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DISCREPANCIES OF PRODUCTS OF ZETA-REGULARIZED
PRODUCTS

Victor Castillo-Garate and Eduardo Friedman

Abstract. Zeta-regularized products ̂

∏

mam are known not to commute with finite

products, so one studies the discrepancy Fn given by

exp(Fn) :=

̂

∏

m

(

∏n
j=1 am,j

)

∏n
j=1

(

̂

∏

mam,j

) .

For a rather general class of products, associated to polynomials Pj in several vari-
ables, we show that the discrepancy Fn(P1, . . . , Pn) of n products is a sum of pairwise
contributions F2(Pi, Pj). Namely,

⎛

⎝

n
∑

j=1

deg Pj

⎞

⎠ Fn(P1, . . . , Pn) =
∑

1≤i<j≤n

(deg Pi + deg Pj)F2(Pi, Pj).

Thus, there are no higher interactions behind the non-commutativity.

1. Introduction

The zeta-regularized product ̂

∏

mam is an often useful substitute for the divergent
product

∏

m am [JL]. If the Dirichlet series f(s) :=
∑

m a−s
m converges for Re(s) � 0

and has an analytic continuation to s = 0, one defines ̂

∏

mam := exp(−f ′(0)). It
has been known since at least the work of Shintani [Sh] in the 1970’s that taking
regularized products does not commute with finite products, i.e., in general

(1.1)
̂

∏

m
(am · bm) �=

(

̂

∏

m
am

)

·
(

̂

∏

m
bm

)

.

Nonetheless, both sides of this non-equality seem related, since in all known examples
their ratio is far simpler than either side [Sh, KW, FR, Mi, DF]. For example, when am

and bm are given by positive polynomials of degree one in two variables, Shintani [Sh]
and Mizuno [Mi] showed that this ratio is the exponential exp(F ) of a rational function
F in the coefficients of the polynomials and in the logarithms of these coefficients. In
contrast, the right-hand side of (1.1) is a product of two Barnes double Γ-functions
[Ba].

Given n zeta-regularized products ̂

∏

mam,j (1 ≤ j ≤ n) we can define the discrep-
ancy Fn measuring the non-commutativity of the process of regularization with that
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of taking finite products, namely

exp(Fn) :=
̂

∏

m

(

∏n
j=1 am,j

)

∏n
j=1

(

̂

∏

mam,j

) .

To prove properties of Fn we have to make some assumptions on the am,j ensuring
the meromorphic continuation of

∑

m a−s
m,j and regularity at s = 0.

The first study of continuations of rather general Dirichlet series seems to be
Mellin’s [Me]. Its rather informal style was put on a firm basis by Mahler [Ma],
who assumed that am = P (m) is the value of a polynomial P in r positive integer
variables m = (m1, m2, . . . , mr) ∈ N

r satisfying.

Mahler’s hypothesis on P [Ma, p. 385, Kl. A]. The polynomial P (x) = P (x1, . . . , xr) ∈
C[x] does not vanish for any x ∈ R

r
≥0 := [0,∞)r. Its homogeneous part of highest

degree Ptop(x) is not constant and vanishes nowhere in R
r
≥0, except for Ptop(0) = 0.

Later authors [Sa, Li, Es, deC] have weakened this assumption, but we shall stay with
Mahler’s hypothesis for simplicity. Since PtopQtop = (PQ)top, if Mahler’s hypothesis
holds for P1, . . . , Pn (with the same r), then it also holds for the product P1 · · ·Pn.

Under his hypothesis, Mahler [Ma, Satz II] showed that

(1.2) ζ(s; P ) :=
∑

m∈Nr
0

P (m)−s (N0 = {0, 1, 2, . . . })

converges for Re(s) > r/ deg P and extends to an entire meromorphic function of s,
analytic at s = 0.1 Here deg P is the total degree of P in its r variables, and the
complex power in (1.2) uses any continuous branch of log P (x) for x ∈ R

r
≥0. Thus we

may define the zeta-regularized product

̂

∏

m∈Nr
0

P (m) := exp(−ζ ′(0; P )) ,

where ζ(s; P ) denotes the meromorphic continuation in s of the right-hand side of
(1.2), and the derivative is taken with respect to s.

Given n polynomials P1, . . . , Pn satisfying Mahler’s hypothesis and having the same
number r of variables, we can define their discrepancy

(1.3) Fn = Fn(P1, . . . , Pn) := −ζ ′(0; P1 · P2 · · ·Pn) +
n

∑

j=1

ζ ′(0; Pj),

where the complex powers are taken so that

(1.4) (P1(m) · P2(m) · · ·Pn(m))−s = (P1(m))−s · (P2(m))−s · · · (Pn(m))−s.

1Mahler actually took the sum in (1.2) only over m ∈ N
r. However, if we set k coordinates of

x = (x1, . . . , xr) equal to 0 (k < r), and consider P = P (x) as a function of the remaining r − k
coordinates, P still satisfies Mahler’s hypothesis (in r − k variables). Hence Mahler’s meromorphic
continuation with a sum over N

r implies the same with a sum over N
r
0. Choosing sums over N

r
0

rather than N
r is better suited to the integral formula (2.10) below.
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In the language of regularized products, (1.3) can be re-written as

exp(Fn) :=
̂

∏

m∈Nr
0

∏n
j=1 Pj(m)

∏n
j=1

̂

∏

m∈Nr
0
Pj(m)

.

We will show that the discrepancy Fn(P1, . . . , Pn) is a weighted sum of pairwise
discrepancies F2(Pi, Pj). Thus, there is no contribution to the discrepancy from
interactions of more than two polynomials.

Theorem 1.1. Let P1, . . . , Pn ∈ C[x] be n polynomials in r variables, all satisfying
Mahler’s hypothesis above. Then

(1.5)

⎛

⎝

n
∑

j=1

deg Pj

⎞

⎠ Fn(P1, . . . , Pn) =
∑

1≤i<j≤n

(deg Pi + deg Pj)F2(Pi, Pj),

where Fn(P1, P2, . . . , Pn) is defined by (1.3).

Of course, the (tacit) branch of log Pj used in either side of (1.5) must be the same.
In Section 2.1, we reduce the theorem to an analogous one for the zeta-integral

discrepancy, namely,

(1.6)

⎛

⎝

n
∑

j=1

deg Pj

⎞

⎠ In(P1, . . . , Pn) =
∑

1≤i<j≤n

(deg Pi + deg Pj)I2(Pi, Pj),

where

In(P1, . . . , Pn) := −Z ′(0; P1 · P2 · · ·Pn) +
n

∑

j=1

Z ′(0; Pj),

Z(s; P ) :=
∫

x∈Rn
+

P (x)−s dx (Re(s) > r/ deg P ) .

This reduction uses an integral formula that relates ζ(s; P [a]) to Z(s; P [a]), where
P [a](x) := P (a + x). In Section 2.2, we prove (1.6) for n monic polynomials Pj(ρ) =
ρ + aj of degree 1 in one variable ρ. In Section 2.3, we apply an identity for the value
Z(0; P1 · · ·Pn) and formal properties of the discrepancy to deduce, from the degree
1 case proved in Section 2.2, identity (1.6) for all polynomials in one variable. In
Section 2.4, we conclude the proof, using spherical coordinates to deduce (1.6) from
the one-variable case proved in Section 2.3.

It is worth remarking that throughout the proof we use the existence of the mero-
morphic continuation of ζ(s; P ) and Z(s; P ) [Ma, Satz I, II], but we never need any
explicit formula realizing the continuation. The various properties of the discrepancy
that we use are derived directly by analytic continuation from simple properties of
ζ(s; P ) and Z(s; P ) in the half-plane of convergence.

2. Proof

In this section we prove the theorem given in Section 1. We consider the more general
Dirichlet series

ζ(s; P ; g) :=
∑

m∈Nr
0

g(m)P (m)−s (Re(s) > (r + deg g)/ deg P ) ,
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and corresponding zeta integrals

Z(s; P ; g) :=
∫

x∈Rr
≥0

g(x)P (x)−s dx (Re(s) > (r + deg g)/ deg P ) ,(2.1)

where g ∈C[x] is an arbitrary polynomial in r≥ 1 variables, P ∈C[x] satisfies Mahler’s
hypothesis in r variables (see Section 1), and dx denotes Lebesgue measure on R

r.
Mahler [Ma, Satz I, II] proved

• ζ(s; P ; g) and Z(s; P ; g) converge absolutely in the half-plane Re(s) > (r +
deg g)/ deg P .

• ζ(s; P ; g) and Z(s; P ; g) extend meromorphically to s∈C, with at most sim-
ple poles at rational numbers of the form s = (r + deg g − �)/ deg P , where
� = 0, 1, 2, . . . . However, ζ(s; P ; g) and Z(s; P ; g) are analytic at non-positive
integers s = 0,−1,−2, . . . .

Note that the (possible) pole set does not depend on the coefficients of P or g.
It is not hard to show [FP, p. 6] that the set of polynomials (over C) of degree d and

satisfying Mahler’s hypothesis is open in the space of coefficients of polynomials of
degree d in r variables. Moreover, Mahler’s proof [Ma, Sections 14–15] [FP, Section 3]
shows that, outside the s-pole set just described, ζ(s; P ; g) and Z(s; P ; g) are analytic
not only in s, but also in the coefficients of P (for P near any fixed P0), provided one
chooses the branch of log P (x) continuously both in x ∈ R

r
≥0 and in the coefficients

of P . This will prove important below when we take derivatives and integrals with
respect to the coefficients.

If P1, . . . , Pn satisfy Mahler’s hypothesis (see Section 1) and g ∈ C[x], Mahler’s
analytic continuation to s = 0 allows us to define

(2.2) Fn(P1, . . . , Pn; g) := −ζ ′(0; P1 · P2 · · ·Pn; g) +
n

∑

j=1

ζ ′(0; Pj ; g),

and its zeta-integral analogue,

(2.3) In(P1, . . . , Pn; g) := −Z ′(0; P1 · P2 · · ·Pn; g) +
n

∑

j=1

Z ′(0; Pj ; g).

We stress that branches for the (tacit) logarithms of products are taken to satisfy
(1.4). We shall prove in Section 2.4

(2.4) dn+1Fn(P1, . . . , Pn; g) =
∑

1≤i<j≤n

(di + dj)F2(Pi, Pj ; g),

where

dj := deg Pj (1 ≤ j ≤ n), dn+1 :=
n

∑

j=1

dj ,

which reduces to the theorem in Section 1 when g = 1.
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2.1. Reduction to zeta integrals. We shall show in Proposition 2.1 below that
(2.4) follows from its zeta-integral analogue

(2.5) dn+1In(P1, . . . , Pn; g) =
∑

1≤i<j≤n

(di + dj)I2(Pi, Pj ; g),

where In was defined in (2.3). The proof of (2.5) will occupy Sections 2.2–2.4.
We list some simple properties of In.

In(P, P, . . . , P ; g) = 0,(2.6)

In(P0 · P1, P2, . . . , Pn; g) = In+1(P0, P1, . . . , Pn; g) − I2(P0, P1; g),(2.7)

nIk(P1, . . . , Pk; g) = Ikn(

n times
︷ ︸︸ ︷

P1, . . . , P1, . . . ,

n times
︷ ︸︸ ︷

Pk, . . . , Pk; g),(2.8)

In(P1, . . . , Pn; g) = In(Pτ(1), . . . , Pτ(n); g),(2.9)

where τ is any permutation of {1, . . . , n}. The above are easily proved by direct
substitution into the defining integral (2.1) for Re(s) � 0, extending then to s = 0
by analytic continuation. Of course, the same branch of log Pj is used whenever Pj

is repeated in the above equations.
A nice relation between the Dirichlet series ζ(s; P ; g) and the zeta integral Z(s; P ; g)

emerges if we insert a translation variable into the polynomial P , so we let

P [a](x) := P (a + x) (a ∈ C
r).

Note
(

P [a]
)

top
= Ptop, (PQ)[a] = P [a]Q[a].

If P satisfies Mahler’s hypothesis, then so does P [a] for all a in a sufficiently small ball
B around 0 in C

r [FP, p. 6]. This implies that P [a+t] satisfies Mahler’s hypothesis for
all t ∈ R

r
≥0 and a ∈ B. Moreover, a continuous branch of log P [a+t](x) can be defined

for t, x ∈ R
r
≥0 and a ∈ B.

The relation between zeta-integrals and Dirichlet series we need is
[FP, Proposition 4]

(2.10)
∫

t∈[0,1]r
ζ(s; P [a+t]; g[a+t]) dt = Z(s; P [a]; g[a]) (a ∈ B),

valid for all s outside the possible pole set given by Mahler.2 In particular, (2.10) holds
for s in a neighbourhood of 0. On taking the derivative with respect to s inside the

2Here is a proof of (2.10) for a = 0, which suffices (replace P by P [b] and use (P [b])[t] = P [b+t]).
For Re(s) � 0, uniform convergence gives
∫

t∈[0,1]r
ζ(s; P [t]; g[t]) dt =

∫

t∈[0,1]r

∑

m∈Nr
0

g(t + m)P (t + m)−s dt

=
∑

m∈Nr
0

∫

t∈[0,1]r
g(t + m)P (t + m)−s dt =

∑

m∈Nr
0

∫

t∈m+[0,1]r
g(t)P (t)−s dt

=

∫

Rr
≥0

g(t)P (t)−s dt = Z(s; P ; g),

proving (2.10) for Re(s) � 0. For a general s (outside the possible pole set, which is independent of

t ∈ [0, 1]r), (2.10) follows by analytic continuation.
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integral in (2.10) (which is certainly permissible by the analyticity in s) and setting
s = 0, we have

(2.11)
∫

t∈[0,1]r
Fn(P [a+t]

1 , . . . , P [a+t]
n ; g[a+t]) dt = In(P [a]

1 , . . . , P [a]
n ; g[a]).

Fixing deg Pj and the number r of variables, the map taking the coefficients of
the polynomials P1, . . . , Pn to the discrepancy Fn(P1, . . . , Pn; g) is known to be a
polynomial in the non-top coefficients of the Pj (i. e. in the coefficients not appearing
in any (Pj)top) [DF, p. 37].3 Since the map a → P [a] changes only the non-top
coefficients of P , we conclude that Fn(P [a]

1 , . . . , P
[a]
n ; g[a]) is a polynomial in a (for

a ∈ R
r
≥0, or a in some small ball B around 0 in C

r). By (2.11), the same holds for

In(P [a]
1 , . . . , P

[a]
n ; g[a]).

Proposition 2.1. Let dj := deg Pj , dn+1 :=
∑n

j=1 dj, and assume

(2.12) dn+1In(P1, . . . , Pn; g) =
∑

1≤i<j≤n

(di + dj)I2(Pi, Pj ; g)

for all polynomials P1, . . . , Pn ∈C[x] in r variables satisfying Mahler’s hypothesis, and
for all g ∈ C[x]. Then for all such polynomials,

dn+1Fn(P1, . . . , Pn; g) =
∑

1≤i<j≤n

(di + dj)F2(Pi, Pj ; g).

Proof. For a ∈ R
r
≥0, or a in some small ball B around 0 in C

r, let

H(a) := dn+1Fn(P [a]
1 , . . . , P [a]

n ; g[a]) −
∑

1≤i<j≤n

(di + dj)F2(P
[a]
i , P

[a]
j ; g[a]).

We have to show that H(0) = 0. In fact, we will show that H vanishes identically.
By the preceding remarks, H is a polynomial in a. Moreover, from (2.11) we have

R(H)(a) :=
∫

t∈[0,1]r
H(a + t) dt

= dn+1In

(

P
[a]
1 , . . . , P [a]

n ; g[a]
)

−
∑

1≤i<j≤n

(di + dj)I2

(

P
[a]
i , P

[a]
j ; g[a]

)

= 0,

where the last 0 is by our hypothesis (2.12). However, the C-linear map R : C[a] →
C[a]

R(f)(a) :=
∫

t∈[0,1]r
f(a + t) dt (f ∈ C[a])

is injective, since it leaves the top-degree homogeneous part of the polynomial f
unchanged.4 Hence H(a) = 0 identically. �

3The regularized products in [DF] are actually taken over m ∈ N
r, rather than over m ∈ N

r
0. We

can pass from the former to the latter as we did in our first footnote. Alternatively, in [DF] one
could change the summation set from N

r to N
r
0 everywhere without affecting any proof.

4This implies that R is invertible. In fact, R maps a product of Bernoulli polynomials Bk(a) :=

Bk1 (a1) · · ·Bkr (ar) to the monomial ak := ak1
1 · · · akr

r [FP, Lemma 2.4].
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2.2. Monic polynomials of degree 1 in one variable.

Proposition 2.2. For Pj(ρ) = ρ + aj ∈ C[ρ] (1 ≤ j ≤ n) satisfying Mahler’s hypo-
thesis, h ∈ C[ρ] and n ≥ 2, we have

(2.13) nIn(P1, . . . , Pn; h) = 2
∑

1≤i<j≤n

I2(Pi, Pj ; h),

and

(2.14) nZ(0; P1 · · ·Pn; h) =
n

∑

j=1

Z(0; Pj ; h).

Note that deg Pi + deg Pj = 2, n =
∑n

j=1 deg Pj in this case, so (2.13) will become
our first proved case of (2.5). Formula (2.14) is proved in [FP], but we re-prove it here
for completeness. Mahler’s hypothesis for Pj (see Section 1) in this case is equivalent
to aj /∈ (−∞, 0], but we shall not require this explicitly.

Proof. We first show that if (2.13) holds for one set of branches P−s
j , then it holds

for any other choice ˜Pj(ρ)−s = e2πiskj Pj(ρ)−s for integers kj . Thus, we need to show

n˜In(P1, . . . , Pn; h) − 2
∑

1≤i<j≤n

˜I2(Pi, Pj ; h)(2.15)

= nIn(P1, . . . , Pn; h) − 2
∑

1≤i<j≤n

I2(Pi, Pj ; h),

where we used a ˜ to denote a different choice of branches. Since we can change the
branch of one P� at a time, to prove (2.15) it suffices to do the case where all but one
k� vanish. Say just kj �= 0. Then,

˜Z(s; Pj ; h) = e2πiskj Z(s; Pj ; h), ˜Z(s; P1 · · ·Pn; h) = e2πiskj Z(s; P1 · · ·Pn; h).
(2.16)

Differentiating these equations with respect to s and setting s = 0, we get

In − ˜In = 2πikj (Z(0; P1 · · ·Pn; h) − Z(0; Pj ; h)) .

Now (2.15) follows after a short calculation using (2.14) (which we shall prove below
without using (2.13)).

Hence, for all j we fix the principal branch of log(ρ + aj), i.e., the one for which
limρ→+∞ Im (log Pj(ρ)) = 0. This makes In(P1, . . . , Pn; h) a symmetric function of
the a1, . . . , an (actually, a polynomial, as we shall recall below).

In proving (2.13) we may assume n≥ 3, as (2.13) is trivial for n = 2. For Re(s) � 0,
we have for any three distinct indices i, j, k,

∂3

∂ai∂aj∂ak
(Z(s; P1 · · ·Pn; h))

=
∂3

∂ai∂aj∂ak

∫ ∞

0

h(ρ)
n

∏

�=1

(ρ + a�)−s dρ
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= −s3

∫ ∞

0

h(ρ) ((ρ + ai)(ρ + aj)(ρ + ak))−1
n

∏

�=1

(ρ + a�)−s dρ

= −s3

∫ ∞

0

⎛

⎜

⎜

⎝

h(ρ)
∏

1≤�≤n
� �=i,j,k

(ρ + a�)

⎞

⎟

⎟

⎠

n
∏

�=1

(ρ + a�)−(s+1) dρ

= −s3Z(s + 1; P1 · · ·Pn;˜h), where ˜h(ρ) := h(ρ)
∏

1≤�≤n
� �=i,j,k

(ρ + a�).

By analytic continuation,

(2.17)
∂3

∂ai∂aj∂ak
(Z(s; P1 · · ·Pn; h)) = −s3Z(s + 1; P1 · · ·Pn;˜h).

for all s outside the pole set. Applying ∂
∂s

∣

∣

s=0
to (2.17), and reversing the order of

the derivatives (see the third paragraph in Section 2), we find

∂3

∂ai∂aj∂ak
(Z ′(0; P1 · · ·Pn; h))(2.18)

=
(

−3s2Z(s + 1; P1 · · ·Pn;˜h) − s3Z ′(s + 1; P1 · · ·Pn;˜h)
)

∣

∣

s=0
= 0,

because Z ′(s; P1 · · ·Pn;˜h) can have at most a double pole at s = 1 (recall that all
poles of Z(s; P1 · · ·Pn;˜h) are simple [Ma, Satz I]).

By [DF, Theorem 4], Fn(P1, . . . , Pn; h) is a polynomial in a1, . . . , an. It follows
from the integral formula (2.11) that

ιn(a1, . . . , an) := In(P1, . . . , Pn; h).

is also a polynomial in a1, . . . , an (depending on h, but h is fixed in this proof). From
(2.18) we see that ιn is a sum of monomials containing products of at most two distinct
variables ai, aj . Thus ιn can be uniquely written as

ιn(a1, . . . , an) = Cn +
n

∑

i=1

fi,n(ai) +
∑

1≤i<j≤n

pi,j,n(ai, aj),

where Cn is a constant, fi,n is a polynomial in one variable with no constant term, and
pi,j,n is a polynomial in two variables with pi,j,n(0, a) = 0 = pi,j,n(a, 0) for all a ∈ C.
But ιn(a1, . . . , an) is symmetric in the a�, by (2.9). Since the above representation of
the polynomial ιn is unique, we must have

ιn(a1, . . . , an) = Cn +
n

∑

i=1

fn(ai) +
∑

1≤i<j≤n

pn(ai, aj),
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i.e., fi,n = fn and pi,j,n = pn independently of i, j. But fn and pn have no constant
term, and ιn(a1, a1, . . . , a1) = 0 by (2.6), so Cn = 0 and

fn(a) = − (n − 1)pn(a, a)
2

(a ∈ C)(2.19)

ιn(a1, . . . , an) =
n

∑

i=1

fn(ai) +
∑

1≤i<j≤n

pn(ai, aj).(2.20)

Let

(2.21) Hn(a, b) := pn(a, b) − pn(a, a) + pn(b, b)
2

,

and compute

∑

1≤i<j≤n

Hn(ai, aj) =
∑

1≤i<j≤n

pn(ai, aj) − 1
2

∑

1≤i<j≤n

(pn(ai, ai) + pn(aj , aj))

=
∑

1≤i<j≤n

pn(ai, aj) − 1
2

n
∑

i=1

(n − 1)pn(ai, ai)

=
∑

1≤i<j≤n

pn(ai, aj) +
n

∑

i=1

fn(ai) = ιn(a1, . . . , an),

where in the last line we used (2.19) and (2.20). Thus,

(2.22) ιn(a1, . . . , an) =
∑

1≤i<j≤n

Hn(ai, aj), Hn(a, a) = 0,

the second equality following from (2.21). From (2.8) and (2.22) we obtain

(2.23) nI2(a1, a2; h) = ι2n(
n times

︷ ︸︸ ︷

a1, . . . , a1,

n times
︷ ︸︸ ︷

a2, . . . , a2) = n2H2n(a1, a2),

since H2n(a1, a1) = 0 = H2n(a2, a2). Using (2.8), (2.22) and (2.23) we get

ιn(a1, . . . , an) =
1
2
ι2n(a1, a1, a2, a2, . . . , an, an)

=
1
2

∑

1≤i<j≤n

4H2n(ai, aj ; h) =
2
n

∑

1≤i<j≤n

I2(ai, aj ; h),

proving (2.13).
The proof of (2.14), to which we now turn, is very similar. For distinct i and j we

have

∂2

∂ai∂aj
(Z(s; P1 · · ·Pn; h)) = s2Z(s + 1; P1 · · ·Pn;̂h),
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where ̂h(ρ) := h(ρ)
∏

1≤�≤n
� �=i,j

(ρ + a�). Setting s = 0 we find

∂2

∂ai∂aj
(Z(0; P1 · · ·Pn; h)) = 0.

Since [DF, Remark 3, pp. 40–41] ζ(0; P1 · · ·Pn; h) is a polynomial in the a�, so is
Z(0; P1 · · ·Pn; h) (use (2.10) with s = 0). Hence

Z(0; P1 · · ·Pn; h) = cn +
n

∑

i=1

qi,n(ai),

where cn is a constant and qi,n is a polynomial in one variable with no constant term.
By symmetry in the ai

(2.24) Z(0; P1 · · ·Pn; h) =
n

∑

i=1

qn(ai),

where qn(a) := qi,n(a) + cn/n, for any i.5 Taking a = a1 = · · · = an in (2.24), so
P = P1 = · · · = Pn, we have

Z(0; P ; h) = Z(s; P ; h)
∣

∣

s=0
= Z(ns; P ; h)

∣

∣

s=0
= Z(s; Pn; h)

∣

∣

s=0

= Z(0; Pn; h) =
n

∑

j=1

qn(a) = nqn(a).

In view of (2.24), we are done proving (2.14). �

2.3. Polynomials in one variable. First we assume that the polynomials are
monic.

Proposition 2.3. Let P1, . . . , Pn ∈ C[ρ] be monic polynomials in one variable satis-
fying Mahler’s hypothesis, and let h ∈ C[ρ]. Then

(2.25) dn+1In(P1, . . . , Pn; h) =
∑

1≤i<j≤n

(di + dj)I2(Pi, Pj ; h),

and

(2.26) dn+1Z(0; P1 · · ·Pn; h) =
n

∑

j=1

djZ(0; Pj ; h),

where dj := deg Pj , dn+1 :=
∑n

j=1 dj.

Proof. Since Pj is a monic polynomial in one variable, it factors as Pj =
∏dj

j=1 Lj,i,
where the Lj,i ∈ C[ρ] are monic of degree 1 and satisfy Mahler’s hypothesis. To prove

5By (2.16), Z(0; P ; h) is independent of the branch of log P chosen. Thus the symmetry in the

aj of Z(0; P1 · · ·Pn; h) is clear.
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(2.26) note

dn+1Z

⎛

⎝0;
n

∏

j=1

Pj ; h

⎞

⎠ = dn+1Z

⎛

⎜

⎜

⎜

⎝

0;
∏

1≤j≤n

1≤i≤dj

Lj,i; h

⎞

⎟

⎟

⎟

⎠

=
∑

1≤j≤n

1≤i≤dj

Z(0; Lj,i; h)

=
n

∑

j=1

⎛

⎝

dj
∑

i=1

Z(0; Lj,i; h)

⎞

⎠ =
n

∑

j=1

djZ(0; Pj ; h),

where the second and last equalities used (2.14).
We now turn to (2.25), which we will prove by induction on

k := dn+1 − n =
n

∑

j=1

(dj − 1) ≥ 0.

If k = 0, then all dj = 1 and the proposition reduces to the previous one. Thus we
assume (2.25) for all n and all dn+1 − n < k. For k ≥ 1, some dj > 1. By symmetry,
we can suppose d1 > 1, so we can factor the monic one-variable polynomial P1 = LQ,
where L and Q are also monic, satisfy Mahler’s hypothesis, and deg L = 1. We
calculate, applying the inductive hypothesis to both In+1(L, Q, P2, . . . , Pn; h) and
I3(L, Q, Pj ; h) (2 ≤ j ≤ n), dropping now the fixed polynomial h from the notation,

dn+1In(P1, . . . , Pn) −
∑

1≤i<j≤n

(di + dj)I2(Pi, Pj)

= dn+1 (In+1(L, Q, P2, . . . , Pn) − I2(L, Q)) (use (2.7))

−
∑

2≤i<j≤n

(di + dj)I2(Pi, Pj) −
n

∑

j=2

(d1 + dj)I2(LQ, Pj)

= d1I2(L, Q) +
n

∑

j=2

(1 + dj)I2(L, Pj) +
n

∑

j=2

(d1 − 1 + dj)I2(Q, Pj) (induction)

− dn+1I2(L, Q) −
n

∑

j=2

(d1 + dj) (I3(L, Q, Pj) − I2(L, Q))

=
n

∑

j=2

(d1I2(L, Q) + (1 + dj)I2(L, Pj) + (d1 − 1 + dj)I2(Q, Pj))

−
n

∑

j=2

(1 + (d1 − 1) + dj)I3(L, Q, Pj)

⎛

⎝recall dn+1 :=
n

∑

j=1

dj

⎞

⎠

=
n

∑

j=2

(

d1I2(L, Q) + (1 + dj)I2(L, Pj) + (d1 − 1 + dj)I2(Q, Pj) (induction)

− d1I2(L, Q) − (1 + dj)I2(L, Pj) − (d1 − 1 + dj)I2(Q, Pj)
)

= 0,

as claimed. �
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Now we drop the assumption that the Pj be monic.

Proposition 2.4. Let P1, . . . , Pn ∈ C[ρ] be polynomials in one variable satisfying
Mahler’s hypothesis, and let h ∈ C[ρ]. Then

(2.27) dn+1In(P1, . . . , Pn; h) −
∑

1≤i<j≤n

(di + dj)I2(Pi, Pj ; h) = 0,

and

(2.28) dn+1Z(0; P1 · · ·Pn; h) =
n

∑

j=1

djZ(0; Pj ; h),

where dj := deg Pj , dn+1 :=
∑n

j=1 dj.

Proof. If P̃ = λP , where P ∈ C[ρ] satisfies Mahler’s hypothesis and λ ∈ C−{0}, then

(2.29) Z(s; P̃ ; h) = λ−sZ(s; P ; h),

provided the branches are chosen so that P̃ (x)−s = λ−sP (x)−s for x ∈ R≥0. Hence
Z(0; P̃ ; h) = Z(0; P ; h), so (2.28) follows from the monic case proved in the previous
proposition.

To prove (2.27), we first show that its left-hand side is unchanged if one of the Pj

is replaced by P̃j = λPj . Say j = 1, to simplify notation. From (2.29) and definition
(2.3) of In, we find

In(P1, P2, . . . , Pn; h) − In(P̃1, P2, . . . , Pn; h) = (Z(0; P1 · · ·Pn; h) − Z(0; P1; h)) log λ.

This (also applied to I2(P̃1, Pj ; h)), (2.28) and some calculation show (dropping h)

dn+1In(P1, P2, . . . , Pn) − 2
∑

1≤i<j≤n

(di + dj)I2(Pi, Pj)

= dn+1In(P̃1, P2, . . . , Pn) − 2
∑

2≤i<j≤n

(di + dj)I2(Pi, Pj)

− 2
n

∑

j=2

(d1 + dj)I2(P̃1, Pj).

Thus, starting with non-monic Pj ’s on the left-hand side of (2.27), we can replace
them one by one by monic polynomials P̃j without changing the value of the left-hand
side of (2.27). Once they are all monic we are done by Proposition 2.3. �

2.4. Polynomials in several variables. In this subsection, we pass from one to
several variables and thereby conclude the proof. Let P ∈ C[x] be a polynomial in r
variables satisfying Mahler’s hypothesis, and let

Sr−1
+ :=

⎧

⎨

⎩

σ ∈ R
r
≥0

∣

∣

∣

r
∑

j=1

σ2
j = 1

⎫

⎬

⎭

.
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Spherical coordinates (ρ, σ) on R
r
≥0 (so x = ρσ, dx = ρr−1 dρ dσ) allow us to write for

Re(s) � 0

Z(s; P ; g) :=
∫

x∈Rr
≥0

g(x)P (x)−s dx

=
∫

σ∈Sr−1
+

∫ ∞

ρ=0

ρr−1g(ρσ)P (ρσ)−s dρ dσ =
∫

σ∈Sr−1
+

Z(s; Pσ; gσ,r) dσ,

where the one-variable polynomials Pσ and gσ,r are defined by

(2.30) Pσ(ρ) := P (ρσ), gσ,r(ρ) = ρr−1g(ρσ).

For ρ �= 0, (Pσ)top(ρ) = ρdeg P Ptop(σ) �= 0 by Mahler’s hypothesis, so Pσ satisfies
Mahler’s hypothesis in one variable. Also, the degree in ρ of Pσ satisfies

(2.31) deg Pσ = deg P (σ ∈ Sr−1
+ ),

and deg gσ,r ≤ r − 1 + deg g. Thus, the set of poles of Z(s; Pσ; gσ,r) is contained in
the possible pole set of Z(s; P ; g) given by Mahler (see the second paragraph of
Section 2). By analytic continuation we therefore have for all s outside this set
of possible poles

(2.32) Z(s; P ; g) =
∫

σ∈Sr−1
+

Z(s; Pσ; gσ,r) dσ.

Taking the s-derivative at s = 0 inside the integral gives

(2.33) In(P1, . . . , Pn; g) =
∫

σ∈Sr−1
+

In ((P1)σ, . . . , (Pn)σ; gσ,r) dσ.

Theorem 2.1. Let P1, . . . , Pn ∈ C[x] be n polynomials in r variables, all satisfying
Mahler’s hypothesis (see Section 1), and let g ∈ C[x]. Then

⎛

⎝

n
∑

j=1

deg Pj

⎞

⎠ Fn(P1, . . . , Pn; g) =
∑

1≤i<j≤n

(deg Pi + deg Pj)F2(Pi, Pj ; g),

where Fn(P1, . . . , Pn; g) is defined by (2.2).

Proof. As before, write dj := deg Pj , dn+1 :=
∑n

j=1 dj . By Proposition 2.1, to prove
the theorem it suffices to prove

(2.34) dn+1In(P1, . . . , Pn; g) =
∑

1≤i<j≤n

(di + dj)I2(Pi, Pj ; g).

For a fixed σ ∈ Sr−1
+ , let (Pj)σ be as in (2.30). Proposition 2.4 and (2.31) give

dn+1In ((P1)σ, . . . , (Pn)σ; gσ,r) =
∑

1≤i<j≤n

(di + dj)I2 ((Pi)σ, (Pj)σ; gσ,r) .

In view of (2.33), integrating over σ ∈ Sr−1
+ yields (2.34). �
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variables et applications en théorie analytique des nombres, Ann. Inst. Fourier 47 (1997),

429–483.
[FP] E. Friedman and A. Pereira, Special values of Dirichlet series and zeta integrals, Int. J.

Number Theory 8 (2012), 1–18.

[FR] E. Friedman and S. Ruijsenaars, Shintani–Barnes zeta and gamma functions, Adv. Math.
187 (2004), 362–395.

[JL] J. Jorgenson and S. Lang, Basic analysis of regularized series and products, Springer Lecture
Notes in Math. 1425, Springer, Berlin, 1993.

[KW] N. Kurokawa and M. Wakayama, A generalization of Lerch’s formula, Czechoslovak Math.
J. 54 (2004), 941–947.

[Li] B. Lichtin, Generalized Dirichlet series and b-functions, Compos. Math. 65 (1988), 81–120.
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