DISCREPANCIES OF PRODUCTS OF ZETA-REGULARIZED PRODUCTS

VICTOR CASTILLO-GARATE AND EDUARDO FRIEDMAN

ABSTRACT. Zeta-regularized products $\widehat{\prod}_m a_m$ are known not to commute with finite products, so one studies the discrepancy F_n given by

$$\exp(F_n) := \frac{\widehat{\prod}_m \left(\prod_{j=1}^n a_{m,j}\right)}{\prod_{j=1}^n \left(\widehat{\prod}_m a_{m,j}\right)}.$$

For a rather general class of products, associated to polynomials P_j in several variables, we show that the discrepancy $F_n(P_1, \ldots, P_n)$ of n products is a sum of pairwise contributions $F_2(P_i, P_j)$. Namely,

$$\left(\sum_{j=1}^{n} \deg P_j\right) F_n(P_1,\ldots,P_n) = \sum_{1 \le i < j \le n} (\deg P_i + \deg P_j) F_2(P_i,P_j).$$

Thus, there are no higher interactions behind the non-commutativity.

1. Introduction

The zeta-regularized product $\widehat{\prod}_m a_m$ is an often useful substitute for the divergent product $\prod_m a_m$ [JL]. If the Dirichlet series $f(s) := \sum_m a_m^{-s}$ converges for $\operatorname{Re}(s) \gg 0$ and has an analytic continuation to s = 0, one defines $\widehat{\prod}_m a_m := \exp(-f'(0))$. It has been known since at least the work of Shintani [Sh] in the 1970's that taking regularized products does not commute with finite products, i.e., in general

(1.1)
$$\widehat{\prod}_{m} (a_{m} \cdot b_{m}) \neq \left(\widehat{\prod}_{m} a_{m}\right) \cdot \left(\widehat{\prod}_{m} b_{m}\right).$$

Nonetheless, both sides of this non-equality seem related, since in all known examples their ratio is far simpler than either side [Sh, KW, FR, Mi, DF]. For example, when a_m and b_m are given by positive polynomials of degree one in two variables, Shintani [Sh] and Mizuno [Mi] showed that this ratio is the exponential $\exp(F)$ of a rational function F in the coefficients of the polynomials and in the logarithms of these coefficients. In contrast, the right-hand side of (1.1) is a product of two Barnes double Γ -functions [Ba].

Given n zeta-regularized products $\widehat{\prod}_{m} a_{m,j}$ $(1 \leq j \leq n)$ we can define the discrepancy F_n measuring the non-commutativity of the process of regularization with that

Received by the editors May 24, 2011.

Key words and phrases. Regularized products, Dirichlet series.

of taking finite products, namely

$$\exp(F_n) := \frac{\widehat{\prod}_m \left(\prod_{j=1}^n a_{m,j}\right)}{\prod_{j=1}^n \left(\widehat{\prod}_m a_{m,j}\right)}$$

To prove properties of F_n we have to make some assumptions on the $a_{m,j}$ ensuring the meromorphic continuation of $\sum_m a_{m,j}^{-s}$ and regularity at s = 0.

The first study of continuations of rather general Dirichlet series seems to be Mellin's [Me]. Its rather informal style was put on a firm basis by Mahler [Ma], who assumed that $a_m = P(m)$ is the value of a polynomial P in r positive integer variables $m = (m_1, m_2, \ldots, m_r) \in \mathbb{N}^r$ satisfying.

Mahler's hypothesis on P [Ma, p. 385, Kl. A]. The polynomial $P(x) = P(x_1, \ldots, x_r) \in \mathbb{C}[x]$ does not vanish for any $x \in \mathbb{R}^r_{\geq 0} := [0, \infty)^r$. Its homogeneous part of highest degree $P_{\text{top}}(x)$ is not constant and vanishes nowhere in $\mathbb{R}^r_{\geq 0}$, except for $P_{\text{top}}(0) = 0$.

Later authors [Sa, Li, Es, deC] have weakened this assumption, but we shall stay with Mahler's hypothesis for simplicity. Since $P_{top}Q_{top} = (PQ)_{top}$, if Mahler's hypothesis holds for P_1, \ldots, P_n (with the same r), then it also holds for the product $P_1 \cdots P_n$.

Under his hypothesis, Mahler [Ma, Satz II] showed that

(1.2)
$$\zeta(s;P) := \sum_{m \in \mathbb{N}_0^r} P(m)^{-s} \quad (\mathbb{N}_0 = \{0, 1, 2, \dots\})$$

converges for $\operatorname{Re}(s) > r/\operatorname{deg} P$ and extends to an entire meromorphic function of s, analytic at s = 0.¹ Here deg P is the total degree of P in its r variables, and the complex power in (1.2) uses any continuous branch of $\log P(x)$ for $x \in \mathbb{R}^r_{\geq 0}$. Thus we may define the zeta-regularized product

$$\widehat{\prod}_{m \in \mathbb{N}_0^r} P(m) := \exp(-\zeta'(0;P)) \,,$$

where $\zeta(s; P)$ denotes the meromorphic continuation in s of the right-hand side of (1.2), and the derivative is taken with respect to s.

Given n polynomials P_1, \ldots, P_n satisfying Mahler's hypothesis and having the same number r of variables, we can define their discrepancy

(1.3)
$$F_n = F_n(P_1, \dots, P_n) := -\zeta'(0; P_1 \cdot P_2 \cdots P_n) + \sum_{j=1}^n \zeta'(0; P_j),$$

where the complex powers are taken so that

(1.4)
$$(P_1(m) \cdot P_2(m) \cdots P_n(m))^{-s} = (P_1(m))^{-s} \cdot (P_2(m))^{-s} \cdots (P_n(m))^{-s}$$

¹Mahler actually took the sum in (1.2) only over $m \in \mathbb{N}^r$. However, if we set k coordinates of $x = (x_1, \ldots, x_r)$ equal to 0 (k < r), and consider P = P(x) as a function of the remaining r - k coordinates, P still satisfies Mahler's hypothesis (in r - k variables). Hence Mahler's meromorphic continuation with a sum over \mathbb{N}^r implies the same with a sum over \mathbb{N}^r_0 . Choosing sums over \mathbb{N}^r_0 rather than \mathbb{N}^r is better suited to the integral formula (2.10) below.

In the language of regularized products, (1.3) can be re-written as

$$\exp(F_n) := \frac{\widehat{\prod}_{m \in \mathbb{N}_0^r} \prod_{j=1}^n P_j(m)}{\prod_{j=1}^n \widehat{\prod}_{m \in \mathbb{N}_0^r} P_j(m)}$$

We will show that the discrepancy $F_n(P_1, \ldots, P_n)$ is a weighted sum of pairwise discrepancies $F_2(P_i, P_j)$. Thus, there is no contribution to the discrepancy from interactions of more than two polynomials.

Theorem 1.1. Let $P_1, \ldots, P_n \in \mathbb{C}[x]$ be *n* polynomials in *r* variables, all satisfying Mahler's hypothesis above. Then

(1.5)
$$\left(\sum_{j=1}^{n} \deg P_{j}\right) F_{n}(P_{1}, \dots, P_{n}) = \sum_{1 \le i < j \le n} (\deg P_{i} + \deg P_{j}) F_{2}(P_{i}, P_{j}),$$

where $F_n(P_1, P_2, \ldots, P_n)$ is defined by (1.3).

Of course, the (tacit) branch of $\log P_j$ used in either side of (1.5) must be the same.

In Section 2.1, we reduce the theorem to an analogous one for the zeta-integral discrepancy, namely,

(1.6)
$$\left(\sum_{j=1}^{n} \deg P_{j}\right) I_{n}(P_{1}, \dots, P_{n}) = \sum_{1 \le i < j \le n} (\deg P_{i} + \deg P_{j}) I_{2}(P_{i}, P_{j}),$$

where

$$I_n(P_1, \dots, P_n) := -Z'(0; P_1 \cdot P_2 \cdots P_n) + \sum_{j=1}^n Z'(0; P_j),$$
$$Z(s; P) := \int_{x \in \mathbb{R}^n_+} P(x)^{-s} dx \quad (\operatorname{Re}(s) > r/\deg P).$$

This reduction uses an integral formula that relates $\zeta(s; P^{[a]})$ to $Z(s; P^{[a]})$, where $P^{[a]}(x) := P(a + x)$. In Section 2.2, we prove (1.6) for *n* monic polynomials $P_j(\rho) = \rho + a_j$ of degree 1 in one variable ρ . In Section 2.3, we apply an identity for the value $Z(0; P_1 \cdots P_n)$ and formal properties of the discrepancy to deduce, from the degree 1 case proved in Section 2.2, identity (1.6) for all polynomials in one variable. In Section 2.4, we conclude the proof, using spherical coordinates to deduce (1.6) from the one-variable case proved in Section 2.3.

It is worth remarking that throughout the proof we use the existence of the meromorphic continuation of $\zeta(s; P)$ and Z(s; P) [Ma, Satz I, II], but we never need any explicit formula realizing the continuation. The various properties of the discrepancy that we use are derived directly by analytic continuation from simple properties of $\zeta(s; P)$ and Z(s; P) in the half-plane of convergence.

2. Proof

In this section we prove the theorem given in Section 1. We consider the more general Dirichlet series

$$\zeta(s; P; g) := \sum_{m \in \mathbb{N}_0^r} g(m) P(m)^{-s} \quad \left(\operatorname{Re}(s) > (r + \deg g) / \deg P\right),$$

and corresponding zeta integrals

(2.1)
$$Z(s;P;g) := \int_{x \in \mathbb{R}_{\geq 0}^r} g(x) P(x)^{-s} \, dx \quad (\operatorname{Re}(s) > (r + \deg g) / \deg P) \,,$$

where $g \in \mathbb{C}[x]$ is an arbitrary polynomial in $r \ge 1$ variables, $P \in \mathbb{C}[x]$ satisfies Mahler's hypothesis in r variables (see Section 1), and dx denotes Lebesgue measure on \mathbb{R}^r .

Mahler [Ma, Satz I, II] proved

- $\zeta(s; P; g)$ and Z(s; P; g) converge absolutely in the half-plane $\operatorname{Re}(s) > (r + \deg g)/\deg P$.
- $\zeta(s; P; g)$ and Z(s; P; g) extend meromorphically to $s \in \mathbb{C}$, with at most simple poles at rational numbers of the form $s = (r + \deg g \ell)/\deg P$, where $\ell = 0, 1, 2, \ldots$. However, $\zeta(s; P; g)$ and Z(s; P; g) are analytic at non-positive integers $s = 0, -1, -2, \ldots$.

Note that the (possible) pole set does not depend on the coefficients of P or g.

It is not hard to show [FP, p. 6] that the set of polynomials (over \mathbb{C}) of degree d and satisfying Mahler's hypothesis is open in the space of coefficients of polynomials of degree d in r variables. Moreover, Mahler's proof [Ma, Sections 14–15] [FP, Section 3] shows that, outside the *s*-pole set just described, $\zeta(s; P; g)$ and Z(s; P; g) are analytic not only in s, but also in the coefficients of P (for P near any fixed P_0), provided one chooses the branch of $\log P(x)$ continuously both in $x \in \mathbb{R}^r_{\geq 0}$ and in the coefficients of P. This will prove important below when we take derivatives and integrals with respect to the coefficients.

If P_1, \ldots, P_n satisfy Mahler's hypothesis (see Section 1) and $g \in \mathbb{C}[x]$, Mahler's analytic continuation to s = 0 allows us to define

(2.2)
$$F_n(P_1, \dots, P_n; g) := -\zeta'(0; P_1 \cdot P_2 \cdots P_n; g) + \sum_{j=1}^n \zeta'(0; P_j; g),$$

and its zeta-integral analogue,

(2.3)
$$I_n(P_1,\ldots,P_n;g) := -Z'(0;P_1 \cdot P_2 \cdots P_n;g) + \sum_{j=1}^n Z'(0;P_j;g).$$

We stress that branches for the (tacit) logarithms of products are taken to satisfy (1.4). We shall prove in Section 2.4

(2.4)
$$d_{n+1}F_n(P_1, \dots, P_n; g) = \sum_{1 \le i < j \le n} (d_i + d_j)F_2(P_i, P_j; g),$$

where

$$d_j := \deg P_j \ (1 \le j \le n), \quad d_{n+1} := \sum_{j=1}^n d_j,$$

which reduces to the theorem in Section 1 when g = 1.

2.1. Reduction to zeta integrals. We shall show in Proposition 2.1 below that (2.4) follows from its zeta-integral analogue

(2.5)
$$d_{n+1}I_n(P_1,\ldots,P_n;g) = \sum_{1 \le i < j \le n} (d_i + d_j)I_2(P_i,P_j;g)$$

where I_n was defined in (2.3). The proof of (2.5) will occupy Sections 2.2–2.4. We list some simple properties of I_n .

$$(2.6) I_n(P, P, \dots, P; g) = 0$$

(2.7)
$$I_n(P_0 \cdot P_1, P_2, \dots, P_n; g) = I_{n+1}(P_0, P_1, \dots, P_n; g) - I_2(P_0, P_1; g),$$

n times *n* times

(2.8)
$$nI_k(P_1,\ldots,P_k;g) = I_{kn}(\overrightarrow{P_1,\ldots,P_1},\ldots,\overrightarrow{P_k,\ldots,P_k};g),$$

(2.9)
$$I_n(P_1, \dots, P_n; g) = I_n(P_{\tau(1)}, \dots, P_{\tau(n)}; g),$$

where τ is any permutation of $\{1, \ldots, n\}$. The above are easily proved by direct substitution into the defining integral (2.1) for $\operatorname{Re}(s) \gg 0$, extending then to s = 0 by analytic continuation. Of course, the same branch of $\log P_j$ is used whenever P_j is repeated in the above equations.

A nice relation between the Dirichlet series $\zeta(s; P; g)$ and the zeta integral Z(s; P; g)emerges if we insert a translation variable into the polynomial P, so we let

$$P^{[a]}(x) := P(a+x) \quad (a \in \mathbb{C}^r).$$

Note

$$(P^{[a]})_{\text{top}} = P_{\text{top}}, \quad (PQ)^{[a]} = P^{[a]}Q^{[a]}.$$

If P satisfies Mahler's hypothesis, then so does $P^{[a]}$ for all a in a sufficiently small ball B around 0 in \mathbb{C}^r [FP, p. 6]. This implies that $P^{[a+t]}$ satisfies Mahler's hypothesis for all $t \in \mathbb{R}^r_{\geq 0}$ and $a \in B$. Moreover, a continuous branch of log $P^{[a+t]}(x)$ can be defined for $t, x \in \mathbb{R}^r_{> 0}$ and $a \in B$.

The relation between zeta-integrals and Dirichlet series we need is [FP, Proposition 4]

(2.10)
$$\int_{t \in [0,1]^r} \zeta(s; P^{[a+t]}; g^{[a+t]}) \, dt = Z(s; P^{[a]}; g^{[a]}) \quad (a \in B),$$

valid for all s outside the possible pole set given by Mahler.² In particular, (2.10) holds for s in a neighbourhood of 0. On taking the derivative with respect to s inside the

²Here is a proof of (2.10) for a = 0, which suffices (replace P by $P^{[b]}$ and use $(P^{[b]})^{[t]} = P^{[b+t]}$). For $\operatorname{Re}(s) \gg 0$, uniform convergence gives

$$\begin{split} \int_{t \in [0,1]^r} \zeta(s; P^{[t]}; g^{[t]}) \, dt &= \int_{t \in [0,1]^r} \sum_{m \in \mathbb{N}_0^r} g(t+m) P(t+m)^{-s} \, dt \\ &= \sum_{m \in \mathbb{N}_0^r} \int_{t \in [0,1]^r} g(t+m) P(t+m)^{-s} \, dt = \sum_{m \in \mathbb{N}_0^r} \int_{t \in m+[0,1]^r} g(t) P(t)^{-s} \, dt \\ &= \int_{\mathbb{R}_{\geq 0}^r} g(t) P(t)^{-s} \, dt = Z(s; P; g), \end{split}$$

proving (2.10) for $\operatorname{Re}(s) \gg 0$. For a general s (outside the possible pole set, which is independent of $t \in [0, 1]^r$), (2.10) follows by analytic continuation.

integral in (2.10) (which is certainly permissible by the analyticity in s) and setting s = 0, we have

(2.11)
$$\int_{t \in [0,1]^r} F_n(P_1^{[a+t]}, \dots, P_n^{[a+t]}; g^{[a+t]}) dt = I_n(P_1^{[a]}, \dots, P_n^{[a]}; g^{[a]}).$$

Fixing deg P_j and the number r of variables, the map taking the coefficients of the polynomials P_1, \ldots, P_n to the discrepancy $F_n(P_1, \ldots, P_n; g)$ is known to be a polynomial in the non-top coefficients of the P_j (*i. e.* in the coefficients not appearing in any $(P_j)_{top}$) [DF, p. 37].³ Since the map $a \to P^{[a]}$ changes only the non-top coefficients of P, we conclude that $F_n(P_1^{[a]}, \ldots, P_n^{[a]}; g^{[a]})$ is a polynomial in a (for $a \in \mathbb{R}^r_{\geq 0}$, or a in some small ball B around 0 in \mathbb{C}^r). By (2.11), the same holds for $I_n(P_1^{[a]}, \ldots, P_n^{[a]}; g^{[a]})$.

Proposition 2.1. Let $d_j := \deg P_j$, $d_{n+1} := \sum_{j=1}^n d_j$, and assume

(2.12)
$$d_{n+1}I_n(P_1,\ldots,P_n;g) = \sum_{1 \le i < j \le n} (d_i + d_j)I_2(P_i,P_j;g)$$

for all polynomials $P_1, \ldots, P_n \in \mathbb{C}[x]$ in r variables satisfying Mahler's hypothesis, and for all $g \in \mathbb{C}[x]$. Then for all such polynomials,

$$d_{n+1}F_n(P_1,\ldots,P_n;g) = \sum_{1 \le i < j \le n} (d_i + d_j)F_2(P_i,P_j;g).$$

Proof. For $a \in \mathbb{R}^r_{>0}$, or a in some small ball B around 0 in \mathbb{C}^r , let

$$H(a) := d_{n+1}F_n(P_1^{[a]}, \dots, P_n^{[a]}; g^{[a]}) - \sum_{1 \le i < j \le n} (d_i + d_j)F_2(P_i^{[a]}, P_j^{[a]}; g^{[a]}).$$

We have to show that H(0) = 0. In fact, we will show that H vanishes identically. By the preceding remarks, H is a polynomial in a. Moreover, from (2.11) we have

$$R(H)(a) := \int_{t \in [0,1]^r} H(a+t) dt$$

= $d_{n+1}I_n\left(P_1^{[a]}, \dots, P_n^{[a]}; g^{[a]}\right) - \sum_{1 \le i < j \le n} (d_i + d_j)I_2\left(P_i^{[a]}, P_j^{[a]}; g^{[a]}\right) = 0,$

where the last 0 is by our hypothesis (2.12). However, the \mathbb{C} -linear map $R : \mathbb{C}[a] \to \mathbb{C}[a]$

$$R(f)(a) := \int_{t \in [0,1]^r} f(a+t) dt \quad (f \in \mathbb{C}[a])$$

is injective, since it leaves the top-degree homogeneous part of the polynomial f unchanged.⁴ Hence H(a) = 0 identically.

³The regularized products in [DF] are actually taken over $m \in \mathbb{N}^r$, rather than over $m \in \mathbb{N}_0^r$. We can pass from the former to the latter as we did in our first footnote. Alternatively, in [DF] one could change the summation set from \mathbb{N}^r to \mathbb{N}_0^r everywhere without affecting any proof.

⁴This implies that R is invertible. In fact, R maps a product of Bernoulli polynomials $B_k(a) := B_{k_1}(a_1) \cdots B_{k_r}(a_r)$ to the monomial $a^k := a_1^{k_1} \cdots a_r^{k_r}$ [FP, Lemma 2.4].

2.2. Monic polynomials of degree 1 in one variable.

Proposition 2.2. For $P_j(\rho) = \rho + a_j \in \mathbb{C}[\rho]$ $(1 \le j \le n)$ satisfying Mahler's hypothesis, $h \in \mathbb{C}[\rho]$ and $n \ge 2$, we have

(2.13)
$$nI_n(P_1, \dots, P_n; h) = 2 \sum_{1 \le i < j \le n} I_2(P_i, P_j; h),$$

and

(2.14)
$$nZ(0; P_1 \cdots P_n; h) = \sum_{j=1}^n Z(0; P_j; h)$$

Note that deg $P_i + \deg P_j = 2$, $n = \sum_{j=1}^n \deg P_j$ in this case, so (2.13) will become our first proved case of (2.5). Formula (2.14) is proved in [FP], but we re-prove it here for completeness. Mahler's hypothesis for P_j (see Section 1) in this case is equivalent to $a_j \notin (-\infty, 0]$, but we shall not require this explicitly.

Proof. We first show that if (2.13) holds for one set of branches P_j^{-s} , then it holds for any other choice $\widetilde{P}_j(\rho)^{-s} = e^{2\pi i s k_j} P_j(\rho)^{-s}$ for integers k_j . Thus, we need to show

(2.15)
$$n\widetilde{I}_{n}(P_{1},...,P_{n};h) - 2\sum_{1 \le i < j \le n} \widetilde{I}_{2}(P_{i},P_{j};h)$$
$$= nI_{n}(P_{1},...,P_{n};h) - 2\sum_{1 \le i < j \le n} I_{2}(P_{i},P_{j};h),$$

where we used a \sim to denote a different choice of branches. Since we can change the branch of one P_{ℓ} at a time, to prove (2.15) it suffices to do the case where all but one k_{ℓ} vanish. Say just $k_j \neq 0$. Then,

(2.16)

$$\widetilde{Z}(s; P_j; h) = e^{2\pi i s k_j} Z(s; P_j; h), \quad \widetilde{Z}(s; P_1 \cdots P_n; h) = e^{2\pi i s k_j} Z(s; P_1 \cdots P_n; h).$$

Differentiating these equations with respect to s and setting s = 0, we get

$$I_n - \widetilde{I}_n = 2\pi i k_j \left(Z(0; P_1 \cdots P_n; h) - Z(0; P_j; h) \right).$$

Now (2.15) follows after a short calculation using (2.14) (which we shall prove below without using (2.13)).

Hence, for all j we fix the principal branch of $\log(\rho + a_j)$, i.e., the one for which $\lim_{\rho \to +\infty} \operatorname{Im}(\log P_j(\rho)) = 0$. This makes $I_n(P_1, \ldots, P_n; h)$ a symmetric function of the a_1, \ldots, a_n (actually, a polynomial, as we shall recall below).

In proving (2.13) we may assume $n \ge 3$, as (2.13) is trivial for n = 2. For $\operatorname{Re}(s) \gg 0$, we have for any three *distinct* indices i, j, k,

$$\frac{\partial^3}{\partial a_i \partial a_j \partial a_k} \left(Z(s; P_1 \cdots P_n; h) \right)$$
$$= \frac{\partial^3}{\partial a_i \partial a_j \partial a_k} \int_0^\infty h(\rho) \prod_{\ell=1}^n (\rho + a_\ell)^{-s} d\rho$$

$$\begin{split} &= -s^3 \int_0^\infty h(\rho) \left((\rho + a_i)(\rho + a_j)(\rho + a_k) \right)^{-1} \prod_{\ell=1}^n (\rho + a_\ell)^{-s} \, d\rho \\ &= -s^3 \int_0^\infty \left(h(\rho) \prod_{\substack{1 \le \ell \le n \\ \ell \ne i, j, k}} (\rho + a_\ell) \right) \prod_{\ell=1}^n (\rho + a_\ell)^{-(s+1)} \, d\rho \\ &= -s^3 Z(s+1; P_1 \cdots P_n; \tilde{h}), \quad \text{where} \quad \tilde{h}(\rho) := h(\rho) \prod_{\substack{1 \le \ell \le n \\ \ell \ne i, j, k}} (\rho + a_\ell) \end{split}$$

By analytic continuation,

(2.17)
$$\frac{\partial^3}{\partial a_i \partial a_j \partial a_k} \left(Z(s; P_1 \cdots P_n; h) \right) = -s^3 Z(s+1; P_1 \cdots P_n; \widetilde{h}).$$

for all s outside the pole set. Applying $\frac{\partial}{\partial s}\Big|_{s=0}$ to (2.17), and reversing the order of the derivatives (see the third paragraph in Section 2), we find

(2.18)
$$\frac{\partial^3}{\partial a_i \partial a_j \partial a_k} \left(Z'(0; P_1 \cdots P_n; h) \right) \\= \left(-3s^2 Z(s+1; P_1 \cdots P_n; \widetilde{h}) - s^3 Z'(s+1; P_1 \cdots P_n; \widetilde{h}) \right) \Big|_{s=0} = 0,$$

because $Z'(s; P_1 \cdots P_n; \tilde{h})$ can have at most a double pole at s = 1 (recall that all poles of $Z(s; P_1 \cdots P_n; \tilde{h})$ are simple [Ma, Satz I]).

By [DF, Theorem 4], $F_n(P_1, \ldots, P_n; h)$ is a polynomial in a_1, \ldots, a_n . It follows from the integral formula (2.11) that

$$\iota_n(a_1,\ldots,a_n):=I_n(P_1,\ldots,P_n;h).$$

is also a polynomial in a_1, \ldots, a_n (depending on h, but h is fixed in this proof). From (2.18) we see that ι_n is a sum of monomials containing products of at most two distinct variables a_i, a_j . Thus ι_n can be uniquely written as

$$\iota_n(a_1, \dots, a_n) = C_n + \sum_{i=1}^n f_{i,n}(a_i) + \sum_{1 \le i < j \le n} p_{i,j,n}(a_i, a_j),$$

where C_n is a constant, $f_{i,n}$ is a polynomial in one variable with no constant term, and $p_{i,j,n}$ is a polynomial in two variables with $p_{i,j,n}(0,a) = 0 = p_{i,j,n}(a,0)$ for all $a \in \mathbb{C}$. But $\iota_n(a_1,\ldots,a_n)$ is symmetric in the a_ℓ , by (2.9). Since the above representation of the polynomial ι_n is unique, we must have

$$\iota_n(a_1, \dots, a_n) = C_n + \sum_{i=1}^n f_n(a_i) + \sum_{1 \le i < j \le n} p_n(a_i, a_j),$$

i.e., $f_{i,n} = f_n$ and $p_{i,j,n} = p_n$ independently of i, j. But f_n and p_n have no constant term, and $\iota_n(a_1, a_1, \ldots, a_1) = 0$ by (2.6), so $C_n = 0$ and

(2.19)
$$f_n(a) = -\frac{(n-1)p_n(a,a)}{2} \quad (a \in \mathbb{C})$$

(2.20)
$$\iota_n(a_1,\ldots,a_n) = \sum_{i=1}^n f_n(a_i) + \sum_{1 \le i < j \le n} p_n(a_i,a_j).$$

Let

(2.21)
$$H_n(a,b) := p_n(a,b) - \frac{p_n(a,a) + p_n(b,b)}{2},$$

and compute

$$\sum_{1 \le i < j \le n} H_n(a_i, a_j) = \sum_{1 \le i < j \le n} p_n(a_i, a_j) - \frac{1}{2} \sum_{1 \le i < j \le n} (p_n(a_i, a_i) + p_n(a_j, a_j))$$
$$= \sum_{1 \le i < j \le n} p_n(a_i, a_j) - \frac{1}{2} \sum_{i=1}^n (n-1) p_n(a_i, a_i)$$
$$= \sum_{1 \le i < j \le n} p_n(a_i, a_j) + \sum_{i=1}^n f_n(a_i) = \iota_n(a_1, \dots, a_n),$$

where in the last line we used (2.19) and (2.20). Thus,

(2.22)
$$\iota_n(a_1,\ldots,a_n) = \sum_{1 \le i < j \le n} H_n(a_i,a_j), \quad H_n(a,a) = 0,$$

the second equality following from (2.21). From (2.8) and (2.22) we obtain

(2.23)
$$nI_2(a_1, a_2; h) = \iota_{2n}(\overbrace{a_1, \dots, a_1}^{n \text{ times}}, \overbrace{a_2, \dots, a_2}^{n \text{ times}}) = n^2 H_{2n}(a_1, a_2),$$

since $H_{2n}(a_1, a_1) = 0 = H_{2n}(a_2, a_2)$. Using (2.8), (2.22) and (2.23) we get

$$\iota_n(a_1, \dots, a_n) = \frac{1}{2} \iota_{2n}(a_1, a_1, a_2, a_2, \dots, a_n, a_n)$$

= $\frac{1}{2} \sum_{1 \le i < j \le n} 4H_{2n}(a_i, a_j; h) = \frac{2}{n} \sum_{1 \le i < j \le n} I_2(a_i, a_j; h),$

proving (2.13).

The proof of (2.14), to which we now turn, is very similar. For distinct i and j we have

$$\frac{\partial^2}{\partial a_i \partial a_j} \left(Z(s; P_1 \cdots P_n; h) \right) = s^2 Z(s+1; P_1 \cdots P_n; \hat{h}),$$

where $\hat{h}(\rho) := h(\rho) \prod_{\substack{1 \le \ell \le n \\ \ell \ne i, j}} (\rho + a_{\ell})$. Setting s = 0 we find

$$\frac{\partial^2}{\partial a_i \partial a_j} \left(Z(0; P_1 \cdots P_n; h) \right) = 0.$$

Since [DF, Remark 3, pp. 40–41] $\zeta(0; P_1 \cdots P_n; h)$ is a polynomial in the a_ℓ , so is $Z(0; P_1 \cdots P_n; h)$ (use (2.10) with s = 0). Hence

$$Z(0; P_1 \cdots P_n; h) = c_n + \sum_{i=1}^n q_{i,n}(a_i),$$

where c_n is a constant and $q_{i,n}$ is a polynomial in one variable with no constant term. By symmetry in the a_i

(2.24)
$$Z(0; P_1 \cdots P_n; h) = \sum_{i=1}^n q_n(a_i)$$

where $q_n(a) := q_{i,n}(a) + c_n/n$, for any *i*.⁵ Taking $a = a_1 = \cdots = a_n$ in (2.24), so $P = P_1 = \cdots = P_n$, we have

$$Z(0; P; h) = Z(s; P; h) \Big|_{s=0} = Z(ns; P; h) \Big|_{s=0} = Z(s; P^n; h) \Big|_{s=0}$$
$$= Z(0; P^n; h) = \sum_{j=1}^n q_n(a) = nq_n(a).$$

In view of (2.24), we are done proving (2.14).

2.3. Polynomials in one variable. First we assume that the polynomials are monic.

Proposition 2.3. Let $P_1, \ldots, P_n \in \mathbb{C}[\rho]$ be monic polynomials in one variable satisfying Mahler's hypothesis, and let $h \in \mathbb{C}[\rho]$. Then

(2.25)
$$d_{n+1}I_n(P_1, \dots, P_n; h) = \sum_{1 \le i < j \le n} (d_i + d_j)I_2(P_i, P_j; h),$$

and

(2.26)
$$d_{n+1}Z(0; P_1 \cdots P_n; h) = \sum_{j=1}^n d_j Z(0; P_j; h),$$

where $d_j := \deg P_j, \ d_{n+1} := \sum_{j=1}^n d_j.$

Proof. Since P_j is a monic polynomial in one variable, it factors as $P_j = \prod_{j=1}^{d_j} L_{j,i}$, where the $L_{j,i} \in \mathbb{C}[\rho]$ are monic of degree 1 and satisfy Mahler's hypothesis. To prove

⁵By (2.16), Z(0; P; h) is independent of the branch of log P chosen. Thus the symmetry in the a_j of $Z(0; P_1 \cdots P_n; h)$ is clear.

(2.26) note

$$d_{n+1}Z\left(0;\prod_{j=1}^{n}P_{j};h\right) = d_{n+1}Z\left(0;\prod_{\substack{1\leq j\leq n\\1\leq i\leq d_{j}}}L_{j,i};h\right) = \sum_{\substack{1\leq j\leq n\\1\leq i\leq d_{j}}}Z(0;L_{j,i};h)$$
$$= \sum_{j=1}^{n}\left(\sum_{i=1}^{d_{j}}Z(0;L_{j,i};h)\right) = \sum_{j=1}^{n}d_{j}Z(0;P_{j};h),$$

where the second and last equalities used (2.14).

We now turn to (2.25), which we will prove by induction on

$$k := d_{n+1} - n = \sum_{j=1}^{n} (d_j - 1) \ge 0.$$

If k = 0, then all $d_j = 1$ and the proposition reduces to the previous one. Thus we assume (2.25) for all n and all $d_{n+1} - n < k$. For $k \ge 1$, some $d_j > 1$. By symmetry, we can suppose $d_1 > 1$, so we can factor the monic one-variable polynomial $P_1 = LQ$, where L and Q are also monic, satisfy Mahler's hypothesis, and deg L = 1. We calculate, applying the inductive hypothesis to both $I_{n+1}(L, Q, P_2, \ldots, P_n; h)$ and $I_3(L, Q, P_j; h)$ ($2 \le j \le n$), dropping now the fixed polynomial h from the notation,

$$\begin{aligned} d_{n+1}I_n(P_1, \dots, P_n) &- \sum_{1 \le i < j \le n} (d_i + d_j)I_2(P_i, P_j) \\ &= d_{n+1} \left(I_{n+1}(L, Q, P_2, \dots, P_n) - I_2(L, Q) \right) & \text{(use (2.7))} \\ &- \sum_{2 \le i < j \le n} (d_i + d_j)I_2(P_i, P_j) - \sum_{j=2}^n (d_1 + d_j)I_2(LQ, P_j) \\ &= d_1I_2(L, Q) + \sum_{j=2}^n (1 + d_j)I_2(L, P_j) + \sum_{j=2}^n (d_1 - 1 + d_j)I_2(Q, P_j) & \text{(induction)} \\ &- d_{n+1}I_2(L, Q) - \sum_{j=2}^n (d_1 + d_j) \left(I_3(L, Q, P_j) - I_2(L, Q) \right) \\ &= \sum_{j=2}^n \left(d_1I_2(L, Q) + (1 + d_j)I_2(L, P_j) + (d_1 - 1 + d_j)I_2(Q, P_j) \right) \\ &- \sum_{j=2}^n \left(d_1I_2(L, Q) + (1 + d_j)I_2(L, P_j) + (d_1 - 1 + d_j)I_2(Q, P_j) \right) & \text{(induction)} \\ &- d_1I_2(L, Q) - (1 + d_j)I_2(L, P_j) - (d_1 - 1 + d_j)I_2(Q, P_j) \right) = 0, \end{aligned}$$

as claimed.

Now we drop the assumption that the P_j be monic.

Proposition 2.4. Let $P_1, \ldots, P_n \in \mathbb{C}[\rho]$ be polynomials in one variable satisfying Mahler's hypothesis, and let $h \in \mathbb{C}[\rho]$. Then

(2.27)
$$d_{n+1}I_n(P_1,\ldots,P_n;h) - \sum_{1 \le i < j \le n} (d_i + d_j)I_2(P_i,P_j;h) = 0,$$

and

(2.28)
$$d_{n+1}Z(0; P_1 \cdots P_n; h) = \sum_{j=1}^n d_j Z(0; P_j; h)$$

where $d_j := \deg P_j, \ d_{n+1} := \sum_{j=1}^n d_j.$

Proof. If $\tilde{P} = \lambda P$, where $P \in \mathbb{C}[\rho]$ satisfies Mahler's hypothesis and $\lambda \in \mathbb{C} - \{0\}$, then

(2.29)
$$Z(s; \tilde{P}; h) = \lambda^{-s} Z(s; P; h),$$

provided the branches are chosen so that $\tilde{P}(x)^{-s} = \lambda^{-s} P(x)^{-s}$ for $x \in \mathbb{R}_{\geq 0}$. Hence $Z(0; \tilde{P}; h) = Z(0; P; h)$, so (2.28) follows from the monic case proved in the previous proposition.

To prove (2.27), we first show that its left-hand side is unchanged if one of the P_j is replaced by $\tilde{P}_j = \lambda P_j$. Say j = 1, to simplify notation. From (2.29) and definition (2.3) of I_n , we find

$$I_n(P_1, P_2, \dots, P_n; h) - I_n(\tilde{P}_1, P_2, \dots, P_n; h) = (Z(0; P_1 \cdots P_n; h) - Z(0; P_1; h)) \log \lambda.$$

This (also applied to $I_2(\tilde{P}_1, P_j; h)$), (2.28) and some calculation show (dropping h)

$$d_{n+1}I_n(P_1, P_2, \dots, P_n) - 2 \sum_{1 \le i < j \le n} (d_i + d_j)I_2(P_i, P_j)$$

= $d_{n+1}I_n(\tilde{P}_1, P_2, \dots, P_n) - 2 \sum_{2 \le i < j \le n} (d_i + d_j)I_2(P_i, P_j)$
 $- 2 \sum_{j=2}^n (d_1 + d_j)I_2(\tilde{P}_1, P_j).$

Thus, starting with non-monic P_j 's on the left-hand side of (2.27), we can replace them one by one by monic polynomials \tilde{P}_j without changing the value of the left-hand side of (2.27). Once they are all monic we are done by Proposition 2.3.

2.4. Polynomials in several variables. In this subsection, we pass from one to several variables and thereby conclude the proof. Let $P \in \mathbb{C}[x]$ be a polynomial in r variables satisfying Mahler's hypothesis, and let

$$S_+^{r-1} := \left\{ \sigma \in \mathbb{R}^r_{\geq 0} \Big| \sum_{j=1}^r \sigma_j^2 = 1 \right\}.$$

Spherical coordinates (ρ, σ) on $\mathbb{R}^r_{\geq 0}$ (so $x = \rho\sigma, dx = \rho^{r-1} d\rho d\sigma$) allow us to write for $\operatorname{Re}(s) \gg 0$

$$Z(s;P;g) := \int_{x \in \mathbb{R}_{\geq 0}^r} g(x)P(x)^{-s} dx$$
$$= \int_{\sigma \in S_+^{r-1}} \int_{\rho=0}^{\infty} \rho^{r-1}g(\rho\sigma)P(\rho\sigma)^{-s} d\rho d\sigma \quad = \int_{\sigma \in S_+^{r-1}} Z(s;P_{\sigma};g_{\sigma,r}) d\sigma,$$

where the one-variable polynomials P_{σ} and $g_{\sigma,r}$ are defined by

(2.30)
$$P_{\sigma}(\rho) := P(\rho\sigma), \quad g_{\sigma,r}(\rho) = \rho^{r-1}g(\rho\sigma).$$

For $\rho \neq 0$, $(P_{\sigma})_{top}(\rho) = \rho^{\deg P} P_{top}(\sigma) \neq 0$ by Mahler's hypothesis, so P_{σ} satisfies Mahler's hypothesis in one variable. Also, the degree in ρ of P_{σ} satisfies

(2.31)
$$\deg P_{\sigma} = \deg P \quad (\sigma \in S^{r-1}_+)$$

and deg $g_{\sigma,r} \leq r - 1 + \deg g$. Thus, the set of poles of $Z(s; P_{\sigma}; g_{\sigma,r})$ is contained in the possible pole set of Z(s; P; g) given by Mahler (see the second paragraph of Section 2). By analytic continuation we therefore have for all s outside this set of possible poles

(2.32)
$$Z(s;P;g) = \int_{\sigma \in S^{r-1}_+} Z(s;P_{\sigma};g_{\sigma,r}) \, d\sigma$$

Taking the s-derivative at s = 0 inside the integral gives

(2.33)
$$I_n(P_1, \dots, P_n; g) = \int_{\sigma \in S_+^{r-1}} I_n\left((P_1)_{\sigma}, \dots, (P_n)_{\sigma}; g_{\sigma, r}\right) \, d\sigma.$$

Theorem 2.1. Let $P_1, \ldots, P_n \in \mathbb{C}[x]$ be *n* polynomials in *r* variables, all satisfying Mahler's hypothesis (see Section 1), and let $g \in \mathbb{C}[x]$. Then

$$\left(\sum_{j=1}^{n} \deg P_j\right) F_n(P_1, \dots, P_n; g) = \sum_{1 \le i < j \le n} (\deg P_i + \deg P_j) F_2(P_i, P_j; g),$$

where $F_n(P_1, \ldots, P_n; g)$ is defined by (2.2).

Proof. As before, write $d_j := \deg P_j$, $d_{n+1} := \sum_{j=1}^n d_j$. By Proposition 2.1, to prove the theorem it suffices to prove

(2.34)
$$d_{n+1}I_n(P_1, \dots, P_n; g) = \sum_{1 \le i < j \le n} (d_i + d_j)I_2(P_i, P_j; g).$$

For a fixed $\sigma \in S^{r-1}_+$, let $(P_j)_{\sigma}$ be as in (2.30). Proposition 2.4 and (2.31) give

$$d_{n+1}I_n((P_1)_{\sigma}, \dots, (P_n)_{\sigma}; g_{\sigma,r}) = \sum_{1 \le i < j \le n} (d_i + d_j)I_2((P_i)_{\sigma}, (P_j)_{\sigma}; g_{\sigma,r}).$$

In view of (2.33), integrating over $\sigma \in S^{r-1}_+$ yields (2.34).

Acknowledgments

We are grateful for support from the Chilean *Programa Iniciativa Científica Milenio* (grant ICM P07-027-F) and from the Chilean *FONDECYT* (grant 1085153).

References

- [Ba] E.W. Barnes, On the theory of the multiple gamma function, Trans. Cambridge Philos. Soc. 19 (1904), 374–425.
- [deC] M. de Crisenoy, Values at T-tuples of negative integers of twisted multivariable zeta series associated to polynomials of several variables, Compos. Math. **142** (2006), 1373–1402.
- [DF] F. Diaz y Diaz and E. Friedman, *Finite products of regularized products*, Math. Res. Lett. 15 (2008), 33–41.
- [Es] D. Essouabri, Singularité des séries de Dirichlet associées à des polynômes de plusieurs variables et applications en théorie analytique des nombres, Ann. Inst. Fourier 47 (1997), 429–483.
- [FP] E. Friedman and A. Pereira, Special values of Dirichlet series and zeta integrals, Int. J. Number Theory 8 (2012), 1–18.
- [FR] E. Friedman and S. Ruijsenaars, Shintani-Barnes zeta and gamma functions, Adv. Math. 187 (2004), 362–395.
- [JL] J. Jorgenson and S. Lang, Basic analysis of regularized series and products, Springer Lecture Notes in Math. 1425, Springer, Berlin, 1993.
- [KW] N. Kurokawa and M. Wakayama, A generalization of Lerch's formula, Czechoslovak Math. J. 54 (2004), 941–947.
- [Li] B. Lichtin, Generalized Dirichlet series and b-functions, Compos. Math. 65 (1988), 81–120.
- [Ma] K. Mahler, Uber einen Satz von Mellin, Math. Ann. 100 (1928), 384–398.
- [Me] H. Mellin, Eine Formel f
 ür den Logarithmus transcendenter Functionen von endlichem Geschlecht, Acta Soc. Sci. Fenn. 29 (1900), 3–49. See also a version in Acta Math. 25 (1901), 165–183.
- [Mi] Y. Mizuno, Generalized Lerch formulas: Examples of zeta-regularized products, J. Number Theory 118 (2006), 155–171.
- [Sa] P. Sargos, Prolongement méromorphe des séries de Dirichlet associées à des fractions rationnelles de plusieurs variables, Ann. Inst. Fourier 34 (1984), 83–123.
- [Sh] T. Shintani, On values at s = 1 of certain L functions of totally real algebraic number fields, in 'Algebraic Number Theory, Papers Contributed for the International Symposium', Kyoto 1976(S. Iyanaga, ed.); Japan Society for the Promotion of Science, Tokyo, 1977, 201–212.

DEPARTAMENTO DE MATEMÁTICA, P. UNIVERSIDAD CATÓLICA DE CHILE, CASILLA 306, SANTIAGO 22, CHILE

Current address: Mathematics Department, 202 Mathematical Sciences Bldg., University of Missouri Columbia, MO 65211, USA

E-mail address: vactn7@mail.missouri.edu

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDAD DE CHILE, CASILLA 653, SANTIAGO 1, CHILE *E-mail address:* friedman@uchile.cl