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STATISTICS OF THE JACOBIANS OF HYPERELLIPTIC CURVES
OVER FINITE FIELDS

Maosheng Xiong and Alexandru Zaharescu

Abstract. Let C be a smooth projective curve of genus g ≥ 1 over a finite field Fq of
cardinality q. Denote by #JC the size of the Jacobian of C over Fq . We first obtain an
estimate on #JC when Fq(C)/Fq(X) is a geometric Galois extension, which improves

a general result of Shparlinski [19]. Then we study the behavior of the quantity #JC

as C varies over a large family of hyperelliptic curves of genus g. When g is fixed and
q → ∞, its limiting distribution is given by the powerful theorem of Katz and Sarnak in

terms of the trace of a random matrix. When q is fixed and the genus g → ∞, we also
find explicitly the limiting distribution and show that the result is consistent with that
of Katz and Sarnak when both q, g → ∞.

1. Introduction

Let C be a smooth projective curve of genus g ≥ 1 over a finite field Fq of cardinality
q. The Jacobian Jac(C) is a g-dimensional abelian variety. The set of the Fq-rational
points on Jac(C), denoted by JC = Jac(C)(Fq), is a finite abelian group. The group
JC has been studied extensively, partly because of its importance in the theory of
algebraic curves and its surprising applications in public-key cryptography and com-
putational number theory. For example, such groups are extremely useful in primality
testing [3] and integer factorization [12, 13]. Statistics of group structures of JC , for
instance the analog of the Cohen–Lenstra conjecture over function fields remains an
inspiring problem in number theory and provides insight for number fields case. In-
terested readers may refer to [1,2,22] for details and current development. The main
purpose of this paper is to study #JC , the size of the Jacobian over Fq. This quantity
is also the class number of the function field Fq(C) [17, Theorem 5.9], a subject of
study with a rich history.

The zeta function of C/Fq is a rational function of the form

ZC(u) =
PC(u)

(1 − u)(1 − qu)
,

where PC(u) ∈ Z[u] is a polynomial of degree 2g with PC(0) = 1, satisfying a func-
tional equation and having all its zeros on the circle |u| = 1/

√
q (the Riemann hypoth-

esis for curves [23]). Moreover, there is a unitary symplectic matrix ΘC ∈ USp(2g),
defined up to conjugacy, so that

PC(u) = det (I − u
√

qΘC) .

The eigenvalues of ΘC are of the form e (θC,j) , j = 1, . . . , 2g, where e(θ) = e2πiθ.
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It is known that #JC = PC(1) (see [14, Corollary VIII.6.3]). From this we imme-
diately derive that

(q1/2 − 1)2g ≤ #JC ≤ (q1/2 + 1)2g,

which is tight in the case g = 1 due to the classical result of Deuring [6]. Many
improvements of this bound have been obtained in [15,16,19–21]. In particular in an
interesting paper [19], Shparlinski proves that if C is a smooth absolutely irreducible
curve of genus g over Fq with gonality d, then

(1.1) log #JC = g log q + O
(
g log−1(g/d)

)

as g → ∞, where the implied constant may depend on q. (The gonality of a curve C
is the smallest integer d such that C admits a non-constant map of degree d to the
projective line over the ground field Fq. For example, a hyperelliptic curve is a curve
given by an affine model Y 2 = F (X) for some F ∈ Fq[X], so the gonality is d = 2.)
This generalizes and improves similar results of Tsfasman [21].

In this paper, we first prove that if the function field Fq(C) is a geometric Galois
extension of Fq(X), a sharper estimate can be obtained. Here “geometric” means that
the constant field of Fq(C) is still Fq.

Theorem 1.1. Let C be a smooth projective curve of genus g ≥ 1 over Fq. Assume
that the function field Fq(C) is a geometric Galois extension of the rational function
field Fq(X) with N = #Gal (Fq(C)/F (X)). Then

(1.2) | log #JC − g log q| ≤ (N − 1)
(

log max
{

1,
log(7g/(N − 1))

log q

}
+ 3
)

.

We remark that under the condition of Theorem 1.1, the gonality of the curve
clearly satisfies d ≤ N , and the quantity | log #JC − g log q| is essentially bounded by
O(log log g), which is significantly smaller than O(g/ log g) implied from (1.1).

Next we will study how the value (log #JC − g log q) fluctuates when C varies
inside a family. More precisely, assume that q is odd. For each positive integer d ≥ 3,
denote by Hd,q the family of hyperelliptic curves having an affine equation of the form
Y 2 = F (X), with F ∈ Fq[X] a monic square-free polynomials of degree d. The genus
of a curve C ∈ Hd,q is given by

g = g(C) =
[
d − 1

2

]
,

where for x ∈ R, [x] denotes the largest integer not exceeding x. For any C ∈ Hd,q,
since Fq(C)/Fq(X) is a geometric Galois extension with Galois group Z/2Z, Theo-
rem 1.1 implies that

|log #JC − g log q| ≤ log max
{

1, log
log(7g)
log q

}
+ 3.

We study how the value (log #JC − g log q) is distributed as C varies over the family
Hd,q. The measure on Hd,q is simply the uniform probability measure on the set of
such polynomials.
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Writing

PC(u) =
2g∏

i=1

(1 −√
qe (θC,i)u) ,

then

log #JC − g log q =
2g∑

i=1

log
(
1 − q−1/2e(θC,i)

)
.

Katz and Sarnak [10] showed that for fixed genus g, the conjugacy classes {ΘC :
C ∈ Hd,q} become uniformly distributed in USp(2g) in the limit q → ∞. In particular,
since

lim
q→∞

√
q (log #JC − g log q) = −

2g∑

i=1

e(θC,i),

it implies that
(i) When g is fixed and q → ∞, the value −√

q (log #JC − g log q) for C ∈ Hd,q

is distributed asymptotically as the trace of a random matrix in USp(2g).
Furthermore, since the limiting distribution of traces of a random matrix in USp(2g),
as g → ∞, is a standard Gaussian by a theorem of Diaconis and Shahshahani [7], it
also implies that

(ii) If q → ∞ and then g → ∞, the value
√

q (log #JC − g log q) is distributed as
a standard Gaussian.

Katz and Sarnak’s powerful theorem [10] provides an almost complete answer, except
that in their argument, it is crucial to take the limit that q → ∞. What happens if
g → ∞ instead? Complementary to (i) and (ii) above, we prove the following.

Theorem 1.2. (1) If q is fixed and g → ∞, then for C ∈ Hd,q, the quantity
log #JC −g log q+δd/2 log

(
1 − q−1

)
converges weakly to a random variable X, whose

characteristic function φ(t) = E
(
eitX

)
is given by

φ(t) = 1 +
∞∑

r=1

1
r!

∑

P1,...,Pr
distinct

r∏

j=1

(
1 − |Pj |−1

)−it +
(
1 + |Pj |−1

)−it − 2
2 (1 + |Pj |−1)

, ∀t ∈ R,

where we denote

δγ =

{
1, γ ∈ Z,

0, γ 	∈ Z,

and the sum on the right is over all distinct monic irreducible polynomials P1, . . . , Pr ∈
Fq[X] and |Pj | = qdeg Pj .

(2) If both q, g → ∞, then for C ∈ Hd,q,
√

q (log #JC − g log q) is distributed as a
standard Gaussian, that is, for any γ ∈ R, we have

lim
q→∞
g→∞

1
#Hd,q

# {C ∈ Hd,q :
√

q (log #JC − g log q) ≤ γ} =
1√
2π

∫ γ

−∞
e−

t2
2 dt.

Remark 1.1. (1) Kurlberg and Rudnick [11] and Faifman and Rudnick [8] initiated
the investigation of such problems under the limit that q is fixed and g →
∞. Bucur et al. [4, 5] made further important development. Theorem 1.2 is
similar to their work. Theorem 1.2 can also be considered as a function field
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analog of the distribution of L(1, χd) (over Q) investigated by Granville and
Soundararajan in [9]. The proof of Theorem 1.2 borrows techniques developed
by Rudnick [18] and Faifman and Rudnick [8].

(2) Statement (2) of Theorem 1.2 is more general than statement (ii) which could
be derived from the theorem of Katz and Sarnak because there is no require-
ment that q → ∞ first.

(3) Instead of averaging over Hd,q, the proof can be easily adapted to the moduli
space of hyperelliptic curves of a fixed genus. Interested readers may refer
to [4, 5] for terminology and treatment.

(4) The authors are grateful to Alina Bucur for suggesting the following insightful
heuristics: First notice #JC = PC(1) and by the functional equation

PC(1) = qgPC(1/q) = qg ZC(1/q)
ZP1(1/q)

.

The Euler product expansion of ZC(u)/ZP1(u) converges absolutely at u = 1/q,
so we can write #JC as qg times a product over Euler factors corresponding to
monic irreducible polynomials evaluated at 1/q. Explicitly, for P a monic irreducible
polynomial, the corresponding Euler factor evaluated at 1/q will be

⎧
⎪⎨

⎪⎩

(
1 − |P |−1

)−1 if C splits at P,
(
1 + |P |−1

)−1 if C is inert at P,

1 if C ramifies at P.

This suggests that the difference log #JC − g log q should be modeled by a sum of
i.i.d. random variables, one for each monic irreducible polynomials. In this model, the
probability that C ramifies the above some polynomial P is computed in the usual
way: the residue field at P has r = |P | elements, so that probability of ramification is
(r−1)/(r2−1) = 1/(r+1) = (1 + |P |)−1. This is counting the reductions modulo P 2

that are not zero, but are divisible by P of the defining polynomial of the curve. The
split and inert cases occur with equal probability, namely |P |

2(1+|P |) . Thus the random
variable corresponding to P has characteristic function

φP (t) =
1

1 + |P | +
(
1 − |P |−1

)−it |P |
2(1 + |P |) +

(
1 + |P |−1

)−it |P |
2(1 + |P |) .

One can check that
φ(t) =

∏

P

φP (t),

which confirms statement (1) of Theorem 1.2.

2. Preliminaries

In this section we collect several results which will be used later. Interested readers
can refer to [17] for more details.

2.1. Zeta functions of function fields. Let K = Fq(X) be the rational function
field over the finite field Fq and let L/K be a finite geometric Galois extension. Here
“geometric” means that the constant field of L is still Fq. We list several facts about
such extensions L/K as follows (see [17, Chapter 9] for more details).
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First, the zeta function ζL(s) of L is defined by

ζL(s) =
∏

P∈SL

(
1 − |P |−s

)−1
,

where the product is over SL, the set of all primes of L, and for each P ∈ SL, |P | is
the cardinality of the residue field of L at P . For the rational function field K, the
zeta function ζK(s) turns out to be

ζK(s) =
(
1 − q−s

)−1 (1 − q1−s
)−1

.

If C is a smooth projective curve of genus g ≥ 1 over Fq with function field Fq(C) = L,
then ZC (q−s) = ζL(s), i.e., the zeta function of the curve C coincides with the zeta
function of the function field Fq(C) (see [17, p. 57, Chapter 5] for details).

Let G = Gal(L/K) be the Galois group of L/K and ρ : G → AutC(V ) a represen-
tation of G, where V is a finite-dimensional vector space over the complex numbers
C of dimension m. One defines the Artin L-series associated to the representation ρ
as follows.

If P is a prime of K which is unramified in L and B is a prime of L lying above
P , one defines the local factor LP (s, ρ) as

(2.1) LP (s, ρ) = det
(
I − ρ((B, L/K))|P |−s

)−1
,

where I is the identity automorphism on V and (B, L/K) ∈ G is the Frobenius
automorphism at B. Since L/K is Galois, this definition does not depend on the
choice of B over P .

Let {α1(P ), α2(P ), . . . , αm(P )} be the eigenvalues of ρ((B, L/K)). In terms of these
eigenvalues, we get another useful expression for LP (s, ρ):

LP (s, ρ)−1 =
(
1 − α1(P )|P |−s

) (
1 − α2(P )|P |−s

) · · · (1 − αm(P )|P |−s
)
.

We note that these eigenvalues αi(P ) are all roots of unity because (B, L/K) has
finite order.

At a prime P of K which is ramified in L, the local factor LP (s, ρ) can also
be defined. The definition is similar to (2.1), except that the action ρ((B, L/K))
is restricted to a subspace of V which is fixed by the inertial group I(B/P ). We are
contended with the fact that there are only finitely many primes P which are ramified
in L and in either case we can write LP (s, ρ) as

LP (s, ρ)−1 =
(
1 − α1(P )|P |−s

) (
1 − α2(P )|P |−s

) · · · (1 − αm(P )|P |−s
)
,

where the values αi(P )’s are either roots of unity or zero. The Artin L-series L(s, ρ)
is defined by the infinite product

L(s, ρ) =
∏

P∈SK

LP (s, ρ),

where SK is the set of all primes in K = Fq(X).
It is known that if ρ = ρ0, the trivial representation, then L(s, ρ0) = ζK(s), and

if ρ = ρreg, the regular representation, then L(s, ρreg) = ζL(s). It is also known that
L(s, ρ) depends only on the character χ of ρ, so we can write it as L(s, χ).
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Finally, let L/K be a finite, geometric and Galois extension with Galois group
G = Gal(L/K). Let {χ1, χ2, . . . , χh} be the set of irreducible characters of G. We set
χ1 = χ0, the trivial character. Denote by di the degree of χi, i.e., di = χi(e) is the
dimension of the representation space corresponding to χi. Then using results about
group characters and formal properties of Artin L-series, one derives that

(2.2) ζL(s) = ζK(s)
h∏

i=2

L(s, χi)di .

2.2. Averaging over Hd,q. Let Hd,q ⊂ Fq[X] be the set of all monic square-free
polynomials of degree d ≥ 3.

Lemma 2.1. For any Dirichlet character χ : Fq[X] → C modulo f ∈ Fq[X], we have

1
#Hd,q

∑

F∈Hd,q

χ(F ) ≤ 2deg f−1

(1 − q−1) qd/2
.

Proof. This is [8, Lemma 3.1], which proves the case when χ =
(

f
·
)

is a quadratic
character. For the general case, the proof follows exactly the same line of argument,
so we omit the details here. �

Lemma 2.2. Let h ∈ Fq[X] be a monic square-free polynomial. Then
1

#Hd,q

∑

F∈Hd,q

gcd(F,h)=1

1 =
∏

P |h

(
1 + |P |−1

)−1
+ O

(
q−d/2σ(h)

)
,

where σ(h) =
∑

D|h 1.

Proof. This is essentially [18, Lemma 5], which treats the case that h = P is a monic
irreducible polynomial. In fact in this case Rudnick [18, Lemma 5] yields a much
stronger error term O(q−d). The extra saving is obtained by carefully analyzing the
functional equation of the zeta function. To obtain the error term O(q−d/2σ(h)), the
proof follows a standard procedure which is included [18, Lemma 5]. We also omit
details here. �

3. Proof of Theorem 1.1

Let C be a smooth projective curve of genus g ≥ 1 over Fq. The zeta function ZC(u)
is of the form

ZC(u) =
PC(u)

(1 − u)(1 − qu)
,

where PC(u) ∈ Z[u] is a polynomial of degree 2g with PC(0) = 1, satisfying the
functional equation

PC(u) =
(
qu2
)g

PC

(
1
qu

)
,

and having all its zeros on the circle |u| = 1/
√

q. We may write PC(u) as

PC(u) =
2g∏

i=1

(1 −√
qe(θi)u) ,
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where these θi ∈ [0, 1) and e(α) stand for e2πiα for any α ∈ R.
Since #JC = PC(1), we have

#JC =
2g∏

i=1

(1 −√
qe(θi)) = qg

2g∏

i=1

(
1 − q−1/2e(θi)

)
.

Taking logarithms on both sides and using the expansion

(3.1) − log(1 − z) =
∑

n≥1

zn

n
, |z| < 1,

we obtain the equation

(3.2) log #JC − g log q =
∑

n≥1

q−n/2n−1

2g∑

i=1

−e(nθi).

Denote L = Fq(C) and K = Fq(X). The zeta functions of L and K can be written
as

ζL(s) = (1 − q−s)−1(1 − q1−s)−1

2g∏

i=1

(
1 −√

qe(θi)q−s
)
,

and
ζK(s) = (1 − q−s)−1(1 − q1−s)−1.

Since L/K is a geometric Galois extension with G = Gal(L/K) and #G = N , let
{χ1, χ2, . . . , χh} be the set of irreducible characters of G with χ1 = χ0, the trivial
character and denote by di the degree of χi. From (2.2) we find that

(3.3)
h∏

i=2

L(s, χi)di =
2g∏

i=1

(
1 −√

qe(θi)q−s
)
,

where for each i with 2 ≤ i ≤ h, the Artin L-series associated to χi can be written as

L(s, χi)−1 =
∏

P

(
1 − αi,1(P )|P |−s

) (
1 − αi,2(P )|P |−s

) · · · (1 − αi,di(P )|P |−s
)
.

Here the product is over all monic irreducible polynomials P ∈ Fq(X) and P = ∞
with |P | = qdeg P (deg∞ = 1 hence |∞| = q) and these αi,j(P )’s are either roots of
unity or zero.

Taking logarithms on both sides of (3.3), using the expansion (3.1) again and
equating the coefficients, we obtain for any positive integer n the identity

(3.4) qn/2

2g∑

j=1

−e(nθi) =
∑

deg f=n

Λ(f)
h∑

i=2

di

di∑

j=1

αi,j(f),

where the sum on the right side over deg f = n is over all monic polynomials f ∈ Fq[X]
with deg f = n, Λ(f) = deg P if f = P k is a prime power, and Λ(f) = 0 otherwise.

Let Z be a positive integer which will be chosen later. Denote

ε1,Z =
∑

n≤Z

q−n/2n−1

2g∑

i=1

−e(nθi)
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and

ε2,Z =
∑

n>Z

q−n/2n−1

2g∑

i=1

−e(nθi).

From (3.2) we can write

log #JC − g log q = ε1,Z + ε2,Z .

If Z ≥ 2 we have

(3.5) |ε2,Z | ≤
∑

n≥Z+1

q−n/2n−12g ≤ 2g

Z + 1
q−(Z+1)/2

(
1 − q−1/2

)−1

,

and if Z = 1 we have

(3.6) |ε2,Z | ≤ 2g
(
− log

(
1 − q−1/2

)
− q−1/2

)
≤ 2g

q −√
q
.

For ε1,Z , we use the identity (3.4). Since |αi,j | ≤ 1 for all i, j, we obtain the
inequality

|ε1,Z | ≤
∑

n≤Z

q−nn−1
∑

deg f=n

Λ(f)
h∑

i=2

d2
i .

It is known that

1 +
h∑

i=2

d2
i = N = #G

and ∑

deg f=n

Λ(f) = qn + 1.

Here the extra “1” on the right side in the above equation accounts for f = ∞n.
Hence

|ε1,Z | ≤ (N − 1)

⎛

⎝
∑

n≤Z

1
n

+
∑

n≤Z

1
nqn

⎞

⎠ .

If Z = 1, this is

(3.7) |ε1,Z | ≤ (N − 1)
(
1 + q−1

)
,

and if Z ≥ 2, we use
∑

n≤Z

1
n
≤ 1.5 + log Z − log 2

and
∑

n≤Z

1
nqn

≤ − log
(
1 − q−1

) ≤ 1
q − 1

to obtain

(3.8) |ε1,Z | ≤ (N − 1)
(

1.5 − log 2 +
1

q − 1
+ log Z

)
, Z ≥ 2.
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Case 1: If 2
(
1 − q−1/2

)−1
g ≥ (N − 1)q, we choose

Z =

⎡

⎣
2 log

2(1−q−1/2)−1
g

N−1

log q

⎤

⎦ ≥ 2.

We find from (3.8) that

|ε1,Z | ≤ (N − 1)

⎧
⎨

⎩
1.5 +

1
q − 1

+ log

⎛

⎝
log

2(1−q−1/2)−1
g

N−1

log q

⎞

⎠

⎫
⎬

⎭

and from (3.5) that

|ε2,Z | ≤ N − 1
2

.

In this case noticing that q ≥ 2, we obtain

|log #JC − g log q| ≤ (N − 1)

(

log

(
log 7g

N−1

log q

)

+ 3

)

.

Case 2: If 2
(
1 − q−1/2

)−1
g < (N −1)q, we choose Z = 1, and from (3.7) and (3.6)

we obtain that

|log #JC − g log q| ≤ (N − 1)
(
2 + q−1

)
< 3(N − 1).

In either case we conclude that

| log #JC − g log q| ≤ (N − 1)
(

log max
{

1,
log(7g/(N − 1))

log q

}
+ 3
)

.

This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

4.1. Preparation. Let Fq be a finite field of cardinality q with q odd. Denote

Hd,q = {F ∈ Fq[X] : F is monic, square-free and deg F = d} .

For any F ∈ Hd,q, the hyperelliptic curve CF is given by the affine model

CF : Y 2 = F (X).

It has genus

g = g
F

=
[
d − 1

2

]
.

Suppose that the zeta function ZCF
(u) is of the form

ZCF
(u) =

∏2g
i=1

(
1 −√

qe (θi,F )u
)

(1 − u)(1 − qu)
,

where the θi,F ’s are real numbers. Then

#JCF
=

2g∏

i=1

(1 −√
qe (θi,F )) = qg

2g∏

i=1

(
1 − q−1/2e (θi,F )

)
.
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Taking logarithms on both sides we obtain the equation

log #JCF
− g log q =

∑

n≥1

q−n/2n−1

2g∑

i=1

−e (nθi,F ) .

As d → ∞ or d, q → ∞, the genus g =
[

d−1
2

]→ ∞. Choose

(4.1) Z =
[

d

(log d)2

]
.

We write

(4.2) log #JCF
− g log q =

∑

n≤Z

q−n/2n−1

2g∑

i=1

−e (nθi,F ) + ε1,Z(F ),

where

ε1,Z(F ) =
∑

n>Z

q−n/2n−1

2g∑

i=1

−e (nθi,F ) .

It is easy to see that

|ε1,Z(F )| ≤
∑

n>Z

q−n/2n−12g ≤ 9g

Z
q−Z/2.

Denote L = Fq(CF ) and K = Fq(X). Since L/K is a geometric quadratic extension
and the Legendre symbol χ :=

(
F
·
)

generates the Galois group Gal(L/K), from (2.2)
we have

(4.3) L (s, χ) =
2g∏

i=1

(
1 −√

qe (θi,F ) q−s
)
,

and by definition

(4.4) L(s, χ) =
∏

P

(
1 −

(
F

P

)
|P |−s

)−1

.

Here the product is over all monic irreducible polynomials P ∈ Fq(X) and P = ∞
with |P | = qdeg P (deg∞ = 1 hence |∞| = q).

Computing d
dsL(s, χ) in two different ways using (4.3) and (4.4) and equating the

coefficients we obtain for each positive integer n the identity

(4.5)
2g∑

i=1

−e (nθi,F ) = q−n/2
∑

deg f=n

Λ(f)
(

F

f

)
+ q−n/2δd/2,

where the sum over deg f = n on the right side is over all monic polynomials f ∈ Fq[X]
with deg f = n, and for any γ ∈ R, δγ = 1 if γ ∈ Z, and δγ = 0 if γ 	∈ Z. The extra
term q−n/2δn/2 comes from f = ∞n, noting the fact that F ∈ Hd,q is monic and

(
F

∞
)

=
{

1, deg F ≡ 0 (mod 2),
0, deg F ≡ 1(mod 2).
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Using the identity (4.5) in (4.2) and denoting

NF = log #JCF
− g log q + δd/2 log

(
1 − q−1

)
,

we find that
NF = �Z(F ) + εZ(F ),

where

(4.6) �Z(F ) =
∑

n≤Z

q−nn−1
∑

deg f=n

Λ(f)
(

F

f

)

and

(4.7) |εZ(F )| ≤ 10g

Z
q−Z/2.

An upper bound for �Z(F ) is given by

|�Z(F )| ≤
∑

n≤Z

q−nn−1
∑

deg f=n

Λ(f) ≤ 1 + log Z.

4.2. The rth moment �Z . For any function χ : Hd → C, we denote by 〈χ〉 the
mean value of χ on Hd,q, that is,

〈χ〉 :=
1

#Hd,q

∑

F∈Hd,q

χ(F ).

For any positive integer r, we find

�Z(F )r =
∑

n1,...,nr≤Z

r∏

i=1

q−nin−1
i

∑

deg fi=ni
1≤i≤r

Λ(f1) · · ·Λ(fr)
(

F

f1 · · · fr

)
,

hence

〈(�Z)r〉 =
∑

n1,...,nr≤Z

r∏

i=1

q−nin−1
i

∑

deg fi=ni
1≤i≤r

Λ(f1) · · ·Λ(fr)
〈( ·

f1 · · · fr

)〉
.

If f1 · · · fr is not a square in Fq[X], then
(

·
f1···fr

)
: Fq[X] → C is a non-trivial Dirichlet

character modulo h with deg h ≤∑r
i=1 deg fi, by Lemma 2.1 we find that

〈( ·
f1 · · · fr

)〉
≤ 2n1+···+nr−1

(1 − q−1) qd/2
.

The total contribution to 〈(�Z)r〉 from this case is bounded by

T1 ≤
∑

n1,...,nr≤Z

r∏

i=1

q−nin−1
i

∑

deg fi=ni
1≤i≤r

Λ(f1) · · ·Λ(fr)
2n1+···+nr−1

(1 − q−1) qd/2
.

This can be estimated as

(4.8) T1 ≤ q−d/22(Z+1)r

2 (1 − q−1)
≤ q−d/22(Z+1)r � q−d/3.
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If f1 · · · fr is a square in Fq[X], denote f1 · · · fr = h2 and h̃ =
∏

P |h P , then
( ·

h2

)

is a trivial character, by Lemma 2.2 we find that
〈( ·

h2

)〉
=

1
#Hd,q

∑

F∈Hd,q

gcd(F,h̃)=1

1 =
∏

P |h̃

(
1 + |P |−1

)−1
+ O

(
q−d/2σ(h̃)

)
.

Since fi’s are always prime powers, σ(h̃) ≤ 2r. The total contribution to 〈(�Z)r〉
from the error term O

(
q−d/2σ(h̃)

)
is bounded by

T2 ≤
∑

n1,...,nr≤Z

r∏

i=1

q−nin−1
i

∑

deg fi=ni
1≤i≤r

Λ(f1) · · ·Λ(fr)q−d/22r.

This can be estimated as

(4.9) T2 ≤ q−d/22r(1 + log Z)r � q−d/3.

The total contribution from the main term
∏

P |h̃
(
1 + |P |−1

)−1 is

∑

n1,...,nr≤Z

r∏

i=1

q−nin−1
i

∑

deg fi=ni
1≤i≤r

f1···fr=h2

Λ(f1) · · ·Λ(fr)
∏

P |h

(
1 + |P |−1

)−1
.

Removing the restriction that deg f1, . . . ,deg fr ≤ Z results in an error bounded by
∑

h
deg h>Z/2

∏

P |h

(
1 + |P |−1

)−1 |h|−2
∑

f1,...,fr

f1···fr=h2

Λ(f1) · · ·Λ(fr)
(deg f1) · · · (deg fr)

.

Noticing that Λ(fi)
deg fi

≤ 1 and fi’s are all prime powers, the sum over h is actually over
all monic polynomials h ∈ F [X] with ω(h) ≤ r and deg h > Z/2, where ω(h) is the
function counting the number of distinct prime factors of h. If such an h is chosen, the
number of choices for each fi dividing h which is a prime power is less than 2r deg h.
Hence the error by removing the restriction that deg f1, . . . ,deg fr ≤ Z is bounded by

T3 ≤
∑

deg h>Z/2

|h|−2(2r deg h)r =
∑

n>Z/2

q−n(2rn)r � q−Z/4.

Combining these estimates together we obtain

〈(�Z)r〉 = H(r) + T,

where T � q−Z/4 and

H(s) =
∑

n1,...,ns≥1

s∏

i=1

q−nin−1
i

∑

deg fi=ni
1≤i≤s

f1···fs=h2

Λ(f1) · · ·Λ(fs)
∏

P |h

(
1 + |P |−1

)−1
.

We write
〈(NF )r〉 = 〈(�Z)r〉 + EZ,r,
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where

EZ,r =
r∑

l=1

(
r

l

)
〈
(εZ)l(�Z)r−l

〉� q−Z/4.

Using (4.1) and the above we find that

(4.10) 〈(NF )r〉 = H(r) + O
(
q−Z/4

)
.

If q is fixed and d → ∞, then for each fixed r,

lim
d→∞

〈(NF )r〉 = H(r).

Now suppose that X is a random variable with

(4.11) E(Xr) = H(r), ∀r ∈ N.

For any t ∈ R, we can compute the characteristic function φ(t) = E
(
eitX

)
of X.

Expanding eitX by using the identity

(4.12) ex = 1 +
∞∑

n=1

xn

n!
,

using (4.11) and the expression of H(r) from Proposition 5.1 which we will prove in
the last section, we find that

φ(t) = 1 +
∞∑

n=1

(it)n

n!

∞∑

r=1

n!
2rr!

∑

λ1+···+λr=n
λi≥1

∑

P1,...,Pr
distinct

r∏

j=1

u
λj

Pj
+ (−1)λj v

λj

Pj

λj ! (1 + |Pj |−1)
,

where for any P ∈ Fq[X],

uP = − log
(
1 − |Pj |−1

)
, vP = log

(
1 + |Pj |−1

)
.

Changing the order of summation again we obtain

φ(t) = 1 +
∞∑

r=1

1
2rr!

∑

P1,...,Pr
distinct

r∏

j=1

⎛

⎝
∞∑

λj=1

(it)λj

(
u

λj

Pj
+ (−1)λj v

λj

Pj

)

λj ! (1 + |Pj |−1)

⎞

⎠ .

This implies

φ(t) = 1 +
∞∑

r=1

1
2rr!

∑

P1,...,Pr
distinct

r∏

j=1

((
1 − |Pj |−1

)−it +
(
1 + |Pj |−1

)−it − 2
(1 + |Pj |−1)

)

.

This completes the proof of (1) of Theorem 1.2.
For the proof of (2) of Theorem 1.2, it is enough to show that as q → ∞, φ̃(t) =

φ(t
√

q) → e−t2/2, the characteristic function of a standard Gaussian distribution.
Notice that

φ̃(t) =
∏

P

(
1 +

(1 − |P |−1)−it
√

q + (1 + |P |−1)−it
√

q − 2
2(1 + |P |−1)

)
,
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where the product is over monic irreducible polynomials P ∈ Fq[X]. It is easy to
verify that as q → ∞,

log φ̃(t) = −t2/2 + O(q−1/2).

This completes the proof of (2) of Theorem 1.2. �

5. Analysis of H(s)

5.1. Proposition 1. Let Fq be a finite field of cardinality q. For any positive integer
s, denote

H(s) =
∑

n1,...,ns≥1

s∏

i=1

q−nin−1
i

∑

deg fi=ni
1≤i≤s

f1···fs=h2

Λ(f1) · · ·Λ(fs)
∏

P |h

(
1 + |P |−1

)−1
.

In this section wet derive another representation of H(s) which has been used in the
proof of Theorems 1.2.

Proposition 5.1. For any positive integer s ≥ 1 we have

H(s) =
s∑

r=1

s!
2rr!

∑

λ1+···+λr=s
λi≥1

∑

P1,...,Pr
distinct

r∏

i=1

uλi

Pi
+ (−1)λivλi

Pi

λi! (1 + |Pi|−1)
,

where the sum on the right side is over all positive integers λ1, . . . , λr such that λ1 +
· · · + λr = s and over all distinct monic irreducible polynomials P1, . . . , Pr ∈ Fq[X],
and

(5.1) uP = − log
(
1 − |P |−1

)
, vP = log

(
1 + |P |−1

)
, ∀P ∈ Fq[X].

Proof. We rewrite H(s) as

H(s) =
∑

h

∏

P |h

(
1 + |P |−1

)−1 |h|−2
∑

f1,...,fs

f1···fs=h2

Λ(f1) · · ·Λ(fs)
(deg f1) · · · (deg fs)

.

Since fi’s are prime powers, the sum over h is actually over all monic polynomials
h ∈ Fq[X] with ω(h) ≤ r, where ω(h) is the number of distinct prime factors of h.
Hence

(5.2) H(s) =
s∑

r=1

H(s, r),

where

H(s, r) =
∑

h
ω(h)=r

∏

P |h

(
1 + |P |−1

)−1 |h|−2
∑

f1,...,fs

f1···fs=h2

Λ(f1) · · ·Λ(fs)
(deg f1) · · · (deg fs)

.
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If ω(h) = r, write explicitly h = P a1
1 · · ·P ar

r for some distinct primes P1, . . . , Pr and
exponents a1, . . . , ar ≥ 1, then

H(s, r) =
1
r!

∑

P1,...,Pr
distinct

∑

a1,...,ar≥1
h=P

a1
1 ···P ar

r

r∏

i=1

(
1 + |Pi|−1

)−1 |Pi|−2ai

×
∑

f1,...,fs

f1···fs=h2

Λ(f1) · · ·Λ(fs)
(deg f1) · · · (deg fs)

.

Since each fi is a prime power and f1 · · · fs = P 2a1
1 · · ·P 2ar

r , there are finitely many
ways to assign prime powers to each fi, according to which we will break H(s, r) into
many subsums. With that in mind, for each partition of the set of indexes

{1, 2, . . . , s} =
r⋃

i=1

Ai, #Ai = λi ≥ 1, ∀i,

it satisfies the property that
r∑

i=1

λi = s.

We say (A1, . . . , Ar) is the type of (f1, . . . , fr) with f1 · · · fr = h2, namely whenever
j ∈ Ai, then fj is a power of Pi. Suppose that fi = Qei

i for some prime Qi ∈
{P1, . . . , Pr} and exponent ei ≥ 1, and the type of (f1, . . . , fr) is (A1, . . . , Ar), since
f1 · · · fs = P 2a1

1 · · ·P 2ar
r , comparing the exponents of Pj on both sides we find that

(5.3)
∑

i∈Aj

ei = 2aj ∀1 ≤ j ≤ r,

and
Λ(f1) · · ·Λ(fs)

(deg f1) · · · (deg fs)
=

1
e1 · · · es

.

Instead of summing over all integers a1, . . . , ar, we sum over all positive integers
e1, . . . , es which satisfy the conditions (5.3). Noting that the value only depends on
the vector of integers (λ1, . . . , λr) such that

r∑

i=1

λi = s,

hence we can write H(s, r) as

H(s, r) =
s!
r!

∑

λ1+···+λr=s
λi≥1

∑

P1,...,Pr
distinct

r∏

i=1

×

⎛

⎜
⎜
⎝

(
1 + |Pi|−1

)−1

λi!

∑

a1+···+aλi
≡0 (mod 2)

aj≥1

|Pi|−a1−···−aλi

a1 · · · aλi

⎞

⎟
⎟
⎠ .
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For each prime P and positive integer λ, denote

η(λ) = ηP (λ) :=
∑

a1+···+aλ≡0 (mod 2)
ai≥1

|P |−a1−···−aλ

a1 · · · aλ

and

τ(λ) = τP (λ) :=
∑

a1+···+aλ≡1 (mod 2)
ai≥1

|P |−a1−···−aλ

a1 · · · aλ
.

Since

− log(1 − x) =
∑

n≥1

xn

n
, |x| < 1,

we find

(5.4) η(1) = −1
2 log

(
1 − |P |−2

)
,

and

(5.5) η(λ) + τ(λ) =
∑

a1,···aλ≥1

|P |−a1−···−aλ

a1 · · · aλ
= (−1)λ logλ

(
1 − |P |−1

)
.

Combining (5.4) and (5.5) we have

τ(1) = − log
(
1 − |P |−1

)
+ 1

2 log
(
1 − |P |−2

)
.

For λ ≥ 2, we can write

η(λ) =
∑

a2+···+aλ≡0 (mod 2)
ai≥1

(
λ∏

i=1

|P |−ai

ai

)

η(1)+
∑

a2+···+aλ≡1 (mod 2)
ai≥1

(
λ∏

i=1

|P |−ai

ai

)

τ(1).

This shows that

(5.6) η(λ) = η(1)η(λ − 1) + τ(1)τ(λ − 1).

Similarly for λ ≥ 2,

(5.7) τ(λ) = η(1)τ(λ − 1) + τ(1)η(λ − 1).

We can assign the initial values

η(0) = 1, τ(0) = 0,

so that the recursive relations (5.6) and (5.7) hold for any λ ≥ 1. Subtracting these
two recursive relations we obtain

η(λ) − τ(λ) = (η(1) − τ(1)) (η(λ − 1) − τ(λ − 1)) .

Applying this relation recursively and using (5.5) we conclude that

η(λ) = 1
2

(
uλ

P + (−1)λvλ
P

)
,

where
uP = − log

(
1 − |P |−1

)
, vP = log

(
1 + |P |−1

)
.
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Therefore H(s, r) can be written as

H(s, r) =
s!

2rr!

∑

λ1+···+λr=s
λi≥1

∑

P1,...,Pr
distinct

r∏

i=1

uλi

Pi
+ (−1)λivλi

Pi

λi! (1 + |Pi|−1)
.

Returning to (5.2) completes the proof of Proposition 5.1. �
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