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REGULARITY OF OPTIMAL TRANSPORTATION BETWEEN
SPACES WITH DIFFERENT DIMENSIONS

Brendan Pass

Abstract. We study the regularity of solutions to an optimal transportation problem
in which the dimension of the source is larger than that of the target. We prove that,
unless the cost c has a very special form, (in which case we show that the problem can be

reduced to an optimal transportation problem between equal dimensional spaces), there
are smooth marginals for which the optimal map is discontinuous. If c does not have this
special form, we identify sufficient conditions on the cost and the marginals to ensure

that the optimal map is continuous, in the case where the target is one dimensional.

1. Introduction

Let X and Y be connected smooth manifolds of dimensions m and n, endowed with
Borel probability measures μ and ν, respectively. We say that a Borel map F : X → Y
pushes μ forward to ν if for all Borel sets A ⊆ Y we have ν(A) = μ(F−1(A)). For a
given cost function c : X×Y → R, Monge’s optimal transportation problem is then to
find the Borel map F pushing μ forward to ν that minimizes the total transportation
cost:

(1.1)
∫

X

c(x, F (x))dμ.

This can be viewed as a stricter version of the Kantorovich optimal transportation
problem, which is to minimize ∫

X×Y

c(x, y)dγ

among all Borel probability measures γ on X ×Y such that the projections of X ×Y
onto X and Y push γ forward to μ and ν, respectively. In fact, the usual method
for finding solutions to Monge’s problem is to first find the Kantorovich solution; one
can then show that, under certain conditions, the solution γ is concentrated on the
graph of a function F : X → Y [2, 6, 16, 17, 21]. These conditions cannot generally
hold if m < n; in this case, however, there are known conditions under which γ
will concentrate on the graph of a function H : Y → X and so it is preferable to
reformulate Monge’s problem in terms of maps from Y to X. When minimizing (1.1),
then, it is natural to restrict our attention to the case when m ≥ n.

Monge’s problem has numerous applications and has received a lot of attention
from many different authors. Questions about the existence and uniqueness of opti-
mal maps have been resolved for a wide class of cost functions; much of the present
research in optimal transportation aims to understand the structure of these opti-
mizers. A great deal of progress has been made in this direction, but it has mostly
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been restricted to the case when m = n. Problems where m > n, on the other hand,
have received very little attention; the only results we are aware of in this direction
concern the local rectifiability of the solution [29, 30]. Aside from being a natural
mathematical generalization of the relatively well understood m = n case, however,
optimal transportation problems where m and n fail to coincide may have important
applications; for example, in economics, optimal transportation type problems arise
frequently and there is often no compelling reason to assume that m = n. For a treat-
ment of a related problem in an economic context, see [1] and [10]; the connections
between these results and the present work are explored by the present author in a
separate paper [31].

In the m = n case, understanding the regularity, or smoothness, of the optimal
map, has grown into an active and exciting area of research in the past few years,
due to a major breakthrough by Ma et al. [26]. They identified a fourth-order differ-
ential condition on c (called (A3s) in the literature) which implies the smoothness
of the optimizer, provided the marginals μ and ν are smooth. Subsequent investiga-
tions by Trudinger and Wang [33, 34] revealed that these results actually hold under
a slight weakening of this condition, called (A3w), encompassing earlier results of
Caffarelli [3–5], Urbas [35] and Delanoe [8,9] when c is the distance squared on either
R

n or certain Riemannian manifolds and Wang for another special cost function [36].
Loeper [23] then verified that (A3w) is in fact necessary for the solution to be contin-
uous for arbitrary smooth marginals μ and ν. Loeper also proved that, under (A3w),
the optimizer is Holder continuous even for rougher marginals; this result was sub-
sequently improved by Liu [22], who found a sharp Holder exponent. Since then,
many interesting results about the regularity of optimal transportation have been
established [11–15,18–20,24,25].

This article focuses on adapting these results to the m > n setting. A serious ob-
stacle arises immediately; the regularity theory of Ma et al. requires invertibility of
the matrix of mixed second-order partials ( ∂2c

∂xi∂yj )ij , and its inverse appears explicitly
in their formulations of (A3w) and (A3s). When m and n fail to coincide, however,
( ∂2c

∂xi∂yj )ij clearly cannot be invertible. Alternate formulation of (A3w) and (A3s)
that do not explicitly use this invertibility were developed by Loeper (see [23], Sec-
tion 2); however, they rely instead on local surjectivity of the map y �→ Dxc(x, y),
which cannot hold in our setting either.

Nonetheless, there is a certain class of costs for which our problem can easily
be solved using the results from the equal dimensional setting. Suppose c(x, y) =
b(Q(x), y), where Q : X → Z is smooth and Z is a smooth manifold of dimension
n; we will call such costs reducible. In this case, we show that the optimal map takes
every point in each level set of Q to a common y and studying its regularity amounts
to studying an optimal transportation problem on the n-dimensional spaces Z and
Y . More surprisingly, we will show that reducible costs are essentially the only costs
on X ×Y for which we can hope for regularity results for arbitrary smooth marginals
μ and ν. Indeed, for the quadratic cost on Euclidean domains, the regularity theory
of Caffarelli requires convexity of the target Y [3,4] and, for general costs, it became
apparent in the work of Ma et al. [26] that continuity of the optimizer cannot hold
for arbitrary smooth marginals unless Y satisfies an appropriate, generalized notion
of convexity. Due to its dependence on the cost function, this condition is referred to
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as c-convexity; when m > n, we will show that c-convexity necessarily fails unless the
cost function is of the reducible form alluded to above.

In the next section, we will introduce preliminary concepts from the regularity
theory of optimal transportation, suitably adapted for general values of m ≥ n. In
the third section, we prove that if c is not reducible, then there are smooth measures
for which the optimal map is discontinuous. For reducible costs, we then show that
the properties on Z and b which are necessary and sufficient for the optimal map to
be continuous follow from analogous properties on X and c.

Given the preceding discussion, it is apparent that for cost functions that are not
reducible, there are smooth marginals for which the optimal map is discontinuous.
However, as the reducibility condition is so restrictive, it is natural to ask about
regularity for costs which are not of this form; any result in this direction will require
stronger conditions on the marginals than smoothness. In the final section of our
paper, we address this problem when n = 1.

Finally, let us mention that the calculations in Section 2 of a recent paper by
Castillon [7] are somewhat similar to some of those found here, which was pointed out
to us by an anonymous referee after this article had been submitted. In [7], c is equal
to the distance squared on Euclidean space, and the target measure is supported on a
lower dimensional affine subspace; in our terminology, this cost function is reducible.

2. Conditions and definitions

Here, we develop several definitions and conditions which we will require in the fol-
lowing sections. We begin with some basic notation. In what follows, we will assume
that X and Y may be smoothly embedded in larger manifolds in which their closures,
X and Y , are compact. If c is differentiable, we will denote by Dxc(x, y) its differential
with respect to x. If c is twice differentiable, D2

xyc(x, y) will denote the map from the
tangent space of Y at y, TyY , to the cotangent space of X at x, T ∗

x X, defined in local
coordinates by

∂

∂yi
�→ ∂2c(x, y)

∂yi∂xj
dxj ,

where summation on j is implicit, in accordance with the Einstein summation con-
vention. Dyc(x, y) and D2

yxc(x, y) are defined analogously.
A function u : X → R

n is called c-concave if u(x) = infy∈Y c(x, y) − uc(y), where
uc(y) := infx∈X c(x, y) − u(x).

Next, we recall the concept of c-convexity, which first appeared in [26].

Definition 2.1. We say domain Y looks c-convex from x ∈ X if Dxc(x, Y ) =
{Dxc(x, y)|y ∈ Y } is a convex subset of TxX. We say Y is c-convex with respect
to X if it looks c-convex from every x ∈ X.

Our next definition is novel, as it is completely irrelevant when m = n. It will,
however, play a vital role in the present setting.

Definition 2.2. We say domain Y looks c-linear from x ∈ X if Dxc(x, Y ) is contained
in a shifted, n-dimensional, linear subspace of TxX. We say Y is c-linear with respect
to X if it looks c-linear from every x ∈ X.
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When m = n, c-linearity is automatically satisfied. When m > n, this is no longer
true, although c-convexity clearly implies c-linearity.

We will also have reason to consider the level set of x �→ Dyc(x, y) passing through
x, Lx(y) := {x ∈ X : Dyc(x, y) = Dyc(x, y)}.

Let us now state our first three regularity conditions. When m = n, these are
identical to the conditions (A0)–(A2) introduced by Ma et al.

(A0’): The function c ∈ C4(X × Y ).
(A1’): (Twist) For all x ∈ X, the map y �→ Dxc(x, y) is injective on Y .
(A2’): (Non-degeneracy) For all x ∈ X and y ∈ Y , the map D2

xyc(x, y) : TyY →
T ∗

x X is injective.

Remark 2.1. When m = n, a bi-twist hypothesis is required to prove regularity of
the optimal map; in addition to (A1’), one must assume x �→ Dyc(x, y) is injective
on X for all y ∈ Y . Clearly, such a condition cannot hold if m > n; in fact, the
non-degeneracy condition and the implicit function theorem imply that the level sets
Lx(y) of this mapping are smooth m − n-dimensional hypersurfaces. Later, we will
assume that the these level sets are connected. When m = n, non-degeneracy implies
that each Lx(y) consists of finitely many isolated points, in which case connectedness
implies that it is in fact a singleton, or, equivalently, that x �→ Dyc(x, y) is injective.

When m = n, examples of non-degenerate costs for which the bi-twist condition
fails (in which case the level sets of x �→ Dyc(x, y) are not connected) can be found
in [28], Examples 3.1 and 3.2.

The statements of (A3w’) and (A3s’), the most important regularity conditions,
require a little more machinery. For a twisted cost, the mapping y �→ Dxc(x, y) is
invertible on its range. We define the c-exponential map at x, denoted by c- expx(·),
to be its inverse; that is, Dxc(x, c- expx(p)) = p for all p ∈ Dxc(x, Y ).

Next, we define the Ma–Trudinger–Wang curvature. Note that our formulation
requires c-linearity.

Definition 2.3. Assume Y is c-linear and that (A0’)–(A2’) hold. Let x ∈ X and
y ∈ Y . Choose tangent vectors u ∈ TxX and v ∈ TyY . Set p = Dxc(x, y) ∈ T ∗

x X and
q = (D2

xyc(x, y)) · v ∈ T ∗
x X; note that as Y looks c-linear at x, p + tq ∈ Dxc(x, Y )

for small t. For any smooth curve β(s) in X with β(0) = x and dβ
ds (0) = u, we define

the Ma–Trudinger–Wang curvature at x and y in the directions u and v by

MTWxy〈u,v〉 := −3
2

∂4

∂s2∂t2
c(β(s), c- expx(p + tq)).

When m = n, Loeper showed that MTWxy is invariant under changes of coor-
dinates and demonstrated that, for the quadratic cost on a Riemannian manifold,
it coincides with sectional curvature on the diagonal [23]. Kim and McCann then
showed that it is actually the sectional curvature arising from a certain pseudo-metric
on X × Y [19]. Although our definition here is new for m > n, it coincides with the
definitions in [23] and [19] when m = n.

We are now ready to state the final conditions of Ma et al. Because they are designed
to deal with the general case m ≥ n, our formulations look somewhat different from the
conditions (A3w) and (A3s) found in [26]; when m = n, (A3w’) and (A3s’) reduce
to (A3w) and (A3s), respectively. Unlike (A0’)–(A2’), the formulation of these
conditions requires c-linearity, as they involve the Ma–Trudinger–Wang curvature.
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(A3w’): For all x ∈ X, y ∈ Y , u ∈ TxX and v ∈ TyY such that u·D2
xyc(x, y)·v = 0,

MTWxy〈u,v〉 ≥ 0.
(A3s’): For all x ∈ X, y ∈ Y , u ∈ TxX and v ∈ TyY such that u·(D2

xyc(x, y))·v =
0, u · (D2

xyc(x, y)) 	= 0 and v 	= 0 we have MTWxy〈u,v〉 > 0.

Note that, if m = n, non-degeneracy implies that the condition u · (D2
xyc(x, y)) 	= 0

is equivalent to u 	= 0.
Finally, we define the notion of a reducible cost function, alluded to in the intro-

duction.

Definition 2.4. A cost function c is called reducible if there exists a smooth n-
dimensional manifold Z, a smooth map Q : X → Z, a function b : Z × Y → R and a
map a : X → R such that, for all (x, y) ∈ X × Y

c(x, y) = b(Q(x), y) + a(x).

3. Regularity of optimal maps

The following theorem asserts the existence of an optimal map. It is due to Levin [21]
in the case where X is a bounded domain in R

m and μ is absolutely continuous with
respect to Lebesgue measure. The following version can be proved in the same way;
see also Brenier [2], Gangbo [16], Gangbo and McCann [17] and Caffarelli [6] and
McCann [27].

Theorem 3.1. Suppose c is twisted and μ(A) = 0 for all Borel sets A ⊆ X of
Hausdorff dimension less than or equal to m − 1. Then the Monge problem admits a
unique solution F of the form F (x) = c-exp(x, Du(x)) for some c-concave function u.

The purpose of this section is to understand the smoothness of the optimal map F .

3.1. Discontinuity of optimal maps for non-reducible costs. This subsection
is devoted to the proof of the following result.

Theorem 3.2. Assume that the level sets Lx(y) are all connected. If c is not reducible,
there exist smooth marginals μ and ν for which the optimal map is discontinuous.

Our proof relies on the following result, which confirms the necessity of c-convexity
to regularity. It is due to Ma et al. in the case where m = n (see [26], Section 7.3);
their proof applies to the m ≥ n case as well.

Theorem 3.3. Suppose there exists some x ∈ X such that Y does not look c-convex
from x. Then there exist smooth measures μ and ν for which the optimal map is
discontinuous.

As c-convexity implies c-linearity, this example verifies that we cannot hope to de-
velop a regularity theory in the absence of c-linearity. Proposition 3.1 below demon-
strates that, under the c-linearity hypothesis, the level sets Lx(y) are the same for
each y, yielding a canonical foliation of the space X, and the cost is reducible. To
prove Proposition 3.1, we will need the following lemma.

Lemma 3.1. The domain Y looks c-linear from x ∈ X if and only if Tx(Lx(y)) is
independent of y; that is Tx(Lx(y0)) = Tx(Lx(y1)) for all y0, y1 ∈ Y .
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Proof. The tangent space to Lx(y) at x is the null space of the map D2
yxc(x, y) :

TxX �→ T ∗
y Y , which, in turn, is the orthogonal complement of the range of D2

xyc(x, y) :
TyY �→ T ∗

x X. Therefore, Tx(Lx(y)) is independent of y if and only if the range of
D2

xyc(x, y) is independent of y. But D2
xyc(x, y) is the differential of the map y �→

Dxc(x, y) (making the obvious identification between T ∗
x X and its tangent space at

a point) and so its range is independent of y if and only if the image of this map is
linear. �

Proposition 3.1. Suppose that the level sets Lx(y) are all connected. Then the fol-
lowing are equivalent:

(1) Y is c-linear with respect to X.
(2) Lx(y) is independent of y for all x; in this case we denote it simply by Lx.
(3) c(x, y) = b(Q(x), y) + a(x) is reducible and the mapping z �→ Dyb(z, y) is

injective.

Proof. We first prove the equivalence of (1) and (2). Note that Lemma 3.1 implies Y
is c-linear with respect to X if and only if Tx(Lx(y0)) = Tx(Lx(y1)) for all x ∈ X and
all y0, y1 ∈ Y . But Tx(Lx(y0)) = Tx(Lx(y1)) for all x is equivalent to Lx(y0) = Lx(y1)
for all x; this immediately yields the equivalence of (1) and (2).

To see that (3) implies (2), note that if c(x, y) = b(Q(x), y) + a(x), the injectivity
of z �→ Dyb(z, y) implies that the level sets of x �→ Dyc(x, y) = Dyb(Q(x), y) are
precisely the level sets of x �→ Q(x), which are inherently independent of y.

It remains to show that (2) implies (3). Assuming that the sets Lx(y) are indepen-
dent of y, we define an equivalence relation on X by x ∼ x if x ∈ Lx. We then define
the quotient space Z = X/ ∼ and the quotient map Q : X → Z. Note that, for any
fixed y0 ∈ Y , the map x �→ Dyc(x, y0) ∈ T ∗

y0
Y has the same level sets as Q (namely

the Lx’s) and is smooth by assumption. Furthermore, the non-degeneracy condition
implies that this map is open and hence a quotient map. We can therefore identify
Z ≈ Dyc(X, y0) with a subset of the cotangent space T ∗

y0
Y . In particular, Z has a

smooth structure, and, if c satisfies (A0’), Q is C3.
We define b : Z × Y → R

n by

(3.1) b(z, y) = c(x, y) − c(x, y0),

for any x ∈ Q−1(z). We must show that this is well defined; that is, for any x, x ∈
Q−1(z), we must show that c(x, y) − c(x, y0) = c(x, y) − c(x, y0), or

(3.2) B(y) := c(x, y) − c(x, y0) − c(x, y) + c(x, y0) = 0,

for all y ∈ Y . Note that x, x ∈ Q−1(z) means that x ∈ Lx, or

(3.3) Dyc(x, y) = Dyc(x, y),

for all y. Now, (3.2) clearly holds at y = y0. As (3.3) implies that DyB(y) = 0 for all
y, it now follows that B(y) = 0 for all y, as desired.

Now, our definition of b immediately implies that c(x, y) = b(Q(x), y) + c(x, y0),
i.e., c is reducible. �

We can now prove Theorem 3.2; the argument is a simple application of Proposition
3.1, together with Theorem 3.3 of Ma et al.
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Proof. Suppose c is not reducible. Then Proposition 3.1 implies that Y cannot be
c-linear with respect to X. Theorem 3.3 then directly implies the desired result. �

3.2. Regularity for reducible costs. Theorem 3.2 implies that we cannot hope
to prove regularity results for arbitrary smooth marginals for non-reducible costs.
For that reason, we focus in this section on reducible costs. We will show that, for a
reducible cost, the optimal transportation problem can be transformed into a problem
between two n-dimensional spaces; questions about the regularity of the optimal map
can then be answered using the results of Ma et al. [26] and Loeper [23]. We also
demonstrate that the relevant regularity conditions for this new problem are related
to the conditions (A0’)–(A3s’).

For a reducible cost c, Proposition 3.1 implies that the level sets Lx are independent
of y; heuristically, points in the same level set are indistinguishable from an optimal
transportation perspective. The Lx’s define a canonical foliation of X and in this
subsection we show that our problem can be reduced to an optimal transportation
problem between Y and the space of leaves of this foliation. We will show that if
F : X → Y is the optimal map, then F factors through Q; F = T ◦Q. As Q is smooth,
this will imply that treating the smoothness of F reduces to studying the smoothness
of T . To this end, we will show that T itself solves an optimal transportation problem
with marginals α = Q#μ on Z and ν on Y relative to the cost function b(z, y).

Lemma 3.1. For any x0, x1 ∈ Lx, y ∈ Y and c-concave u we have u(x0) = c(x0, y)−
uc(y) if and only if u(x1) = c(x1, y) − uc(y).

Proof. First note that as Dyc(x0, y) − Dyc(x1, y) = 0 for all y ∈ Y , the difference
c(x0, y) − c(x1, y) is independent of y. Now, suppose u(x0) = c(x0, y) − uc(y). Then

u(x1) = inf
y∈Y

c(x1, y) − uc(y)

= inf
y∈Y

(
c(x1, y) − c(x0, y) + c(x0, y) − uc(y)

)

= c(x1, y) − c(x0, y) + inf
y∈Y

(
c(x0, y) − uc(y)

)

= c(x1, y) − c(x0, y) + u(x0)

= c(x1, y) − uc(y).

The proof of the converse is identical. �

Lemma 3.2. Suppose c is twisted and μ does not charge sets of Hausdorff dimension
m − 1. Let F : X → Y be the optimal map. Then there exists a map T : Z → Y such
that F = T ◦ Q, μ almost everywhere. Moreover, T solves the optimal transportation
problem on Z × Y with cost function b and marginals α and ν.

Proof. It is well known that there exists a c-concave function u(x) such that, for μ
almost every x, there is a unique y ∈ Y such that u(x) = c(x, y)− uc(y); in this case,
F (x) = y.

For α almost every z ∈ Z, Lemma 3.1 now implies that there is a unique y ∈ Y
such that u(x) = c(x, y) − uc(y) for all x ∈ Q−1(z); define T (z) to be this y. In then
follows immediately that F = T ◦Q, μ almost everywhere, and that T pushes α to ν.
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Now, suppose G : Z → Y is another map pushing α to ν. Then G ◦ Q pushes μ to
ν and because of the optimality of F = T ◦ Q we have

(3.4)
∫

X

c(x, T ◦ Q(x))dμ ≤
∫

X

c(x, G ◦ Q(x))dμ.

Now, using (3.1) we have∫
X

c(x, T ◦ Q(x))dμ =
∫

X

b(Q(x), T ◦ Q(x)) + c(x, y0)dμ

=
∫

Z

b(z, T (z))dα +
∫

X

c(x, y0)dμ.

Similarly, ∫
X

c(x, G ◦ Q(x))dμ =
∫

Z

b(z, G(z))dα +
∫

X

c(x, y0)dμ

and so (3.4) becomes ∫
Z

b(z, T (z))dα ≤
∫

Z

c(z, G(z))dα.

Hence, T is optimal. �

Having established that the optimal map F from X to Y factors through Z via the
quotient Q and the optimal map T from Z to Y , we will now study how the regularity
conditions (A1’)–(A3s’) for c translate to b.

Equation (3.1) allows us to understand the derivatives of b with respect to z. Pick
a point z0 ∈ Z and select x0 ∈ Q−1(z0). Now, let S be an n-dimensional surface
passing through x0 which intersects Lx0 transversely. As the null space of the map
D2

yxc(x, y0) : TxX → T ∗
y Y is precisely TxLx for any y, it is invertible when restricted to

TxS; by the inverse function theorem, the map Dyc(·, y0) restricts to a local diffeomor-
phism on S. For all z near z0, there is a unique x ∈ S ∩Q−1(z) and we have b(z, y) =
c(x, y)−c(x, y0); we can now identify Dzb(z, y) ≈ Dxc|S×Y (x, y)−Dxc|S×Y (x, y0) and
D2

zyb(z, y) ≈ D2
xyc|S×Y (x, y). We use this observation to prove the following result.

Theorem 3.4. Assume that c is reducible and the level sets Lx are connected. Then
(1) If c is twisted, b is bi-twisted.
(2) If c is non-degenerate, b is non-degenerate.
(3) If Y is c-convex, it is also b-convex.

Proof. Assuming the twistedness of c, we first prove the injectivity of z �→ Dyb(x, y);
suppose Dyb(z0, y) = Dyb(z1, y). By (3.1) we have Dyb(zi, y) = Dyc(xi, y) for xi ∈
Q−1(zi), i = 0, 1. Thus, Dyc(x0, y) = Dyc(x1, y), which, as Lx(y) = Lx(y0) by Propo-
sition 3.1, implies

z0 = Q(x0) = Dyc(x0, y0) = Dyc(x1, y0) = Q(x1) = z1.

Injectivity of y �→ Dzb(z, y) and follows from the preceding identification. Simi-
larly, assuming the non-degeneracy of c, the non-degeneracy of b follows from this
identification as well.

Note that transversality implies T ∗
x X = T ∗

x Lx ⊕ T ∗
x S. Our local identification

between Z and S identifies the projection of the range Dxc(x, Y ) onto T ∗
x S with
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Dzb(z, Y ). As the projection of a convex set is convex, the b-convexity of Y now
follows from its c-convexity. �

Theorem 3.5. Assume that c is reducible and the level sets Lx are connected. Then
the following are equivalent:

(1) b satisfies (A3w).
(2) c satisfies (A3w’).
(3) c satisfies (A3w’) when restricted to S × Y , where S ⊆ X is any smooth

surface of dimension n which is transverse to each Lx that it intersects.

Proof. The equivalence of (1) and (3) follow immediately from our identification.
Clearly, (2) implies (3); to see that (3) implies (2) it suffices to show MTWxy〈u,v〉 = 0
when u ∈ TxLx, as MTWxy is linear in u. Choosing a curve β(s) ∈ Lx such that
β(0) = x and dβ

ds (0) = u and p,q as in the definition, we have

dβ

ds
(s) ∈ Tβ(s)Lβ(s) = null

(
D2

xyc(β(s), c- expx(p + tq))
)
,

for all s and t, yielding

d2

dsdt
c(β(s), c- expx(p+tq)) =

dβ

ds
·D2

xyc
(
β(s), c- expx(p+tq)

) · d(c- exp(p + tq))
dt

= 0.

Hence, MTWxy〈u,v〉 = 0. �

Theorem 3.6. Assume that c is reducible and the level sets Lx are connected. Then
the following are equivalent:

(1) b satisfies (A3s).
(2) c satisfies (A3s’).
(3) c satisfies (A3s’) when restricted to S × Y , where S ⊆ X is any smooth

surface of dimension m which is transverse to each Lx that it intersects.

Proof. The equivalence follows immediately from the identification, after observing
that the v · (D2

xyc(x, y)) 	= 0 condition in the definition of (A3s’) excludes the non-
transverse directions. �

Various regularity results for T (and therefore F ) now follow from the regularity
results of Ma et al. [26], Loeper [23] and Liu [22]. Note, however, that these results all
require certain regularity hypotheses on the marginals; to apply them in the present
context, we must check these conditions on α, rather than μ. A brief discussion on
whether the relevant regularity conditions on μ translate to α therefore seems in order.

First, suppose X is a bounded domain in R
m and μ = f(x)dx is absolutely continu-

ous with respect to m-dimensional Lebesgue measure. Then α is absolutely continuous
with respect to n-dimensional Lebesgue measure with density h(z) given by the coarea
formula:

h(z) :=
∫

Q−1(z)

f(x)
JQ(x)

dHm−n(x),

where JQ is the Jacobian of the map Q, restricted to the orthogonal complement of
TxLx.

Lemma 3.2. Suppose f ∈ Lp(X) (with respect to Lebesgue measure on X) for some
p ∈ [1,∞]. Then h ∈ Lp(Z).
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Proof. We have hp(z) = (
∫

Q−1(z)
f(x)

JQ(x)dHm−n(x))p. By non-degeneracy, JQ(x) > 0,
for all x ∈ X; by compactness, it has a positive global lower bound K > 0. Normalizing
and applying Jensen’s inequality yields:

hp(z)
Cp(z)

≤
∫

Q−1(z)

fp(x)
(JQ(x))pC(z)

dHm−n(x)

≤
∫

Q−1(z)

fp(x)
JQ(x)C(z)Kp−1

dHm−n(x),

where C(z) is the (m− n)-dimensional Hausdorff measure of Q−1(z). Letting C be a
global upper bound on C(z) and integrating over z implies∫

hp(z)dz ≤
∫ ∫

Q−1(z)

fp(x)Cp−1(z)
JQ(x)pKp−1

dHm−n(x)dz

≤ Cp−1

Kp−1

∫ ∫
Q−1(z)

fp(x)
JQ(x)p

dHm−n(x)dz

=
Cp−1

Kp−1

∫
fp(x)dx < ∞,

where we have again used the coarea formula in the last step. �

Let us note, however, that an analogous result does not hold for the weaker condi-
tion introduced by Loeper [23], which requires that for all x ∈ X and ε > 0

μ(Bε(x)) ≤ Kεn(1− 1
p ),

for some p > n and K > 0. Indeed, if m − n ≥ n, we can take μ to be (m − n)-
dimensional Hausdorff measure on a single level set Lx. Then μ will satisfy the above
condition for any p, but α will consist of a single Dirac mass.

The preceding lemma allows us to immediately translate the regularity results of
Loeper and Liu to the present setting.

Corollary 3.1. Suppose that Y is c-convex with connected level sets Lx(y) for all
x ∈ X and y ∈ Y , and that (A0’), (A1’), (A2’) and (A3s’) hold. Suppose that
f ∈ Lp(X) for some p > n+1

2 . Then the optimal map is Holder continuous with Holder
exponent β(n+1)

2n2+β(n−1) , where β = 1 − n+1
2p .

The higher regularity results of Ma et al. require C2 smoothness of the density
h. As the following example demonstrates, however, smoothness of f does not even
imply continuity of h.

Example 3.1. Let

X = {x = (x1, x2) : −1 < x1 < 1,−1 < x2 < φ(x1)} ⊆ R
2,

where φ : (−1, 1) → (−1, 1) is a C∞ function such that φ(x1) = 0 for all −1 < x1 < 0,
φ(1) = 1 and φ is strictly increasing on (0, 1). Let Y = (0, 1) ⊆ R and c(x, y) = x2y.
Then Y is c-convex and c satisfies (A0’)–(A3s’). The level sets Lx are simply the
curves {x : x2 = c} for constant values of c ∈ (−1, 1) and Z = (−1, 1). Set f(x) = k,
where k is a constant chosen so that μ has total mass 1. The density h is then easy
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to compute; it is simply the length of the line segment Q−1(z). For z < 0, h(z) = 2k;
however, for z > 0, h(z) = k(1 − φ−1(z)) < k. 1

On the other hand, we should note that is possible for α to be smooth even when
μ is singular. This will be the case if, for example, μ is n-dimensional Hausdorff
measure concentrated on some smooth n-dimensional surface S which intersects the
Lx’s transversely.

Finally, we exploit Loeper’s counterexample, which shows that, when m = n and
(A3w’) fails, there are smooth densities for which the optimal map is not continuous.

Corollary 3.2. Suppose that Y is c-convex and that the level sets Lx(y) are connected
for all x ∈ X and y ∈ Y . Assume (A0’), (A1’) and (A2’) hold but (A3w’) fails.
Then there are smooth marginals μ on X and ν on Y , with densities bounded above
and below, such that the optimal map is discontinuous.

Proof. Using equation (3.1), it is easy to check that u : X → R is c-concave if and
only it u(x) = v(Q(x))+c(x, y0) for some b-concave v : Z → R. By [23], we know that
if (A3w’) fails, then the set of C1, b-concave functions is not dense in the set of all
b-concave functions in the L∞(Z) topology. From this it follows easily that the set of
C1, c-concave functions is not dense in the set of all c-concave functions in the L∞(X)
topology. The argument in [23] now implies the existence of smooth marginals μ and
ν and a c-concave u = v(Q(x)) + c(x, y0) which is not C1, such that the optimal map
is of the form F (x) = c-expx(Du(x)). As u is not C1, v must not be C1, and so the
optimal map T = b-expz(Dv(z)) between α = Q#μ and ν is not continuous. It now
follows that F = T ◦ Q, is discontinuous. �

4. Regularity for non-c-convex targets

The results in the previous section imply that we cannot hope that the optimizer is
continuous for arbitrary smooth data if the cost is not reducible. It is then natural
to ask for which marginals can we expect the optimal map to be smooth? In this
section, we study this question in the special case when n = 1. We identify conditions
on the interaction between the marginals and the cost that allow us to find an explicit
formula for the optimal map and prove that it is continuous.

We will assume Y = (a, b) ⊂ R is an open interval and that X is a bounded domain
in R

m. We will also assume that c ∈ C2(X × Y ) satisfies (A2’), which in this setting
simply means that the gradient ∇x( ∂c

∂y ) never vanishes, and that the level sets Lx(y)
are all connected. Therefore, these sets will all be C1 submanifolds of dimension m−1.
We define the following set:

P =
{

x̃ ∈ X : ∀ y0, y1 ∈ Y , x ∈ Lx̃(y0), we have
∂c(x̃, y1)

∂y
≤ ∂c(x, y1)

∂y

if y0 < y1, and
∂c(x̃, y1)

∂y
≥ ∂c(x, y1)

∂y
if y0 > y1

}
.

1It should be noted that the while the boundary of X is not smooth here, this is not the reason
for the discontinuity in h; the corners of the boundary can be mollified and the density will still be

discontinuous at 0.
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When the level sets Lx(y) are independent of y, P is the entire domain X. If not, P
consists of points x̃ for which the level sets Lx̃(y) evolve with y in a monotonic way. The
submanifold Lx̃(y1) divides the region X into two subregions: {x : ∂c(x̃,y1)

∂y > ∂c(x,y1)
∂y }

and {x : ∂c(x̃,y1)
∂y ≤ ∂c(x,y1)

∂y }. The condition x̃ ∈ P ensures that for y0 < y1, the
set Lx̃(y0) will lie entirely in the latter region. For interior points, the submanifolds
Lx̃(y0) and Lx̃(y1) will generically intersect transversely and so Lx̃(y0) will intersect
both of these regions; therefore, interior points will typically not belong to P . On the
other hand, if x̃ is a boundary point and m = 2, we can heuristically view the level
sets Lx̃(y) (curves in this case) as rotating about the point x̃; if this rotation is always
in a particular, fixed direction, then x̃ is in P .

We now state two definitions, followed by the main result of this section.

Definition 4.1. We say y splits the mass at x if

μ

({
x :

∂c(x, y)
∂y

<
∂c(x, y)

∂y

})
= ν([a, y)).

If μ and ν are absolutely continuous with respect to Lebesgue measure, this is equiv-
alent to

μ

({
x :

∂c(x, y)
∂y

>
∂c(x, y)

∂y

})
= ν([y, b]).

Definition 4.2. Let x̃ ∈ P . We say x̃ satisfies the mass comparison property (MCP)
if for all y0 < y1 ∈ Y we have

μ

⎛
⎝ ⋃

y∈[y0,y1]

Lx̃(y)

⎞
⎠ < ν

(
[y0, y1]

)
.

In the case when the level sets Lx(y) are independent of y, the MCP is satisfied
for all x ∈ P = X as long as μ assigns zero mass to every Lx(y) and ν assigns
non-zero mass to every open interval. Alternatively, in view of the previous section,
we know that in this case the cost has the form c(Q(x), y), where Q : X → Z and
Z = [z0, z1] ⊆ R is an interval; the MCP boils down to the assumption that α = Q#μ
assigns zero mass to all singletons and ν assigns non-zero mass to every open interval.

We are now ready to state the main result of this section. In what follows, γ will
be a solution to the Kantorovich problem. The support of γ, or spt(γ), is the smallest
closed subset of X × Y of full mass.

Theorem 4.1. Suppose μ and ν are absolutely continuous with respect to Lebesgue.
Suppose that for all x, y ∈ X × Y such that y splits the mass at x there exists an
x̃ ∈ P ∩Lx(y) satisfying the MCP. Then for each x ∈ X there is a unique y ∈ Y that
splits the mass at x. Moreover, (x, y) ∈ spt(γ) and (x, y) /∈ spt(γ) for all other y ∈ Y .
Therefore, the optimal map is well defined everywhere.

Note that we can actually use Theorem 4.1 to derive a formula for the optimal
map:

F (x) := sup
{

y : μ

({
x :

∂c(x, y)
∂y

<
∂c(x, y)

∂y

})
> ν([a, y))

}
.
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Most of this section will be devoted to proving Theorem 4.1. Before we launch into the
details of the proof, however, we will briefly discuss its implications. We first show
that Theorem 4.1 immediately implies the following corollary on the continuity of
the optimizer. We then illustrate the corollary with two simple examples. In the first
example, the conditions of Theorem 4.1 are violated and we demonstrate explicitly
that the optimal map is discontinuous. In the second, the conditions are satisfied and
so Theorem 4.1 implies that the optimal map is continuous.

Corollary 4.1. Under the assumptions of the preceding theorem, the optimal map is
continuous on X.

Proof. Choose xk → x ∈ X and set yk = F (xk); we need to show yk → F (x).
Set y = lim supk→∞ yk ∈ Y ; by passing to a subsequence we can assume yk → y.
As spt(γ) is closed by definition, we must have (x, y) ∈ spt(γ) and so Theorem 4.1
implies y = F (x). A similar argument implies lim infk→∞ yk = F (x), completing the
proof. �

Example 4.1. Let X be the quarter disk in R
2:

X =
{
(x1, x2) : x1 > 0, x2 > 0, x2

1 + x2
2 < 1

}
.

Let Y = (0, π
2 ) and take μ and ν to be uniform measures on X and Y , respectively,

scaled so that both have total mass 1. Let c(x, y) = −x1 cos(y) − x2 sin(y); this
is equivalent to the Euclidean distance between x and the point on the unit circle
parameterized by the polar angle y. We claim that the optimal map takes the form
F (x) = arctan(x2

x1
); that is, each point x is mapped to the point x

|x| on the unit circle.
Indeed, note that

(4.1) c(x, y) ≥ −
√

x2
1 + x2

2

with equality if and only if y = F (x), and that uniform measure on the graph (x, F (x))
projects to μ and ν, implying the desired result. Now observe that F is discontinuous
at (0, 0); in fact, ((0, 0), y) satisfies (4.1) for all y ∈ Y so the optimal measure pairs
the origin with every point. We now demonstrate explicitly that the conditions of
Theorem 4.1 fail in this case. Choose any y and set x = (0, 0); then, as ∂c(x,y)

∂y =
x1 sin(y)−x2 cos(y), the level set L(0,0)(y) is the straight line segment passing through
(0, 0) and the point on the unit circle with polar angle y. As μ and ν are uniform,
this means that y splits the mass at (0, 0); the main condition in the theorem is that
there exists some x̃ ∈ P ∩ L(0,0)(y) satisfying the MCP.

We now show that no such x̃ exists. First note that y �→ ∂c(x,y)
∂y = x1 sin(y) −

x2 cos(y) is strictly increasing, then for y1 > y0 and any x ∈ L0,0)(y0) we have

∂c(x, y1)
∂y

>
∂c(x, y0)

∂y
=

∂c((0, 0), y0)
∂y

= 0 =
∂c((0, 0), y1)

∂y
.

This implies that x̃ = (0, 0) ∈ P ; a similar calculation implies that x /∈ P for
all other x ∈ L(0,0)(y), so that P ∩ L(0,0)(y) = x̃. But x̃ does not satisfy the MCP;
indeed, as μ and ν are uniform, the characterization of the sets L(0,0)(y) described
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above implies that, for y1 ≥ y0,

μ

⎛
⎝ ⋃

y∈[y0,y1]

Lx̃(y)

⎞
⎠ = ν

(
[y0, y1]

)
.

Example 4.2. Take X, Y, c and μ to be as in the last example, but now suppose
that ν is uniform measure on (0, π

4 ), rescaled to have total mass 1. It is not hard to
check that (0, x2) is in P and satisfies the MCP for all x2. Now, for all (x, y) ∈ X ×Y
such that y splits the mass at x, it is straightforward to verify that we have some
(0, x2) ∈ Lx(y); hence, Corollary 4.1 implies continuity of the optimizer.

The proof of Theorem 4.1 requires some additional machinery, which we begin to
build up now.

Lemma 4.1. Suppose x̃ ∈ P, x ∈ X, y0, y1 ∈ Y and (x̃, y1), (x, y0) ∈ spt(γ). Then
∂c(x,y1)

∂y ≥ ∂c(x̃,y1)
∂y if y0 < y1 and ∂c(x,y1)

∂y ≤ ∂c(x̃,y1)
∂y if y0 > y1.

Proof. The support of γ is c-monotone (see [32] for a proof); this means that c(x̃, y1)+
c(x, y0) ≤ c(x̃, y0) + c(x, y1). If y0 < y1, this implies

(4.2)
∫ y1

y0

∂c(x̃, y)
∂y

dy ≤
∫ y1

y0

∂c(x, y)
∂y

dy.

This means that there is some y ∈ [y0, y1] such that ∂c(x̃,y)
∂y ≤ ∂c(x,y)

∂y ; if we had
∂c(x̃,y1)

∂y > ∂c(x,y1)
∂y , the Intermediate Value Theorem would imply the existence of a y ∈

(y, y1) such that ∂c(x̃,y)
∂y = ∂c(x,y)

∂y , or x ∈ Lx̃(y). This, together with our assumption
∂c(x̃,y1)

∂y > ∂c(x,y1)
∂y , violates the condition x̃ ∈ P ; we conclude that ∂c(x̃,y1)

∂y ≤ ∂c(x,y1)
∂y

A similar argument shows ∂c(x̃,y1)
∂y ≥ ∂c(x,y1)

∂y if y0 > y1. �

Lemma 4.1 immediately implies the following.

Lemma 4.2. Suppose μ and ν are absolutely continuous with respect to Lebesgue
measure. Then if x̃ ∈ P, y ∈ Y and (x̃, y) ∈ spt(γ), y splits the mass at x̃.

Lemma 4.3. Suppose μ and ν are absolutely continuous with respect to Lebesgue.
Then, for each x ∈ X there is a y ∈ Y that splits the mass at x.

Proof. The function y �→ fx(y) := μ
(
{x : ∂c(x,y)

∂y < ∂c(x,y)
∂y }

)
−ν

(
[a, y)

)
is continuous.

Observe that fx(a) ≥ 0 and fx(b) ≤ 0; the result now follows from the Intermediate
Value Theorem. �

Similarly, it is straightforward to prove the following lemma.

Lemma 4.4. Suppose μ and ν are absolutely continuous with respect to Lebesgue.
Then, for each y ∈ Y there is an x ∈ X such that y splits the mass at x if and only
if x ∈ Lx(y).

Lemma 4.5. Suppose μ and ν are absolutely continuous with respect to Lebesgue
measure and that x̃ ∈ P satisfies the MCP. Then there is a unique y ∈ Y that splits
the mass at x̃.
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Proof. Existence follows from Lemma 4.3; we must only show uniqueness. Our proof
is by contradiction; suppose y0 < y1 ∈ Y both split the mass at x̃. For any x such
that ∂c(x,y0)

∂y < ∂c(x̃,y0)
∂y and ∂c(x,y1)

∂y > ∂c(x̃,y1)
∂y the Intermediate Value Theorem yields

a y ∈ [y0, y1] such that x ∈ Lx̃(y); hence, setting X0 =
{
x : ∂c(x,y0)

∂y < ∂c(x̃,y0)
∂y

}
and

X1 =
{
x : ∂c(x,y1)

∂y > ∂c(x̃,y1)
∂y

}
, we have

X0

⋂
X1 ⊆

⋃
y∈[y0,y1]

Lx̃(y).

Therefore

(4.3) μ
(
X0

⋂
X1

)
≤ μ

⎛
⎝ ⋃

y∈[y0,y1]

Lx̃(y)

⎞
⎠ .

Now, using absolute continuity of μ and ν together with the assumption that y0 and
y1 split the mass at x̃, we have

μ(X0 ∩ X1) = μ(X0) + μ(X1) − μ(X0 ∪ X1) ≥ μ(X0) + μ(X1) − 1

= ν([y0, b]) + ν([a, y1]) − 1

= 1 − ν([a, y0]) + 1 − ν([y1, b]) − 1

= 1 − ν([a, y0]) − ν([y1, b])

= ν([y0, y1]).(4.4)

Combining (4.3), (4.4) and the MCP now yields a contradiction. �

We are now ready to prove Theorem 4.1.

Proof. For each x ∈ X, by Lemma 4.3 we can choose y ∈ Y that splits the mass at x;
the hypothesis then implies the existence of x̃ ∈ P ∩Lx(y) satisfying the MCP. As we
must have (x̃, ỹ) ∈ spt(γ) for some ỹ, Lemmas 4.5 and 4.2 imply that (x̃, y) ∈ spt(γ).

We now show that

(4.5) (x, y′) /∈ spt(γ), for all y′ 	= y.

The proof is by contradiction; to this end, assume (x, y′) ∈ spt(γ) for some y′ 	= y.
Suppose y′ > y; choose y ∈ (y, y′). By Lemma 4.4, we can choose x such that y splits
the mass at x. Now use the hypothesis of the theorem again to find ˜̃x ∈ P ∩ Lx(y)
satisfying the MCP and note that (˜̃x, y) ∈ spt(γ). Now, as y splits the mass at x̃, y
does not split the mass at x̃ by Lemma 4.5 and so x̃ /∈ L˜̃x(y) (as y splits the mass at
˜̃x). This means that ∂c(x̃,y)

∂y 	= ∂c(˜̃x,y)
∂y ; Lemma 4.1 now implies ∂c(x̃,y)

∂y > ∂c(˜̃x,y)
∂y .

Therefore, as x̃ ∈ P and x ∈ Lx̃(y),

∂c(x, y)
∂y

≥ ∂c(x̃, y)
∂y

>
∂c(˜̃x, y)

∂y
.

But now (x, y′), (˜̃x, y) ∈ spt(γ) and y′ > y contradicts Lemma 4.1. An analogous
argument implies that we cannot have (x, y′) ∈ spt(γ) for y′ < y, completing the
proof of (4.5).
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Now, note that we must have (x, y) ∈ spt(γ) for some y ∈ Y and so the preceding
argument implies (x, y) ∈ spt(γ).

Finally, we must show that there is no other y′ ∈ Y which splits the mass at x;
this follows immediately, as if there were such a y′, an argument analogous to the
preceding one would imply that (x, y′) ∈ spt(γ), contradicting (4.5). �

Acknowledgments

The author was supported in part by an NSERC postgraduate scholarship. This
work was completed in partial fulfillment of the requirements of a doctoral degree
in mathematics at the University of Toronto. The author is pleased to thank Robert
McCann and Paul Lee for fruitful discussions during the course of this work. He is
also grateful to an anonymous referee for many useful comments and suggestions.

References

[1] S. Basov, Hamiltonian approach to multi-dimensional screening, J. Math. Econom. 36 (2001),

77–94.
[2] Y. Brenier, Decomposition polaire et rearrangement monotone des champs de vecteurs, C. R.

Acad. Sci. Pair. Ser. I Math. 305 (1987), 805–808.

[3] L.A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5
(1992), 99–104.

[4] L.A. Caffarelli, Boundary regularity of maps with convex potentials, Comm. Pure Appl. Math.

45 (1992), 1141–1151.
[5] L.A. Caffarelli, Boundary regularity of maps with convex potentials-II, Ann. of Math. (2) 144

(1996), 453–496.
[6] L. Caffarelli, Allocation maps with general cost functions, in ‘Partial differential equations and

applications’ (P. Marcellini, G. Talenti and E. Vesintini, eds.), Lecture Notes in Pure Appl.
Math., 177, 1996, 29–35.

[7] P. Castillon, Submanifolds, isoperimetric inequalities and optimal transportation, J. Funct.

Anal. 259 (2010), 79–103.
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