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GLOBAL WELL-POSEDNESS AND SCATTERING FOR
DEFOCUSING ENERGY-CRITICAL NLS IN THE EXTERIOR OF

BALLS WITH RADIAL DATA

Dong Li, Hart Smith and Xiaoyi Zhang

Abstract. We consider the defocusing energy-critical nonlinear Schrödinger (NLS) in
the exterior of the unit ball in three dimensions. For the initial value problem with
Dirichlet boundary condition, we prove global well-posedness and scattering with large

radial initial data in the Sobolev space Ḣ1
0 . We also point out that the same strategy

can be used to treat the energy-supercritical NLS in the exterior of balls with Dirichlet
boundary condition and radial Ḣ1

0 initial data.

1. Introduction

Let Ω = R
3 \ B̄(0, 1) be the exterior of the unit ball. We consider the defocusing

energy critical NLS in Ω with Dirichlet boundary condition:
⎧
⎪⎨

⎪⎩

i∂tu+ Δu = |u|4u ≡ F (u), (t, x) ∈ R × Ω,
u(t, x)|R×∂Ω = 0,
u(0, x) = u0(x).

(1.1)

Our main purpose is to prove the global solvability and scattering for the solution
to (1.1) under the assumption that u0 ∈ Ḣ1

0 (Ω) (see Section 2.4 for the definition),
and that u0 is spherically symmetric.

In the whole space case R
n with n ≥ 3, the Cauchy problem for the energy critical

nonlinear Schrödinger (NLS) has been successfully attacked in both defocusing and
focusing cases [6,8,13–15,19,21]. On the other hand, the understanding of the critical
nonlinear problem of NLS posed on exterior domains is still unsatisfactory. The
difficulty comes from several aspects. First of all, concerning linear estimates, the
dispersive estimates and Strichartz estimates are not always available and often more
limited than the whole space case. Secondly, the nonlinear problem no longer has
translation invariance or scale invariance, and many of the technical tools built on
frequency analysis are not immediately applicable in the obstacle case.

The Strichartz estimates on exterior domains or more general Riemannian manifolds
are usually obtained by using local smoothing estimates [4, 9, 16, 20] combined with
semi-classical parametrix constructions. For the domain exterior to a non-trapping
obstacle in R

n, Blair et al. [4] obtained a range of scale-invariant Strichartz esti-
mates; in particular the endpoint L4

tL
∞
x estimate in dimension n = 3, by using a

microlocal parametrix previously used for the wave equation in [5, 18]. For the exte-
rior domain to a strictly convex obstacle, i.e., Ω = R

n \K, where K is strictly convex,
Ivanovici [11] obtained the full range of Strichartz estimates excepting endpoints, by
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using the Melrose–Taylor parametrix construction. For Strichartz estimates with loss
of derivatives; see [1, 2, 10].

For the energy-critical nonlinear wave equation in three-dimensional smooth
bounded domains with Dirichlet boundary condition, Burq et al. [3] established global
well-posedness for H1

0 solutions. Previously, Smith and Sogge [17] proved global well-
posedness for the corresponding problem on the exterior domain to a strictly convex
obstacle.

In this paper, we shall prove the global well-posedness and scattering of energy-
critical NLS outside the unit ball in R

3 under the radial assumption. Our result is
the following.

Theorem 1.1. Let Ω = R
3\B̄(0, 1). Let u0 ∈ Ḣ1

0 (Ω) be spherically symmetric. Then
there exists a unique solution u ∈ C0

t Ḣ
1
0 (R × Ω) to (1.1), and

‖u‖L10
t,x(R×Ω) ≤ C(‖u0‖Ḣ1

0 (Ω)).

Moreover, there exists unique v± ∈ Ḣ1
0 (Ω) such that

lim
t→±∞ ‖u(t) − eitΔDv±‖Ḣ1

0 (Ω) = 0.

Here, ΔD is the Dirichlet Laplacian and eitΔD is the free propagator.

Remark 1.1. The assumption u0 ∈ Ḣ1
0 (Ω) is very natural here due to the energy

critical nature of the problem. On the other hand, if we assume u0 ∈ H1
0 (Ω), then

the proof can be trivialized; see Section 5 for details.

The proof of Theorem 1.1 follows roughly the strategy in the paper by Bourgain [6]
for dimension n = 3, 4 and Tao [19] for all dimensions, which dealt with defocusing
energy critical NLS in the whole-space case with radial data. However, since many
technical tools are missing in this setting, we devote a large portion of the work to
establishing the technical tools in analogy with the whole space case. A crucial fact
exploited in this paper is that under the radial assumption, the eigenfunctions of the
Dirichlet Laplacian in the domain exterior to a ball can be explicitly computed. We
then use this explicit knowledge to establish the following basic estimates.

• The fundamental solution is written explicitly through spectral representation
of Dirichlet Laplacian. The L1 − L∞ dispersive estimate then follows from
the explicit representation of the linear solution. As a consequence, we prove
the full range Strichartz estimates with no loss of derivatives.

• The Littlewood–Paley operators are defined through functional calculus.
Bernstein type estimates for the Littlewood–Paley operators are also shown
to hold true.

• Sobolev spaces on the exterior domain Ḣ1,p
0 (Ω) and Ḣ1,p

D (Ω) for 1 < p < 3
(see Section 2.4) are proved to be equivalent. Therefore the product rule
and chain rule for the Dirichlet Laplacian is still applicable as in the whole
space case.

With these technical tools in hand, we reduce Theorem 1.1 to establishing the
a priori bound of the L10

t,x-norm of the solution. Then we follow the spirit of the
argument in [6,19]. Whilst a handful of estimates still hold true as in the whole space
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case, the most problematic part comes from proving the mass localization. In the
whole space case, the key fact used in the proof is that the Littlewood–Paley operator
is defined through convolution with a normalized Schwartz function. This property no
longer holds in our setting since we do not have translation-invariance. Alternatively,
we shall prove the localization though a careful analysis on the interaction between
spatial and frequency cutoffs.1

In Section 2, we introduce basic notations and some useful estimates. The proof
of Theorem 1.1 is contained in Section 3. We shall only focus on the parts, which
are different from the whole space case: the mass localization and the Morawetz
inequality. The combinatorics argument, which eventually gives the upper bound of
the space-time norm of the solution, will only be sketched. One can refer to [6] or [19]
for more details. In Sections 4 and 5, we give remarks on the energy supercritical
problem and the case with inhomogeneous Sobolev data.

2. Basic estimates

2.1. Some notation. We write X � Y or Y � X to indicate X ≤ CY for some
non-essential constant C > 0. We use O(Y ) to denote any quantity X such that
|X| � Y . We use the notation X ∼ Y whenever X � Y � X. The fact that these
constants depend upon the dimension d will be suppressed. If C depends upon some
additional parameters, we will indicate this with subscripts; for example, X �u Y
denotes the assertion that X ≤ CuY for some Cu depending on u. Sometimes when
the context is clear, we will suppress the dependence on u and write X �u Y as
X � Y . We will write C = C(Y1, . . . , Yn) to stress that the constant C depends on
quantities Y1, . . . , Yn.

Let I ⊂ R be a time interval. We write Lq
tL

r
x(I × Ω) to denote the Banach space

with norm

‖u‖Lq
t Lr

x(I×Ω) :=
(∫

I

(∫

Ω

|u(t, x)|r dx
)q/r

dt

)1/q

,

with the usual modifications when q or r are equal to infinity. When q = r we
abbreviate Lq

tL
q
x as Lq

t,x. We shall write u ∈ Lq
t,locL

r
x(I × Ω) if u ∈ Lq

tL
r
x(J × Ω) for

any compact J ⊂ I.
For any positive number 1 ≤ a ≤ ∞, we let a′ = a/(a− 1) denote the conjugate of

a, so that 1/a+ 1/a′ = 1.
We use S(R) to denote the space of Schwartz functions, and S ′(R) the space of

tempered distributions, on the real line.

2.2. Fundamental solution and Strichartz estimates. The spectral resolution
for radial functions on the exterior domain r ≥ 1 in R

3 is expressed using the radial
eigenfunctions

Δφλ + λ2φλ = 0

for λ > 0 which satisfy the Sommerfeld radiation condition, namely

φλ(r) =
sinλ(r − 1)

r
, r ≥ 1.

1In the language of [19], we actually showed that the length of unexceptional intervals must have

a uniform lower bound. This is quite different from the whole-space case.
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For tempered distributions f ∈ S ′(R), we set

Ff(λ) =
1√
π

∫
sinλ(s− 1)

s
f(s) s2ds

which can be expressed in terms of the Fourier transform of sf(s) to identify Ff as
an odd element of S ′(R). If f ∈ S(R), then Ff is a Schwartz function of λ.

We observe the following resolution of identity:
1
π

∫ ∞

−∞
φλ(r)φλ(s) dλ =

1
2πrs

∫ ∞

−∞
cosλ(r − s) − cosλ(r + s− 2) dλ

=
δ(r − s) + δ(r + s− 2)

rs

=
δ(r − s)
s2

, for r, s > 1,

from which it follows by a limiting procedure that F∗Ff = f for f ∈ S supported
in [1,∞), where F∗ is the formal adjoint, defined on tempered distributions g as the
restriction to r �= 0 of

F∗g =
1√
π

∫ ∞

−∞

sinλ(r − 1)
r

g(λ) dλ.

Consequently, f → F0f =
√

2Ff |λ>0 induces an isometric map

(2.1) F0 : L2([1,∞), s2ds) → L2([0,∞), dλ).

One can similarly verify that if g is an odd element of S(R), then

(2.2)
2
π

∫ ∞

1

∫ ∞

0

sinλ(r − 1)
r

sinμ(r − 1)
r

g(μ) dμ r2dr = g(λ),

hence F0 in (2.1) is onto, and thus an isomorphism of Hilbert spaces.
We will also use the radial inhomogeneous Sobolev space Ḣ1

0 (Ω), defined as the
closure of C∞

c ([1,∞)) in the norm

‖f‖Ḣ1
0

= ‖f ′(r)‖L2(r2dr).

By Sobolev embedding on R
3, for compactly supported f , we have

‖f‖L6(r2dr) ≤ ‖f ′‖L2(r2dr).

Conversely, if f ∈ L6(r2dr) and f ′ ∈ L2(r2dr), then χ(N−1r)f converges to f in the
Ḣ1

0 norm, hence we may identify Ḣ1
0 (Ω) as absolutely continuous functions on [1,∞)

for which
‖f ′‖L2(r2dr) + ‖f‖L6(r2dr) <∞, f(1) = 0.

If f ∈ C∞
c (Ω) is radial, then F0(Δf)(λ) = −λ2F0f(λ). On the other hand,

∫

Ω

f̄Δf dx =
∫

Ω

|∇f |2 dx =
∫

Ω

|f ′|2 dx,

hence by (2.1), F0 induces an isometric map

F0 : Ḣ1
0 (Ω) → L2([0,∞), λ dλ).

The image contains odd Schwartz functions by (2.2), hence is an isomorphism of
Hilbert spaces.
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Finally, we observe that

(2.3) |f(r)| ≤ r−
1
2

(∫ ∞

r

|f ′(s)|2 s2ds
) 1

2
, hence ‖|x| 12 f‖L∞ ≤ ‖f‖Ḣ1

0
.

It follows as an easy consequence that radial Ḣ1
0 is an algebra under multiplication of

functions.
For f ∈ L2+Ḣ1

0 (see Section 2.3 below), we can express the Schrödinger propagator
eitΔD as

(eitΔDf)(r, t) = F∗
0 (e−iλ2tF0f)(r).

The corresponding kernel is, where t = ±|t|,

K(t, r, s) =
2
π

∫ ∞

0

sinλ(r − 1)
r

· sinλ(s− 1)
s

· e−iλ2t dλ

=
1
πrs

∫ ∞

−∞

(
eiλ(r−s) − eiλ(r+s−2)

)
e−iλ2tdλ

=
π

1
2 e±iπ/4

|t| 12 rs
(
ei(r−s)2/4t − ei(r+s−2)2/4t

)

=
π

1
2 e±iπ/4

|t| 12 rs
(
1 − ei(r−1)(s−1)/t

)
.

It follows that |K(t, r, s)| ≤ C |t|−3/2 for r, s ≥ 1. By a density argument, we thus
have the important

Lemma 2.1 (Dispersive estimate). For t �= 0 and radial f ∈ L2 + Ḣ1
0 , we have

‖eitΔDf‖L∞(Ω) � 1
|t| 32 ‖f‖L1(Ω).

Strichartz estimates for radial data follow directly from this dispersive estimate.
See [12] for instance. Therefore, we have the following lemma whose proof will be
omitted.

Lemma 2.2. Let I be a time interval containing 0. Let u(t, x) satisfy

u(t, · ) = eitΔDu0 − i

∫ t

0

ei(t−s)ΔDf(s, · ) ds, ∀ t ∈ I,

where u0 ∈ L2 + Ḣ1
0 , f ∈ L1

t (L
2 + Ḣ1

0 ), with both radial.
Let (qi, ri), i = 1, 2 be admissible pairs, such that 2 ≤ qi ≤ ∞, 2

qi
+ 3

ri
= 3

2 . Then

‖u‖L
q1
t L

r1
x (I×Ω) � ‖u0‖L2(Ω) + ‖f‖

L
q′2
t L

r′2
x (I×Ω)

.

Here (q′2, r
′
2) are the conjugate exponents of (q2, r2).

2.3. Littlewood–Paley operators and Bernstein inequalities. Given a
bounded function m(λ), which for convenience we assume to be defined on all of
R and even in λ, we define

m(
√
−ΔD )f = F∗

0 (m(·)F0f).
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This defines a functional calculus on L2 + Ḣ1
0 . In this section, we will take m to be

an even function in C∞
c (R), in which case

m(
√
−ΔD )f(r) =

∫ ∞

1

Km(r, s) f(s) s2ds,

with

Km(r, s) =
1
π
· m̂(r − s) − m̂(r + s− 2)

rs
.

In particular, we can define, for N > 0, Littlewood–Paley projectors PN by taking
m = ψ(N−1λ), for suitable ψ compactly supported away from 0. We similarly define
P≤N using m = φ(N−1λ), where φ ∈ C∞

c (R) equals 1 on a neighborhood of 0. We
also set P≥N = 1 − P≤N .

Remark 2.1. An added complication for this work, relative to the whole space case,
is that that spectral supports are not additive under function multiplication, and thus
we cannot exploit standard paraproduct decomposition results.

As in the whole space case, we have the following

Proposition 2.1 (Bernstein inequality). Let 1 ≤ p ≤ q ≤ ∞, and suppose σ ∈ R.
Then for any N > 0

‖P≤Nf‖Lq(Ω) � N3( 1
p− 1

q )‖f‖Lp(Ω),(2.4)

‖(−ΔD)
σ
2 PNf‖Lp(Ω) ≈ Nσ‖PNf‖Lp(Ω).(2.5)

Proof. We first prove (2.4). We write

(P≤Nf)(r) =
∫ ∞

1

KN (r, s)f(s)s2ds,

where

KN (r, s) =
N

π
· φ̂(N(r − s)) − φ̂(N(r + s− 2))

rs
,

and we observe that φ̂ is an even Schwartz function. Since K is symmetric, it suffices
by the Schur test and interpolation to show that

sup
r

‖KN (r, s)‖L1(s2ds) ≤ C,(2.6)

sup
r,s

|KN (r, s)| ≤ C N3.(2.7)

We pose r = 1 +N−1x, s = 1 +N−1y, where x, y > 0. Since s
r ≤ y

x + 1, then (2.6) is
implied by the bound

∫ ∞

0

| φ̂(y + x) − φ̂(y − x)| dy ≤ C,(2.8)
∫ ∞

0

| φ̂(y + x) − φ̂(y − x)| y dy ≤ C x.(2.9)

(2.8) is easy to see with the bound 2‖φ̂‖1. For y > 2x, we can bound |φ̂(y+x)− φ̂(y−
x)| � x(1 + y)−4, which establishes (2.9) for the integral over y > 2x. The remaining
piece can be bounded directly by 4x‖φ̂‖1.
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For (2.7), we use the evenness of φ̂ to write φ̂(s) = g(s2), where g is Schwartz, to
bound

|K(r, s)| ≤ 4N3

∣
∣
∣
∣
g((x+ y)2) − g((x− y)2)

(x+ y)2 − (x− y)2

∣
∣
∣
∣ .

The inequality (2.7) follows, where we bound |g′| ≤ C/4.
Relation (2.5) follows similarly, by writing λσψ(N−1λ) = Nσψ̃(N−1λ)ψ(N−1λ)

where ψ̃ ∈ C∞
c (R), and applying (2.6) for the kernel associated to ψ̃(N−1λ). �

2.4. Lp based Sobolev spaces. We will also have need to work with the inhomo-
geneous Sobolev norm for radial functions, ‖f‖Ḣ1,p

0 (Ω) = ‖∇f‖Lp(Ω) = ‖f ′‖Lp(s2ds).
The difficulty with using this norm is that ∇ does not commute with eitΔD . This
problem is solved by proving an equivalence

‖f‖Ḣ1,p
0 (Ω) ≈ ‖(−ΔD)

1
2 f‖Lp(Ω).

If p > 3 this cannot hold for all f ∈ Ḣ1,p
0 , as seen by taking f = sin λ(r−1)

λr , where the
right side tends to 0 as λ→ 0, but the left side remains bounded below. However, we
shall only need to apply this equivalence for 1 < p < 3 and for f ∈ Ḣ1,2

0 = Ḣ1
0 , for

which it does hold. Note that in this case, both |∇f | = |f ′| and (−ΔD)
1
2 f belong to

L2(Ω), so both sides of the equivalence are well defined.

Proposition 2.2. Let 1 < p < 3. Then there exists a constant 0 < Cp < ∞, such
that for any radial function f ∈ Ḣ1

0 , we have

C−1
p ‖∇f‖Lp(Ω) ≤ ‖(−ΔD)

1
2 f‖Lp(Ω) ≤ Cp ‖∇f‖Lp(Ω).

Proof. We first establish that

(2.10) ‖(−ΔD)
1
2 f‖Lp(Ω) � ‖f ′‖Lp(Ω).

We will establish this under the assumption that f(r) ∈ C∞
c ([1,∞)). To establish it

for general f , we take a sequence fj ∈ C∞
c ([1,∞)) with ‖f ′j −f ′‖Lq(Ω) ≤ 2−j for both

q = 2 and q = p. It follows that ‖(−ΔD)
1
2 (fj − f)‖L2(Ω) � 2−j , hence

(−ΔD)
1
2 fj → (−ΔD)

1
2 f pointwise a.e.

The result for general f ∈ Ḣ1
0 then follows by Fatou’s lemma.

For f ∈ C∞
c we write

((−ΔD)
1
2 f)(r) =

2
π

∫ ∞

0

∫ ∞

1

sinλ(r − 1)
r

sinλ(s− 1)
s

λf(s) s2ds dλ

=
2
π

∫ ∞

0

∫ ∞

1

sinλ(r − 1)
r

(s cosλ(s− 1) − 1
λ

sinλ(s− 1))f ′(s) ds dλ.

By considering the limit of the truncated integrals over λ, we obtain

((−ΔD)
1
2 f)(r) = − 2

π

∫ ∞

1

K1(r, s) f ′(s) s2ds,

where

K1(r, s) =
1
rs

(
1

r + s− 2
+

1
r − s

)

+
1
rs2

log
∣
∣
∣
∣

r − s

r + s− 2

∣
∣
∣
∣ ,



220 DONG LI, HART SMITH AND XIAOYI ZHANG

and the first term is interpreted as a principal value integral. We note that this kernel
is only applied to functions f ′(s) of integral 0, hence we can add a function k(r)s−2

to K1(r, s) without changing the result. This will indeed be necessary for small p.
A similar computation, using the whole-space spectral decomposition for radial

functions

((−Δ)
1
2 f)(r) =

2
π

∫ ∞

0

∫ ∞

0

sinλr
r

sinλs
s

λf(s) s2ds dλ,

expresses (−Δ)
1
2 f(r) = − 2

π

∫∞
0
K0(r, s) f ′(s) s2ds, with the kernel

K0(r, s) =
1
rs

(
1

r + s
+

1
r − s

)

+
1
rs2

log
∣
∣
∣
∣
r − s

r + s

∣
∣
∣
∣ .

This kernel is bounded on Lp(s2ds), 1 < p <∞, since2 it represents the operator

g →
3∑

j=1

Rj

(
xj

|x| g
)

,

where Rj is the Riesz transform ∂xj (−Δ)−
1
2 on R

3.
We are thus reduced to proving Lp([1,∞), s2ds) boundedness of the kernel K =

K1 −K0, that is

(2.11) K(r, s) =
1
rs

(
1

r + s− 2
− 1
r + s

)

+
1
rs2

log
(

r + s

r + s− 2

)

,

with the freedom to add k(r)s−2 to K(r, s). Note that both terms on the right of
(2.11) are non-negative, hence can be considered separately. The Lp boundedness of
the first term is based on the bound, for 1 ≤ p <∞,

∥
∥
∥
∥

2
rs(r + s− 2)(r + s)

∥
∥
∥
∥

Lp′(s2ds)

� [r2(r − 1)]−p, r > 1 .

This shows that the corresponding operator is weak-type (p, p) for 1 ≤ p <∞, hence
strong-type (p, p) for 1 < p <∞.

For the second term on the right of (2.11), we note that if 1 ≤ r ≤ 2 then for each
1 < p′ <∞ the Lp′

(s2ds) norm is bounded uniformly in r.
For r > 2, we write the second term as

(2.12) − 1
rs2

log
(

1 − 2
r + s

)

=
2

rs2(r + s)
+ O

(
1

rs2(r + s)2

)

.

The second term on the right-hand side of (2.12) is bounded by the first term in
K(r, s) considered above. If 1 < p′ < 3, then we dominate the Lp′

norm of the first
term on the right-hand side of (2.12) by

∥
∥
∥
∥

1
s(r + s)2

∥
∥
∥
∥

Lp′((0,∞),s2ds)

= C r−
3
p .

This implies strong-type (p, p) bounds for the second term in (2.11) if 3
2 < p <∞.

2This can be verified directly by elementary computation. Alternatively, the two operators must
agree on g of integral 0, determining K0(r, s) up to k(r)s−2. Since K0 decrease like s−3 as s → ∞,

then necessarily k(r) = 0.
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To obtain (p, p) bounds for remaining p, we consider 1 < p < 3, and subtract the
kernel 2/r2s2. Since this kernel is bounded in Lp′

(s2ds) for p′ > 3
2 , it does not affect

the above consideration for 1 < r < 2. For r > 2, we are reduced to considering

2
r2s2

− 2
rs2(r + s)

=
2

r2s(r + s)
≤ 4
r(r + s)2

.

We conclude by observing that, for p′ > 3
2 ,

∥
∥
∥
∥

1
r(r + s)2

∥
∥
∥
∥

Lp′((0,∞),s2ds)

= C r−
3
p ,

which yields the strong-type (p, p) bounds for 1 < p < 3. Note that we have in fact
established (2.10) for all 1 < p <∞.

To show the reverse implication, for 1 < p < 3,

(2.13) ‖∇f‖Lp(Ω) � ‖(−ΔD)
1
2 f‖Lp(Ω), if f ∈ Ḣ1

0 ,

we consider fN = P≤Nf . By (2.4),

‖(−ΔD)
1
2 fN‖Lp(Ω) � ‖(−ΔD)

1
2 f‖Lp(Ω).

Since ‖f ′N − f ′‖L2(Ω) → 0, for some subsequence f ′Nj
(r) → f ′(r) pointwise a.e. By

Fatou’s lemma, it thus suffices to prove (2.13) for f ∈ Ḣ1
0 with compact spectral

support in [0,∞). Such functions are smooth, as is (−ΔD)
1
2 f .

For such f , we can write

f ′(r) =
2
π

∫ ∞

0

∂

∂r

(
sinλ(r − 1)

λr

)

F0((−ΔD)
1
2 f
)
(λ) dλ

=
2
π

∫ ∞

0

(
cosλ(r − 1)

r
− sinλ(r − 1)

λ r2

)

F0((−ΔD)
1
2 f)(λ) dλ.

This can in turn be written as

2
π

∫ ∞

0

KT
1 (r, s) ((−ΔD)

1
2 f)(s) s2ds,

where KT
1 is the transpose of the above kernel K1,

KT
1 (r, s) =

1
rs

( 1
r + s− 2

− 1
r − s

)
+

1
r2s

log
∣
∣
∣
∣

r − s

r + s− 2

∣
∣
∣
∣ .

Subtracting off KT
0 (r, s) reduces matters to establishing bounds for the kernel

KT (r, s) =
1
rs

(
1

r + s− 2
− 1
r + s

)

+
1
r2s

log
(

r + s

r + s− 2

)

.

The first term is the same as above. The second term gives a bounded integral
operator for 1 < p < 3, since its transpose is bounded on 3

2 < p <∞. �
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3. Proof of Theorem 1.1

We begin by making the definition of the solution more precise. Let I be a finite time
interval containing 0. As remarked above, (2.3) implies that radial Ḣ1

0 is closed under
multiplication, so by Ḣ1

0 boundedness of exp(itΔD) we have

(3.1)
∥
∥
∥
∥

∫ t

0

ei(t−s)ΔD |u|4u(s) ds
∥
∥
∥
∥

L∞
t Ḣ1

0 (I×Ω)

� |I| · ‖u‖5
L∞

t Ḣ1
0 (I×Ω)

.

Therefore, if u ∈ C(I; Ḣ1
0 (Ω)), then the inhomogeneous term will also be in Ḣ1

0 (Ω).
This motivates the following

Definition 3.1 (Solution). Denote F (u) = |u|4u. A radial function u : I×Ω → C on
a non-empty time interval I ⊂ R (possibly infinite or semi-infinite) is a strong Ḣ1

0 (Ω)
solution (or solution for short) to (1.1) if it lies in the class C0

t Ḣ
1
0 (I × Ω), and we

have the Duhamel formula

u(t1) = ei(t1−t0)ΔDu(t0) − i

∫ t1

t0

ei(t1−t)ΔDF (u(t)) dt(3.2)

for all t0, t1 ∈ I. We refer to the interval I as the lifespan of u. We say that u is
a maximal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that u is a global solution if I = R.

Using (3.1) we can easily construct the local solution of (1.1) using a fixed point ar-
gument in C0

t Ḣ
1
0 (Ω). Moreover, the lifespan of the local solution depends only on the

Ḣ1
0 (Ω) norm of the initial data. Existence of the global solution then follows quickly

from the energy conservation property of the defocusing equation (1.1). Specifically,
we have the following.

Theorem 3.1 (Global well-posedness). Let u0 ∈ Ḣ1
0 (Ω) be spherically symmetric.

Then there exists a unique global solution u ∈ C(R; Ḣ1
0 (Ω)). Moreover, ∇u ∈ Lq

t,loc

Lr
x(R × Ω) for any admissible pair (q, r), if r < 3. For any t ∈ R, we have

E(u(t)) =
1
2

∫

Ω

|∇u(t, x)|2 dx+
1
6

∫

Ω

|u(t, x)|6 dx = E(u0).

For this global solution, scattering holds provided the global space-time L10 norm is
bounded. Precisely, suppose that u satisfies

‖u‖L10
t,x([0,∞)×Ω) <∞.

Then u scatters forward in time, i.e. there exists unique v+ ∈ Ḣ1
0 (Ω) such that

lim
t→∞ ‖eitΔDv+ − u(t)‖Ḣ1

0 (Ω) = 0.

The same statement holds backward in time.

The fact that global L10
t,x control of the norm implies finiteness of Strichartz norms

and scattering is established by similar steps to those leading from (3.5) to (3.6)
below. Furthermore, a standard continuity argument shows that if ‖u0‖Ḣ1

0
< ε for

small ε, then the corresponding solution scatters in both time directions. (see [7] for
instance).
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Due to Theorem 3.1, the proof of Theorem 1.1 is reduced to showing that the L10
t,x

norm of the solution over any compact time interval is bounded by a constant depend-
ing only on upper bounds for the initial energy. Theorem 1.1 is thus a consequence
of the following.

Theorem 3.2. Assume u ∈ Ḣ1
0 (Ω) is a spherically symmetric solution of (1.1) on a

compact interval [t−, t+]. Suppose E(u0) ≤ E. Then

‖u‖L10
t,x([t−,t+]×Ω) < C(E).

The rest of this section will be devoted to the proof of Theorem 3.2. We begin
with some useful conventions.

Convention. Let 0 < η3 � η2 � η1 � η0 � 1 be small constants to be
determined. We use c(ηi) to denote a small constant depending on ηi such that
ηi+1 � c(ηi) � ηi. We use C(ηi) to denote a large constant such that 1

ηi
� C(ηi) �

1
ηi+1

. The constants c(ηi) and C(ηi) will sometimes vary from line to line, but the
dependence is clear from the context. The notation a � b will be used to mean that
a ≤ C(E) b, where C(E) may depend on the energy upper-bound E.

We will use φ(x) to denote a radial smooth cutoff function such that

φ(x) =

{
1, if |x| ≤ 1,
0, if |x| > 2.

(3.3)

We also denote φ<C(x) = φ( x
C ), φ>C = 1 − φ<C .

Since ‖u‖L∞
t L10

x ([t−,t+]×Ω) � E, we decompose

[t−, t+] =
J⋃

j=1

Ij

such that

η0 < ‖u‖L10
t,x(Ij×Ω) ≤ 2η0.(3.4)

By Strichartz estimates on Ij , we have

‖∇u‖
L8

t L
12
5

x (Ij×Ω)
� ‖u(ti)‖Ḣ1

0 (Ω) + ‖∇(|u|4u)‖
L

40
21
t L

60
49
x (Ij×Ω)

(3.5)

� 1 + ‖u‖4
L10

t,x(Ij×Ω)‖∇u‖
L8

t L
12
5

x (Ij×Ω)

� 1 + η4
0‖∇u‖

L8
t L

12
5

x (Ij×Ω)
.

Note we have used Proposition 2.2 to deduce the first inequality. By taking η0
small we have

‖∇u‖
L8

t L
12
5

x (Ij×Ω)
� 1.

A further application of Strichartz estimates yields that, for admissible pairs (q, r)
with r < 3,

‖∇u‖Lq
t Lr

x(Ij×Ω) � 1.(3.6)
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Another fact implied by (3.4) and radial Sobolev embedding is that the length of
all intervals here have uniform lower bound. Indeed, + since

η0 < ‖u‖L10
t,x(Ij×Ω) ≤ |Ij | 1

10 ‖u‖L∞
t L10

x (Ij×Ω)

≤ |Ij | 1
10 ‖u‖L∞

t Ḣ1
0 (Ij×Ω) � |Ij | 1

10 .

We have

|Ij | ≥ η1, ∀j = 1, . . . , J.

Now let u+(t) = ei(t−t+)ΔDu(t+), u−(t) = ei(t−t−)ΔDu(t−). We distinguish
between two cases for each Ij :

• Ij is called exceptional if either

‖u+‖L10
t,x(Ij×Ω) > η10

0 or

‖u−‖L10
t,x(Ij×Ω) > η10

0 .

• Ij is called unexceptional if

‖u±‖L10
t,x(Ij×Ω) ≤ η10

0 .

Since ‖u±‖L10
t,x([t−,t+])×Ω) � ‖∇u±‖

L10
t L

30
13
x ([t−,t+])×Ω)

� ‖u(t±)‖
Ḣ1

0
, the number of

exceptional intervals is bounded by C(η0, E). We thus need to control only the number
of unexceptional intervals.

We now focus on the mass concentration property about unexceptional intervals.
We begin with local mass conservation.

Let φ be the smooth cutoff function defined in (3.3), and φR(x) = φ(x/R). Define
the local mass of u to be

MR(t) =
∫

|x|≥1

|u(t, x)|2φ2
R(x) dx.

Then we have

Lemma 3.1 (Local mass conservation).
∣
∣
∣
d

dt
M

1
2
R (t)

∣
∣
∣ � 1

R
.(3.7)

Proof. Using the equation in (1.1), we compute

d

dt
MR(t) = 2Re

∫

|x|≥1

ut ū φ
2
R(x) dx

= −2 Im
∫

|x|≥1

Δu · ū φ2
R(x) dx

=
2
R

Im
∫

|x|≥1

∇u ū φR(x)(∇φ)R(x) dx.
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Therefore
∣
∣
∣
d

dt
MR(t)

∣
∣
∣ � 2

R
‖∇u‖L2(|x|≥1) ‖uφR‖L2(|x|≥1)

� 1
R
M

1
2
R (t).

From here, (3.7) follows directly. �

We next establish the important

Lemma 3.2 (Mass concentration on unexceptional intervals). Let I be an unexcep-
tional interval. Then for any t ∈ I,

∫

|x|< 1
η3

|I| 12
|u(t, x)|2dx ≥ c(η2)|I|.

Proof. Denote
I = [a, b].

Without loss of generality, we assume3

‖u‖L10
t,x([ a+b

2 ,b]×Ω) ≥
η0
2
.

By the Duhamel formula

u(t) = u−(t) − i

∫ a

t−
ei(t−s)ΔDF (u)(s)ds− i

∫ t

a

ei(t−s)ΔDF (u)(s)ds.

We define

w(t) := i

∫ a

t−
ei(t−s)ΔDF (u)(s)ds

= −u(t) + u−(t) − i

∫ t

a

ei(t−s)ΔDF (u)(s)ds.

We next observe that w has certain bounds. By Strichartz estimates and the steps
leading from (3.5) to (3.6),

sup
t

‖w(t, · )‖Ḣ1
0 (Ω) � 1, ∀ t ∈ I.

Moreover, we have

‖u−‖L10
t,x([ a+b

2 ,b]×Ω) ≤ η10
0 ,(3.8)

∥
∥
∥
∥

∫ t

a

ei(t−s)ΔDF (u)(s)ds
∥
∥
∥
∥

L10
t,x([ a+b

2 ,b]×Ω)

� η4
0 ≤ η2

0 .

By the triangle inequality we then have

(3.9) ‖w‖L10
t,x([ a+b

2 ,b]×Ω) ≥
η0
4
.

3Otherwise if this holds for [a, a+b
2

], and we apply a similar argument by just reversing the time

direction.
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We now show the main L10
t,x-norm is localized in low frequencies. To this end, we

use dispersive estimates to control the high frequencies as follows:

‖P
>C(η2)|I|−

1
2
w‖L10

t,x([ a+b
2 ,b]×Ω)(3.10)

=
∥
∥
∥
∥

∫ a

t−
ei(t−s)ΔDP

>C(η2)|I|−
1
2
F (u(s, · ))ds

∥
∥
∥
∥

L10
t,x([ a+b

2 ,b]×Ω)

� |I| 1
10

∫ a

t−
|a+b

2 − s|− 6
5 ‖P

>C(η2)|I|−
1
2
F (u(s, · ))‖

L
10
9

x (Ω)
ds

� |I|− 1
10 ‖F (u)‖

L∞
t L

10
9

x ([t−,t+]×Ω)
.

First consider the case that η2|I| 12 ≥ 2. We estimate the norm of F (u) in different
spatial regimes. First,

‖P
>C(η2)|I|−

1
2
φ

<η2|I|
1
2
F (u)‖

L
10
9

x (Ω)

� ‖φ
<η2|I|

1
2
F (u)‖

L
10
9

x (Ω)

� ‖F (u)‖
L

6
5
x (Ω)

‖φ
<η2|I|

1
2
‖L15

x (Ω)

� η
1
5
2 |I|

1
10 ‖u‖5

L6
x(Ω)

� η
1
5
2 |I|

1
10 .

Next, using the radial Sobolev embedding

‖|x| 15u‖L10
x

� ‖∇u‖L2
x

together with the Bernstein inequality and Proposition 2.2, we estimate

‖P
>C(η2)|I|−

1
2
(φ

>η2|I|
1
2
F (u))‖

L
10
9

x (Ω)

� c(η2)|I| 12 ‖∇(φ
>η2|I|

1
2
F (u))‖

L
10
9

x (Ω)

� c(η2)|I| 12
(

‖∇φ
>η2|I|

1
2
‖L15

x (Ω)‖u‖5
L6

x(Ω) + ‖φ
>η2|I|

1
2
u‖4

L10
x (Ω)‖∇u‖L2

x(Ω)

)

� c(η2)|I| 12 (η2|I| 12 )−
4
5 ( ‖u‖L6

x(Ω) + ‖∇u‖L2
x(Ω))5

� c(η2) η
− 4

5
2 |I| 1

10 ≤ η2
2 |I|

1
10 .

Therefore
‖P

>C(η2)|I|−
1
2
w‖L10

t,x([ a+b
2 ,b]×Ω) ≤

η0
100

.

In case η2|I| 12 ≤ 2, applying a similar argument without the cutoff φ yields the better
bound c(η2)|I| 12 .

This combines with (3.9) give

(3.11) ‖P
<C(η2)|I|−

1
2
w‖L10

t,x([ a+b
2 ,b]×Ω) ≥

η0
8
.

Recalling the definition of w, the boundedness of P , (3.8) and (3.9), and the condition
for unexceptional intervals, we have

(3.12) ‖P
<C(η2)|I|−

1
2
u‖L10

t,x([ a+b
2 ,b]×Ω) ≥

η0
10
.
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On the other hand, interpolation and the lower bound for |I| yield

‖φ
> 1

η3
|I| 12 u‖L10

t,x([ a+b
2 ,b]×Ω)

� |I| 1
10 ‖φ

> 1
η3

|I| 12 u‖L∞
t L10

x ([ a+b
2 ,b]×Ω)

� |I| 1
10 ‖φ

> 1
η3

|I| 12 u‖
3
5

L∞
t L6

x([ a+b
2 ,b]×Ω)

‖φ
> 1

η3
|I| 12 u‖

2
5

L∞
t L∞

x ([ a+b
2 ,b]×Ω)

� |I| 1
10

( 1
η3

|I| 12
)− 1

5

≤ η2
0 .

Thus, (3.12) can be improved to

‖P
<C(η2)|I|−

1
2
φ

< 1
η3

|I| 12 u‖L10
t,x([ a+b

2 ,b]×Ω) ≥
η0
20
.

From this, the mass concentration follows quickly. Indeed, using the Bernstein and
Hölder inequalities yields

η0
20

≤ ‖P
<C(η2)|I|−

1
2
φ

< 1
η3

|I| 12 u‖L10
t,x([ a+b

2 ,b]×Ω)

� |I| 1
10 (C(η2)|I|− 1

2 )3(
1
2− 1

10 )‖φ
< 1

η3
|I| 12 u‖L∞

t L2
x([ a+b

2 ,b]×Ω)

� C(η2)|I|− 1
2 ‖φ

< 1
η3

|I| 12 u‖L∞
t L2

x([ a+b
2 ,b]×Ω).

Thus, there exists t0 ∈ I such that

‖u(t0)‖
L2(1≤|x|< 1

η3
|I| 12 )

> c(η2)|I| 12 .

Using (3.7) we obtain

‖u(t)‖
L2(1≤|x|< 1

η3
|I| 12 )

> c(η2)|I| 12 , ∀ t ∈ I.

�

Proposition 3.1 (Morawetz inequality). Let I be a time interval, and let A ≥ 1.
Then ∫

I

∫

1≤|x|≤A|I| 12
|u(t, x)|6

|x| dx dt � A |I| 12 .

Proof. We begin with the local momentum conservation identity

(3.13) ∂tIm(∂ku ū) = −2∂jRe(∂ku ∂j ū) +
1
2
∂kΔ(|u|2) − 2

3
∂k|u|6.

Let a(x) = |x|φ<R(x), so that a is a radial function. Let ajk = ∂j∂ka. Observe
that for 1 ≤ |x| ≤ R,

ajk(x) is positive definite, ∇a(x) =
x

|x| , Δ2a(x) < 0.

In the region |x| ≥ R, a(x) has the rough bound

|∂ka| � 1, |ajk| � 1
R
, |Δ2a| � 1

R3
.



228 DONG LI, HART SMITH AND XIAOYI ZHANG

We multiply the first term in (3.13) by ∂ka and integrate over Ω to obtain

−2
∫

|x|≥1

∂jRe(∂ku∂j ū) ∂ka dx

= 2
∫

|x|≥1

Re(∂ku ∂j ū) ajk dx+ 2
∫

|x|=1

Re(∂ku ∂j ū)xj xk dσ

= 2
∫

1≤|x|≤R

Re(∂ku ∂j ū) ajk dx+ 2
∫

|x|≥R

Re(∂ku ∂j ū) ajk dx

+ 2
∫

|x|=1

|∇u|2 dσ(x)

≥ − 1
R
‖∇u‖2

L2(Ω) + 2
∫

|x|=1

|∇u|2dσ(x).

We do the same for the second term in (3.13), and use the Dirichlet condition to
calculate

1
2

∫

|x|≥1

∂kΔ(|u|2) ∂ka dx

= −1
2

∫

|x|≥1

Δ(|u|2) Δa dx− 1
2

∫

|x|=1

Δ(|u|2) dσ

= −1
2

∫

|x|≥1

|u|2Δ2a dx−
∫

|x|=1

|∇u|2 dσ(x)

= −1
2

∫

1≤|x|≤R

|u|2Δ2a dx− 1
2

∫

|x|≥R

|u|2Δ2a dx−
∫

|x|=1

|∇u|2 dσ(x)

≥ −C
R
‖u‖2

6 −
∫

|x|=1

|∇u|2 dσ(x).

Similarly for the third term in (3.13),

−2
3

∫

|x|≥1

∂k(|u|6) ∂ka dx =
2
3

∫

|x|≥1

|u|6Δa dx

=
4
3

∫

1≤|x|≤R

|u|6
|x| dx+

2
3

∫

|x|≥R

|u|6Δa dx

≥ 4
3

∫

1≤|x|≤R

|u|6
|x| dx− 1

R
‖u‖6

6.

Notice also that
∣
∣
∣

∫

|x|≥1

Im(∂ku ū) ∂ka dx
∣
∣
∣ � ‖∂ku‖L2(Ω)‖u‖L6(Ω)‖∂ka‖L3(Ω) � R.

Integrating (3.13) over I × Ω we obtain
∫

I

∫

1≤|x|≤R

|u|6
|x| dx dt � |I|

R
+R.
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Taking R = A |I| 12 , since A ≥ 1 we have
∫

I

∫

1≤|x|≤A|I| 12
|u|6
|x| dx dt � A |I| 12 .

�

Lemma 3.3. Let J be an interval that contains a contiguous collection
⋃

j Ij of
unexceptional intervals. Then we have

(3.14)
∑

|Ij | 12 ≤ C(η2, η3)|J | 12 .
Proof. We apply mass concentration on each of the time intervals Ij to get

c(η2)|Ij | ≤
∫

1≤|x|≤ 1
η3

|Ij |
1
2

|u(t, x)|2 dx �
(∫

1≤|x|≤ 1
η3

|Ij |
1
2

|u(t, x)|6
|x| dx

) 1
3( 1
η3

|Ij | 12
) 7

3
.

Therefore

c(η2, η3)|Ij |− 1
2 �

∫

1≤|x|≤ 1
η3

|Ij |
1
2

|u(t, x)|6
|x| dx.

We integrate in time over Ij and sum over j. The Morawetz inequality then gives

c(η2, η3)
∑

|Ij | 12 � 1
η3

|J | 12 ,

which implies (3.14). �

From the estimate (3.14), one easily sees that the number of unexceptional intervals
will be under control if the size of the intervals decrease slowly, for example, they
remain constant or decrease polynomially. The only scenario that is consistent with
estimate (3.14) is exponential decrease. Indeed, applying the algorithm argument
introduced by Bourgain [6], one can extract a sequence of exponentially decaying
intervals converging on a point.4 See also [19] for a simplified presentation for this
part of argument. Here, we will just record the result and omit the proof.

Proposition 3.2. Let u be the solution under consideration. Then there exists a
time t∗ ∈ [t−, t+] and distinct unexceptional intervals Ij1, . . . , IjK for some K >
c(η2, η3) log J such that

|Ij1| ≥ 2|Ij2| ≥ 4|Ij3| ≥ · · · ≥ 2K−1|IjK |(3.15)

and such that dist(t∗, Ijk) ≤ C(η2, η3)|Ijk| for all 1 ≤ k ≤ K.

At this point, we can get the control on K as well as J . The detailed argument
can be found in [6] or [19]. We will give a brief sketch for the sake of completeness.

From mass concentration on Ijk, Lemma 3.2, and local mass conservation (by
suitably adjusting the constant), we see that at this fixed t∗,

∫

1≤|x|≤C(η2,η3)|Ijk|
1
2

|u(t∗, x)|2dx > c(η2)|Ijk|.(3.16)

4In our case, this is a precise description since we have a uniform lower bound on the length of

the intervals Ij .
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On the other hand, using the following upper bound
∫

1≤|x|≤C(η2,η3)|Ijk|
1
2

|u(t∗, x)|2dx ≤ C(η2, η3)|Ijk|,

and dyadic shrinking property of |Ijk|, we know that for each k ∈ [1,K] there exist at
most N = logC(η2, η3) annuli such that the main mass in (3.16) occupies only these
finite annuli:

∫

|Ij(k+N)|
1
2 ≤ |x|

C(η2,η3)≤|Ijk|
1
2

|u(t∗, x)|2dx > c(η2)|Ijk|.

By Hölder’s inequality, the L6
x norm also concentrates on this collection of annuli with

constant lower bound. Summing over k produces at most N
∫ |u(t∗, x)|6, which yields

the bound on K. We thus have

Theorem 3.3. There exists C(E, η0, η1, η2, η3) such that

#{Ij , Ij is unexceptional} ≤ C(E, η0, η1, η2, η3).

This, combined with the fact that the number of exceptional intervals is finite,
proves Theorem 1.1.

4. The energy supercritical problem

For spherically symmetric function f ∈ Ḣ1
0 (Ω), the bound

‖f‖L∞
x (Ω) ≤ ‖|x| 12 f‖L∞

x (Ω) � ‖f‖Ḣ1
0 (Ω),

means that any supercritical nonlinearity |u|pu for any p > 4 can still be viewed
as “critical”. As a consequence, the proof of Theorem 1.1 can be applied to the
supercritical case after some minor modifications. More specifically, we consider the
following energy supercritical NLS in Ω with the Dirichlet boundary condition:

⎧
⎪⎨

⎪⎩

i∂tu+ Δu = |u|pu, p > 4,
u(t, x)|R×∂Ω = 0,
u(0, x) = u0(x).

(4.1)

We then have the following result.

Theorem 4.1. Let u0 ∈ Ḣ1
0 (Ω) be spherically symmetric. Then there exists a unique

solution u ∈ C(R; Ḣ1
0 ) to (4.1), and for this solution it holds that

Energy Conservation:

E(u(t)) =
1
2
‖∇u(t)‖2

L2
x(Ω) +

1
p+ 2

‖u(t)‖p+2

Lp+2
x (Ω)

= E(u0),

Global space-time Bound:

‖u‖L10
t,x(R×Ω) ≤ C(‖u0‖Ḣ1

0 (Ω)).

Moreover, there exist unique v± ∈ Ḣ1
0 (Ω) such that

lim
t→±∞ ‖u(t) − eitΔDv±‖Ḣ1

0 (Ω) = 0.
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5. The case with inhomogeneous H1
0(Ω) data

In this section, we point out that for the energy critical problem, Bourgain’s argument
is not needed if we assume inhomogeneous data u0 ∈ H1

0 (Ω).
Indeed, consider (1.1) with radial u0 ∈ H1

0 (Ω). By taking a(x) = |x| and using
almost the same computation as in Proposition 3.1, we arrive at

∥
∥
∥|x|− 1

6u
∥
∥
∥

6

L6
t,x(R×Ω)

� ‖u0‖2
H1

0 (Ω).

This interpolates with the radial Sobolev embedding (2.3) to immediately yield

‖u‖L10
t,x(R×Ω) �u 1,

which is enough to prove scattering.
Finally, the same argument with small changes in numerology applies to the energy

supercritical case (4.1). We omit the details.
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