
⎨

⎩

λ(n−1)/2, if 1/(n − 1) < δj ≤ 1,
λ(n−1)/2 lnλ, if 1/(n − 1) = δj ,
λ1/(2δj), if 1/n < δ ≤ 1/(n − 1).

As |Mj | =
|Xj |

(δjn − 1)a2(δjn−1)
j

, we get (2.13) from (2.15), (2.16) and (2.19)–(2.21). �

To achieve the proof of Theorem 1.2, we proceed as in [Mo-Tr].

We denote M0
0 = M \

(⋃J

j=1
Mj

)
, then

(2.22) M = M0
0

⋃
⎛

⎝
J⋃

j=1

Mj

⎞

⎠ .

Let us denote respectively by −ΔΩ,D
A and −ΔΩ,N

A the Dirichlet operator and the
Neumann-like operator on an open set Ω of M associated to −ΔA.

−ΔΩ,N
A is the Friedrichs extension defined by the associated quadratic form qΩ

A(u) =∫

Ω

|idu + Au|2dm, u ∈ C∞(Ω; C), u with compact support in Ω. (dm is the n-form

volume of M and |Z|2 =< Z; Z >T �(M) for any complex one-form Z on M.)
The min–max principle and (2.22) imply that

N
(
λ,−ΔM0

0,D
A

)
+
∑

1≤j≤J

N
(
λ,−ΔMj ,D

A

)
≤ N(λ,−ΔA)(2.23)

≤ N
(
λ,−ΔM0

0,N
A

)
+
∑

1≤j≤J

N
(
λ,−ΔMj ,N

A

)
.

The Weyl formula with remainder, (see [Hor2] for Dirichlet boundary condition
and [Sa-Va, page 9] for Neumann-like boundary condition), gives that

(2.24)

N
(
λ,−ΔM0

0,Z
A

)
=

ωn

(2π)n
|M0

0|λn/2 + O(λ(n−1)/2) (for Z = D and for Z = N).

For 1 ≤ j ≤ J , the asymptotic formula for N
(
λ,−ΔMj ,N

A

)
,

(2.25) N
(
λ,−ΔMj ,N

A

)
=

ωn

(2π)n
|Mj |λn/2 + O(r(λ)),

is obtained as for the Dirichlet case (2.13) by noticing that

N(λ, LD
j,�) ≤ N(λ, LN

j,�) ≤ N(λ, LD
j,�) + 1,
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where LD
j,� and LN

j,� are Dirichlet and Neumann-like operators on a half-line I =
]αj , +∞[ , associated to the same differential Schrödinger operator Lj,� defined by
(2.5) when δj = 1, and by (2.7) otherwise.

(The Neumann-like boundary condition is of the form ∂tu(αj) + βju(αj) = 0
because of the change of functions performed by U�).

The above inequality is well known. It comes from the fact that the eigenvalues of
LD

j,� and LN
j,� are of multiplicity one and there is no common eigenvalue, (we have used

Theorem 2.1 of [Co-Le, page 225]). If (μZ
�,k(j))k∈N is the sequence of non-decreasing

eigenvalues of LZ
j,�, (Z = D or D = N), and (ϕZ

�,k)k∈N an associated orthonormal basis
of eigenfunctions, then μN

�,0(j) < μD
�,0(j). As in Ek+1(Z), the subspace of dimension

k+1 spanned by ϕZ
�,0, ϕZ

�,1, . . . , ϕ
Z
�,k, there exists, in Ek+1(Z), a subspace of dimension

k included in the domain of LZ
j,�, for (Z, Z) = (N, D) and for (Z, Z) = (D, N), the

min–max principle involves μZ
�,k−1(j) < μZ

�,k(j). (For any k, ϕN
�,k+1 −

ϕN
�,k+1(αj)
ϕN

�,k(αj)
ϕN

�,k

is in the domain of LD
j,� and ϕD

�,k+1 −
∂tϕ

D
�,k+1(αj)

∂tϕD
�,k(αj)

ϕD
�,k is in the domain of LN

j,�.)

We get (1.8) from (2.13) and (2.23)–(2.25). �

2.4. Proof of Theorem 1.3.

Lemma 2.3. For any j ∈ {1, . . . , J}, there exists a one-form Aj satisfying (1.3) and
the following property.

There exists τ0 = τ0(Aj) > 0 and C = C(Aj) > 0 such that, if μ0(j, τ) =
infu∈C∞

0 (Xj), ‖u‖L2(Xj)=1 ‖idu + τuAj‖2
L2(Xj)

denotes the first eigenvalue of −ΔXj

τAj
,

then

(2.26) μ0(j, τ) ≥ Cτ2, ∀ τ ∈]0, τ0].

(‖idu + τuAj‖2
L2(Xj)

=
∫
Xj

〈idu + τuAj ; idu + τuAj〉T �(Xj)
dxj ).

Proof. When n = 2, we can take Aj = ωjdxj , (dxj is the (n−1)-form volume of Xj),

for some constant ωj ∈ R \ 2π

|Xj |Z, then μ0(j, τ) = τ2ω2
j for small |τ |.

When n ≥ 3, we have μ0(j, 0) = 0, ∂τμ0(j, 0) = 0 and

∂2
τμ0(j, 0) =

2
|Xj |

∫

Xj

[
|Aj |2 −

(
−ΔXj

0

)−1

(d�Aj).(d�Aj)
]

dxj .

(d� is the Hodge–de Rham codifferential on Xj , and (−ΔXj

0 )−1 is the inverse of the
Laplace–Beltrami operator on functions, which is well defined on the orthogonal of
the first eigenspace, on the space {f ∈ L2(Xj);

∫
Xj

fdxj = 0}).
The proof is standard. One writes −ΔXj

τA = P0 + τP1 + τ2P2, P0 = −Δ0 and
for all u ∈ C1(Xj), P1(u) = i 〈du; Aj〉T �Xj

− id�(uAj) and P2(u) = u|Aj |2 =
u 〈Aj ; Aj〉T �Xj

. The first eigenvalue of P0, μ0(j, 0) = 0 is of multiplicity one. The

associated normalized eigenfunction is u0 = 1/
√|Xj |. Then τ → μ0(j, τ) is an ana-

lytic function, and there exists an associated eigenfunction u0,τ analytic in τ. Then,
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as τ → 0, μ0(j, τ) = τc1 + τ2c2 + O(τ3) and u0,τ = u0 + τv1 + τ2v2 + O(τ3), with
⎧
⎪⎨

⎪⎩

c1 =
∫
Xj

P1(u0).u0dxj ,

v1 = −P−1
0 [P1(u0) − c1u0],

c2 =
∫
Xj

[P2(u0) + P1(v1)].u0dxj .

The operator P1 is formally self-adjoint and P2 is self-adjoint. We have P1(u0) =

− i√|Xj |
d�(Aj) so P1(u0) is orthogonal to the constant function u0 and then c1 = 0.

To the non-negative quadratic form Aj → ∂2
τμ0(j, 0), we associate a self-adjoint

operator P on Λ1(Xj), ∂2
τμ0(j, 0) =

∫

Xj

〈P (Aj); Aj〉T �Xj dxj , which is a pseudodif-

ferential operator of order 0 with principal symbol, the square matrix p0(x, ξ) =
(pik

0 (x, ξ))1≤i,k≤n−1 defined as follows. In local coordinates, if hj =
∑

i,k

Gik(x)dxidxk,

then

|Xj |
2

pik
0 (x, ξ) = Gik(x) −

∑

�,m

Gim(x)G�k(x)
ξm

|ξ|
ξ�

|ξ| ;
⎛

⎝|ξ|2 =
∑

�,m

Gm�(x)ξmξ�

⎞

⎠ ,

so for any ζ ∈ R
n−1,

∑

i,k

|Xj |
2

pik
0 (x, ξ)ζiζk =

2
|Xj |

[
|ζ|2 − 〈ξ; ζ〉2

|ξ|2
]
≥ 0;

⎛

⎝〈ξ; ζ〉 =
∑

i,k

Gikξiζk

⎞

⎠ .

Thus we get ∂2
τμ0(j, 0) =

∫
Xj

〈P (Aj); Aj〉T �Xj dxj > 0. �

Lemma 2.4. For a one-form A satisfying (1.4), there exists a constant CA > 0 such
that, if u is a function in L2(M) such that du ∈ L2(M) and

(2.27) ∀j = 1, . . . , J,

∫

Xj

u(xj , y)dxj = 0, ∀y ∈]a2
j , +∞[,

then ∀τ ∈]0, 1],

(2.28) ‖idu + τuA‖2
L2(M) ≤ (1 + τCA)‖idu‖2

L2(M) + CA‖u‖2
L2(M).

Proof. First we remark that the inequality

(2.29) |idu + τuA|2 ≤ (1 + ρ)|du|2 + (1 + ρ−1)|τuA|2

is satisfied for any ρ > 0.
For ρ = τ , we get that there exists a constant C0

A > 0, depending only on A/M0,
such that

(2.30) ‖idu + τuA‖2
L2(M0)

≤ (1 + τ)‖idu‖2
L2(M0)

+ τC0
A‖u‖2

L2(M0)
.
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We get also for ρ = τ that for any j ∈ {1, . . . , J},
∫ +∞

a2
j

‖idu + τuA‖2
L2(Xj)

y(2−n)δj dy(2.31)

≤
∫ +∞

a2
j

(
(1 + τ)‖idu‖2

L2(Xj)
+ τCj

A‖u‖2
L2(Xj)

)
y(2−n)δj dy,

for some constant Cj
A depending only on A/Xj .

But (2.27) implies that

(2.32) ‖u‖2
L2(Xj)

≤ 1
μ1(j, 0)

‖idu‖2
L2(Xj)

,

with (μ�(j, 0))�∈N the sequence of eigenvalues of Laplace–Beltrami operator on Xj ,

μ0(j, 0) = 0 < μ1(j, 0) ≤ μ2(j, 0) ≤ · · · .

So if (2.27) is satisfied then (2.31) and (2.32) imply that

(2.33) ‖idu + τuA‖2
L2(Mj)

≤
(
1 + τcj

A

)
‖idu‖2

L2(Mj)
,

for some constant cj
A depending only on A/Xj .

The existence of a constant CA > 0 satisfying the inequality (2.28) follows from
(2.30) and (2.33) for j = 1, . . . , J . �

Lemma 2.5. When A satisfies (1.3), (1.4) and Lemma 2.3 , then as λ → +∞, the
following Weyl formula is satisfied.

(2.34) N(λ,−Δ(λ−ρA)) = |M| ωn

(2π)n
λn/2 + O(r0(λ)),

with

(2.35) ρ =
{

1/2, if 2/n ≤ δ ≤ 1,
(nδ − 1)/2, if 1/n < δ < 2/n,

δ and ωd are as in Theorem 1.2, and the function r0(λ) is the one defined by (1.11).

Proof. We follow the proof of Theorem 1.2.
Since A satisfies Lemma 2.3, we have for λ � 1 large enough that −Δ(λ−ρA) −

(−Δ0) is in M0 a partial differential operator of order 1 with bounded coefficients,
so the part of the proof of Theorem 1.2 in M0 remains valid for the estimate of
N(λ,−ΔM0,Z

(λ−ρA)), (Z = D or Z = N), because for any Λ � 1, N(Λ,−ΔM0,Z
0 +

C(−ΔM0,Z
0 )1/2 + C) ≤ N(Λ,−ΔM0,Z

(λ−ρA)) ≤ N(Λ,−ΔM0,Z
0 − C(−ΔM0,Z

0 )1/2 − C) and

|N(Λ,−ΔM0,Z
0 ± C(−ΔM0,Z

0 )1/2 ± C) − |M0| ωn

(2π)n
Λn/2| ≤ CΛ(n−1)/2.

For the part of the proof of Theorem 1.2 in Mj , 1 ≤ j, we have also for
any Λ� 1, N(Λ,−ΔXj

0 +C(−ΔXj

0 )1/2 + C)≤N(Λ,−ΔXj

(λ−ρAj)
)≤N(Λ,−ΔXj

0 − C

(−ΔXj

0 )1/2 − C) and |N(Λ,−ΔXj

0 ±C(−ΔXj

0 )1/2 ± C)− |Xj | ωn−1

(2π)n−1
Λ(n−1)/2|
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≤ CΛ(n−2)/2. But the crucial step of the proof of Theorem 1.2 is Lemma 2.1, where
we used, (with μ�(j) to be replaced by μ�(j, 1) in our new notations), that

0 < C ≤ μ0(j) ≤ μ�(j) ≤ μ�+1(j) and lim
�→+∞

μ�(j) = +∞.

Here in Mj , (1 ≤ j), if (μ�(j, λ−ρ))�∈N denotes the increasing sequence of eigenvalues
of −ΔXj

λ−ρAj
, we have

C/λ2ρ ≤ μ0(j, λ−ρ) and C ≤ μ1(j, λ−ρ) ≤ μ1+�(j, λ−ρ) ≤ μ2+�(j, λ−ρ)

with lim�→+∞ μ�(j, λ−ρ) = +∞.
More precisely, limλ→+∞ μ�(j, λ−ρ) = μ�(j, 0) and 0 = μ0(j, 0) < μ1+�(j, 0) for any
� ∈ N. It follows that Lemma 2.1 holds for any � ∈ Kλ, � �= 0. So taking (2.14) into
account, the proof of Theorem 1.2 will remain valid if we can prove, (for LD

j,0 as in
Lemma 2.1, excepted that μ0(j) is replaced by μ0(j, λ−ρ)), that

N
(
λ, LD

j,0

)
= O(r0(λ)).

This can easily be done as follows.
When δj = 1, (ρ = 1/2), it is easy to see that

N
(
λ, LD

j,0

) ≤ N
(
λ + C, LD,λ

) ≤ Cλ1/2 ln(λ),

where LD,λ is the Dirichlet operator on ]0, +∞[ associated to
C

λ
e2t − ∂2

t .
When 0 < δj < 1, by scaling we have that

N
(
λ, LD

j,0

) ≤ N
(
(λ + C)1+2ρ(1−δj), LD

)
≤ Cλ(1+2ρ(1−δj))/(2δj),

where LD is the Dirichlet operator on ]0, +∞[ associated to
1

C2
t

2δj
1−δj − ∂2

t .

When 2/n ≤ δ < 1, as 2/n ≤ δ ≤ δj , then

λ(1+2ρ(1−δj))/(2δj) = λ(2−δj)/(2δj) ≤ λ(2−δ)/(2δ) ≤ λ(n−1)/2 = O(r0(λ)).

When 1/n < δ < 2/n, as δ ≤ δj , then λ(1+2ρ(1−δj))/(2δj) ≤ λ(1+2ρ(1−δ))/(2δ) =
λ(n−(nδ−1))/2 = O(r0(λ)). �

To achieve the proof of Theorem 1.3, we take a one-form A satisfying the assump-
tions of Lemma 2.5.

We remark that any eigenfunction u of the Laplace–Beltrami operator −Δ on M
associated to an eigenvalue in ] inf spess(−Δ), +∞[, satisfies (2.27). So if Hλ is the
subspace of L2(M) spanned by eigenfunctions of −Δ associated to eigenvalues in
]0, λ[, then, by (2.28) of Lemma 2.4 with τ = 1/λρ, with ρ defined by (2.35), we have

∀u ∈ Hλ, ‖idu +
1
λρ

uA‖2
L2(M) ≤

(
1 +

CA

λρ

)
‖du‖2

L2(M) + CA‖u‖2
L2(M)

≤
((

1 +
CA

λρ

)
λ + CA

)
‖u‖2

L2(M).

But if (λj)j∈N is the non-decreasing sequence of eigenvalues of −Δ(λ−ρA), then by
max–min principle one must have

k < dim(Hλ) ⇒ λk <

(
1 +

CA

λρ

)
λ + CA;
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so

(2.36) dim(Hλ) ≤ N

((
1 +

CA

λρ

)
λ + CA,−Δ(λ−ρA)

)
+ 1.

The estimates (2.34) and (2.36) prove (1.10), by noticing that λn/2/λρ = O(r0(λ)). �
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