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BOUNDS ON VOLUME GROWTH OF GEODESIC BALLS
UNDER RICCI FLOW

Qi S. Zhang

Abstract. We prove a so-called κ non-inflating property for Ricci flow, which provides
an upper bound for volume ratio of geodesic balls over Euclidean ones, under an upper
bound for scalar curvature. This result can be regarded as the opposite statement of

Perelman’s κ non-collapsing property for Ricci flow. These two results together imply
volume-doubling property for Ricci flow without assuming Ricci curvature lower bound.

1. Statement of result and proof

In [P], Perelman proved the fundamental κ non-collapsing property for Ricci flow.
One version of it roughly says that the volume ratio between a geodesic ball and
Euclidean ball with the same radius is bounded from below by a positive constant,
provided that the scalar curvature is bounded from above in a space-time cube.

In this short note, we prove that the opposite result is also true. i.e., the above
volume ratio is bounded from above by a positive constant, provided that the scalar
curvature is bounded from above in a space-time cube. In the case of normalized Ricci
flow on compact Kähler manifolds with positive first Chern class, the upper bound
holds for all time. An upper bound for the volume ratio is useful in the study of
Kähler–Ricci flow. See, for example, the papers [Se, CW] and the references therein.
The current result seems to remove one of the obstacles in the program to prove
convergence results, although many other obstacles remain.

To make the statement precise, let us introduce notations and definition. We use
M to denote a compact Riemann manifold and g(t) to denote the metric at time t;
d(x, y, t) is the geodesic distance under g(t); B(x, r, t) = {y ∈ M | d(x, y, t) < r} is
the geodesic ball of radius r, under metric g(t), centered at x, and |B(x, r, t)|g(t) is
the volume of B(x, r, t) under g(t); dμg(t)(x) is the volume element. We also reserve
R = R(x, t) as the scalar curvature under g(t).

Definition 1.1. A smooth, compact, n-dimensional Ricci flow (M, g(t)) is called κ
non-inflated at the point (x0, t0) under scale ρ if the following statement holds.

For any r ∈ (0, ρ), suppose:
1. The Ricci flow is defined in the space-time cube

{(x, t) | d(x, x0, t0) < r, t ∈ [t0 − r2, t0]}.
2. For some positive constant α, R(x, t) ≤ α

t0−t for all (x, t) in the above cube.
Then, there exists a positive constant κ, which may depend on α such that

|B(x0, r, t0)|g(t0) ≤ κrn.
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Remark. Recall that in the κ non-collapsing property, the condition on the scalar
curvature is R(x, t) ≤ 1

r2 in the space-time cube. Obviously this condition is included
in our condition R(x, t) ≤ α

t0−t in the same space-time cube.

The main result of the note is the following theorem. Even though the proof is very
short, it actually uses a combination of several results: a variation of global bounds
for the fundamental solution of the conjugate heat equation ([CZ]) whose proof relies
on Perelman’s Harnack inequality in [P] and uniform Sobolev inequality under Ricci
flow, and also Perelman’s scalar curvature and diameter bound for Kähler–Ricci flow,
and the general idea that heat kernel lower bound implies volume upper bound in
[GHL].

Theorem 1.1. (a). Let (M, g(t)), ∂tgij = −2Rij, t ∈ [0, t0] be a smooth, compact,
n-dimensional Ricci flow. Then for any x0 ∈ M, the Ricci flow is κ non-inflated at
(x0, t0) under scale

√
t0. Here κ depends only on g(0), t0 and the constant α in the

bound for the scalar curvature.
(b). Let (M, g(t)), ∂tgij = −Rij + gij, t ∈ [0,∞) be a smooth, compact, n-real

dimensional, normalized Ricci flow on compact Kähler manifolds with positive first
Chern class. There exists a positive constant κ > 0, which depends only on the initial
metric g(0) such that

|B(x, r, t)| ≤ κrn

for all x ∈ M, r > 0 and t > 0.

Proof. (of part (a)).
Step 1.

Picking any r ∈ (0,
√

t0), we assume:
1. The Ricci flow is defined in the space-time cube

Q(x0, t0, r) = {(x, t) | d(x, x0, t0) < r, t ∈ [t0 − r2, t0]}.
2. For some positive constant α, R(x, t) ≤ α

t0−t for all (x, t) in the above cube
Q(x0, t0, r).

Let l and t be two moments in time such that 0 < l < t ≤ t0 and x, z ∈ M. Let
G = G(z, l; x, t) be the fundamental solution of the conjugate heat equation

(1.1) Δu − Ru + ∂lu = 0,

which is coupled with the Ricci flow. Fixing z, l, we know that G, as a function of
x, t satisfies the heat equation i.e., for t > l,

ΔxG(z, l; x, t) − ∂tG(z, l; x, t) = 0.

Hence,

d

dt

∫
M

G(z, l; x, t)dμg(t)(x) =
∫
M

[ΔxG(z, l; x, t) − R(x, t)G(z, l; x, t)]dμg(t)(x)

= −
∫
M

R(x, t)G(z, l; x, t)dμg(t)(x).

From the scalar curvature equation

ΔR + 2|Ric|2 − ∂tR = 0,
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we deduce

ΔR +
2
n

R2 − ∂tR ≤ 0,

which implies, via the maximum principle that, either R(·, 0) ≥ 0 or

minR(·, t) ≥ 1
(1/minR(·, 0)) − (2t/n)

.

Therefore, either d
dt

∫
M

G(z, l; x, t)dμg(t)(x) ≤ 0 or

d

dt

∫
M

G(z, l; x, t)dμg(t)(x) ≤ 1
(−1/minR(·, 0)) + (2t/n)

∫
M

G(z, l; x, t)dμg(t)(x),

which yields

(1.2)
∫
M

G(z, l; x, t)dμg(t)(x) ≤ 1 + C(1 + t − l)n/2.

Here C only depends on minR(·, 0) and n, and C = 0 when R ≥ 0.
Step 2.

Next, we prove the following heat kernel bounds on G(z, l; x, t) which is similar
to Theorem 2.1 in [CZ]. The method is also similar. The improvement is on the
coefficients of the bounds, which rely on the initial metric g(0) instead of on g(l).
This will be useful in proving the volume ratio bound.

(1.3)
c1J(t)

(t − l)n/2
e−2c2

d(z,x,t)2

t−l e
− 1√

t−l

∫ t
l

√
t−sR(x,s)ds ≤ G(z, l; x, t) ≤ c−1

1 J−1(t)
(t − l)n/2

.

Here

J = J(s) = exp[−α − sβ − s sup R−(·, 0)],

and α and β are positive constants depending only on the Sobolev constants of
(M, g(0)) and the infimum of Perelman’s F entropy for (M, g(0)). The proof of
this theorem uses uniform Sobolev inequality under Ricci flow and Perelman’s differ-
ential Harnack inequality for G [P]. Moreover, if the scalar curvature is positive, then
J(t) is independent of t.

Recall that as a function of (x, t), G = G(z, l; x, t) is the fundamental solution of
the forward heat equation associated with the Ricci flow, i.e.,

(1.4)

⎧⎨
⎩

∂

∂t
g(t) = −2Ric,

ut = Δu.

First, we study the forward heat equation (1.4).
Let u = u(x, t) be a positive solution to (1.4). Given T > 0 and t ∈ (l, T ), define

p(t) = (T − l)/(T − t),
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so p(l) = 1 and p(T ) = ∞. By direct computation, using the idea of Davies [D],

∂t‖u‖p(t) = ∂t

[(∫
M

up(t)(x, t)dμg(t)

)1/p(t)
]

= − p′(t)
p2(t)

‖u‖p(t) ln
∫
M

up(t)(x, t)dμg(t)

+
1

p(t)

(∫
M

up(t)(x, t)dμg(t)

)(1/p(t))−1

×
[∫

M

up(t)(lnu)p′(t)dμg(t) +
∫
M

up(t)−1(p(t)Δu − Ru)dμg(t)

]
.

Using integration by parts on the term containing Δu and multiplying both sides by
p2(t)‖u‖p(t)

p(t), we infer

p2(t)‖u‖p(t)
p(t)∂t‖u‖p(t)

= −p′(t)‖u‖p(t)+1
p(t) ln

∫
M

up(t)(x, t)dμg(t) + p(t)‖u‖p(t)p
′(t)

∫
M

up(t) lnu(x, t)dμg(t)

− p2(t)(p(t) − 1)‖u‖p(t)

∫
M

up(t)−2|∇u|2(x, t)dμg(t)

− p(t)‖u‖p(t)

∫
M

R(x, t)up(t)(x, t)dμg(t).

Dividing both sides by ‖u‖p(t), we arrive at

p2(t)‖u‖p(t)
p(t)∂t ln ‖u‖p(t)

= −p′(t)‖u‖p(t)
p(t) ln

∫
M

up(t)dμg(t) + p(t)p′(t)
∫
M

up(t) lnudμg(t)

− 4[p(t) − 1]
∫
M

|∇(up(t)/2)|2dμg(t) − p(t)
∫
M

R(up(t)/2)2dμg(t).

Define v(x, t) = up(t)/2

‖up(t)/2‖2
, then ‖v‖2 = 1 and

v2 ln v2 = p(t)v2 lnu − 2v2 ln ‖up(t)/2‖2.

Merging the first two terms on the right-hand side of the above equality and dividing
both sides by ‖u‖p(t)

p(t), we find that

p2(t)∂t ln ‖u‖p(t)

= p′(t)
∫
M

v2 ln v2dμg(t) − 4(p(t) − 1)
∫
M

|∇v|2dμg(t) − p(t)
∫
M

Rv2dμg(t)

= p′(t)
∫
M

v2 ln v2dμg(t) − 4[p(t) − 1]
∫
M

(|∇v|2 +
1
4
Rv2)dμg(t) −

∫
M

Rv2dμg(t).

Note the following relations:

4(p(t) − 1)
p′(t)

=
4(t − l)(T − l − (t − l))

T − l
≤ T − l,

1
p′(t)

=
(T − l)2

T
≤ T,
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Hence,

p2(t)∂t ln ‖u‖p(t) ≤ p′(t)
[∫

M

v2 ln v2dμg(t) − 4(p(t) − 1)
p′(t)

×
∫
M

(
|∇v|2 +

1
4
Rv2

)
dμg(t) + T sup R−(·, t)

]
.

Next, we recall the log-Sobolev inequality (6.2.8) in Section 6.2 of [Z2]∫
M

v2 ln v2 dμg(t) ≤ ε2
∫
M

(4|∇v|2 + Rv2)dμg(t) − n ln ε + (t + ε2)BA−1

+ n2−1 ln(nA2−1) − n2−1.

Here A and B only depend on the Sobolev constants and the infimum of the F entropy
of the initial metric. Taking ε such that

ε2 =
4(p(t) − 1)

p′(t)
≤ T − l

in the above inequality, we deduce that

p2(t)∂t ln ‖u‖p(t) ≤ p′(t)
[
−n ln

√
4(p(t) − 1)/p′(t) + L(t) + T sup R−(·, 0)

]
,

where, due to ε2 ≤ T − l ≤ T ,

L(t) .= (t + ε2)β + α

≤ 2Tβ + α
.= L(T ),

for some positive constants α = α(A0, B0, λ0, n) and β = β(A0, B0, λ0, n). Here A0

and B0 are the coefficients in the standard Sobolev inequality for (M, g(0)) and λ0

is the infimum of Perelman’s F entropy for (M, g(0)). We stress that these depend
only on initial metric. Here, we also used the fact that

sup R−(x, t) ≤ sup R−(x, 0),

which is a consequence of maximum principle and the evolution equation of scalar
curvature ∂tR = ΔR + 2|Ric|2.

Observe that p′(t)/p2(t) = 1/(T − l) and

4(p(t) − 1)/p′(t) = 4(t − l)[T − l − (t − l)]/(T − l).

Hence, we have

∂t ln ‖u‖p(t)

≤ 1
T − l

{
−n

2
ln[4(t − l)[T − l − (t − l)]/(T − l)] + L(T ) + T supR−(·, 0)

}
.

This implies, after integrating from t = l to t = T , that

ln
‖u(·, T )‖∞
‖u(·, l)‖1

≤ −n

2
ln(4(T − l)) + L(T ) + T sup R−(·, 0) + n.

Since

u(x, T ) =
∫
M

G(z, l; x, T )u(z, l)dμg(l),
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the above inequality implies that

(1.5) G(z, l, x, T ) ≤ exp[L(T ) + T supR−(·, 0)]
(4(T − l))n/2

,

where L(T ) is defined above as

L(T ) = 2Tβ + α.

Since T is an arbitrary, we get the upper bound by defining J−1 = L(T ) + T sup
R−(·, 0). Note the constants β and α may have changed by a factor.

In case R(x, 0) > 0, by Section 6.2 in [Z2], we have β = 0. So the above bound
becomes

(1.6) G(z, l; x, T ) ≤ exp(α)
(4π(T − l))n/2

,

proving the upper bound.
Next, we prove the lower bound. Let t < t0 and u = u(x, t) ≡ G(x, t; x0, t0). We

claim that for a constant C > 0,

G(x0, t; x0, t0) ≥ C

τn/2
e
− 1

2
√

τ

∫ t0
t

√
t0−sR(x0,s)ds

,

where τ = t0−t here and later in the proof. To prove this inequality, define a function
f by

(4πτ)−n/2e−f = u.

We need to apply Perelman’s differential Harnack inequality for the fundamental
solution along any smooth curve γ(t) (see [P, Corollary 9.4]). Here we pick the curve
γ(t) to be the fixed point x0, we have,

−∂tf(x0, t) ≤ 1
2R(x0, t) − 1

2τ f(x0, t).

For any t2 < t1 < t0, we integrate the above inequality to get

f(x0, t2)
√

t0 − t2 ≤ f(x0, t1)
√

t0 − t1 +
1
2

∫ t1

t2

√
t0 − sR(x0, s)ds.

When t1 approaches t0, f(x0, t1) stays bounded since G(x0, t1; x0, t0)(t0 − t1)n/2 is
bounded between two positive constants, which is a direct consequence of the standard
asymptotic formula for G (for example, see [C++, Chapter 24, p. 278]). Hence for
any t ≤ t0, we have

f(x0, t) ≤ 1
2
√

t0 − t

∫ t0

t

√
t0 − sR(x0, s)ds.

Consequently,

(1.7) G(x0, t; x0, t0) ≥ c

(4πτ)n/2
e
− 1

2
√

t0−t

∫ t0
t

√
t0−sR(x0,s)ds

.

As observed earlier, the function G(x0, t; ·, ·) is a solution to the standard heat
equation coupled with Ricci flow, which is the conjugate of the conjugate heat equa-
tion. i.e.,

ΔzG(x, t; z; l) − ∂lG(x, t; z, l) = 0,
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here Δz is with respect to the metric g(l). Therefore, it follows from [Z1, Theorem
3.3] or [CH, Theorem 5.1] that, for δ > 0, c1, c2 > 0, and y0 ∈ M,

G(x0, t; x0, t0) ≤ c1G
1/(1+δ)(x0, t, y0, t0)Kδ/(1+δ)ec2d2(x0,y0,t0)/τ ,

where K = supM×[(t0+t)/2,t0] G(x0, t, ·, ·). The upper bound

K ≤ cJ−1(t0)
(t0 − t)n/2

,

together with the lower bound (1.7) imply that, with δ = 1,

G(x0, t; y0, t0) ≥ c1
J(t0)

(t0 − t)n/2
e−2c2d(x0,y0,t0)

2/τe
− 1√

t0−t

∫ t0
t

√
t0−sR(x0,s)ds

,

which is the desired lower bound.
Step 3.

In (1.3), we take z = x0, t = t0 and l = t0 − r2, where r is the given number
in (0,

√
t0). By the assumption on the scalar curvature R(x, t) in the definition of κ

non-inflating, we obtain, for x such that d(x0, x, t0) ≤ r,

G(x0, t0 − r2; x, t0) ≥ c1J(t0)
rn

e−2c2e
− 1

r

∫ t0
t0−r2

√
t0−sR(x,s)ds

≥ c1J(t0)
rn

e−2c2e
− 1

r

∫ t0
t0−r2

√
t0−s α

t0−s ds
.

Thus, when d(x0, x, t0) ≤ r, we have

G(x0, t0 − r2; x, t0) ≥ c1J(t0)
rn

e−2c2−2α.

Substituting this into (1.2), we deduce

1 + C(1 + r2)n/2 ≥
∫
M

G(x0, t0 − r2; x, t0)dμg(t0)(x)

≥
∫

d(x0,x,t0)≤r

G(x0, t0 − r2; x, t0)dμg(t0)(x)

≥ c1J(t0)
rn

e−2c2−2α

∫
d(x0,x,t0)≤r

dμg(t0)(x).

This implies

|B(x0, r, t0)|g(t0)r
−n ≤ [1 + C(1 + t0)n/2]e2c2+2αc−1

1 J−1(t0).

Taking
κ = [1 + C(1 + t0)n/2]e2c2+2αc−1

1 J−1(t0),

we obtain

|B(x0, r, t0)|g(t0) ≤ κ rn

proving part (a) of the theorem. Note κ depends only on t0 and g(0) in general, and
if R ≥ 0, then κ only depends on g(0), due to the aforementioned property on the
constant J in (1.3), and the fact that in the expression of κ, the constant C = 0 when
R ≥ 0.
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Proof. (of part (b)). Since the normalized Ricci flow is smooth, we only need to prove
the result for t ≥ c0 for some positive constant c0. According to Perelman (see [ST]),
the scalar curvature R = R(x, t) and diameter of the manifold are uniformly bounded
for all time. Using the scaling

t = − ln(1 − 2t̃), g(t) =
1

1 − 2t̃
g̃(t̃),

we see that g̃(t̃) is the standard Ricci flow in the time interval t̃ ∈ [0, 1/2) such that

R̃(x, t̃) ≤ α

1 − 2t̃
,

where α is a positive constant. Pick t̃ ∈ [1/4, 1/2) and r̃ ∈ (0, 1/2). Then for all
s ∈ [t̃ − r̃2, t̃] and x ∈ M, we have

R̃(x, s) ≤ α/2
(1/2) − s

≤ α

t̃ − s
.

Now we can just apply part (a) of the theorem to conclude

|{y | d(y, x, g̃(t̃)) < r̃}|g̃(t̃) ≤ κr̃n,

where κ depends only on the initial metric g(0) and α. This is so because the total
length of time interval is 1/2 for t̃. After scaling we obtain, for r = (1 − 2t̃)−1/2r̃ =
et/2r̃,

|B(x, r, t)|g(t) ≤ κrn.

Since r̃ can be any number in (0, 1/2), we conclude that for r ≤ et/2/2, and all t ≥ ln 2,

|B(x, r, t)|g(t)r
−n ≤ κ.

Since the diameter of (M, g(t)) is uniformly bounded, the above holds for all r > 0
with perhaps a different constant κ. �
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