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MULTILINEAR EMBEDDING ESTIMATES FOR THE
FRACTIONAL LAPLACIAN

William Beckner

Abstract. Three novel multilinear embedding estimates for the fractional Laplacian
are obtained in terms of trace integrals restricted to the diagonal. The resulting sharp

inequalities may be viewed as extensions of the Hardy–Littlewood–Sobolev inequality,
the Gagliardo–Nirenberg inequality and Pitt’s inequality.

Sobolev embedding estimates are a central tool for analysis on geometric manifolds.
Natural questions arise with the study of multilinear operators and product mani-
folds that incorporate intrinsic geometric symmetry. New realizations for the frac-
tional Laplacian have emerged as critical elements for resolving challenging issues in
nonlinear analysis and conformal geometry. Development of a rigorous framework
for central problems in mathematical physics, including the structure and stability
of matter and the dynamics of many-body interaction, has suggested new applica-
tions for estimates that measure fractional smoothness. Direct methods of approach
have proved highly successful, but determining intrinsic connections with the over-
all framework of Sobolev embedding and fractional integrals is important and useful
to gain new insight and increased understanding for the analytical structure. The
effort to calculate optimal constants for embedding estimates and convolution inte-
grals underlines not only intrinsic features for exact model problems and encoded
geometric information, but lays the groundwork for calculating precise lower-order
effects (see [9, 19]). Motivated by current interest to model the many-body dynamics
of a Bose gas using the Gross–Pitaevskii hierarchy of density matrices, three new
results are given for multilinear embeddings for the fractional Laplacian on R

n that
can be viewed as separate extensions of the Hardy–Littlewood–Sobolev inequality,
the Gagliardo–Nirenberg inequality and Pitt’s inequality for the Fourier transform
with weights. The simplicity of the argument underscores both the naturalness and
the novelty of the result. The context for these inequalities has two explicit themes:
(1) the development of the Gross–Pitaevskii hierarchy to describe multi-particle dy-
namics requires control of multilinear smoothing estimates where the evident natural
question is to determine the analytic control that the smoothing estimates give in
terms of physical measures such as trace integrals (see the operators Sj and Rj and
the iterated multiplier argument in [22]); and (2) to determine the behavior of convo-
lution integrals and Young’s inequality for multilinear product decomposition of the
manifold in the context of Riesz potentials and Stein–Weiss fractional integrals.
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Consider the convolution integral with multi-component decomposition

F (w) =
∫

Rn×···×Rn

G(w − y) H(y) dy , w ∈ R
mn,

(1) “diagonal trace restriction”:

F (w) � F (x, . . . , x︸ ︷︷ ︸
m slots

) ≡ F (x) , x ∈ R
n,

(2) “multilinear products”:

F (x) =
∫

Rmn

∏
gk(x − yk) H(y1, . . . , ym) dy,

the objective is to determine how the components of G and the nature of H control
the size of F . An important point to emphasize initially is that only for special cases
will the analysis reduce to an iterative or product function characterization. Here
the gk’s will be taken as inputs, including Riesz potentials, so the multilinear map is
given by

H ∈ Lp(Rmn) � F ∈ Lq(Rn).

A relatively simple lemma that characterizes this framework can be easily obtained
from the classical Young’s inequality.

Lemma 1. For 1 ≤ p, q < ∞ with 1 < sk < p′ and m/p′ + 1/q =
∑

1/sk (primes
denote dual exponents, 1/p + 1/p′ = 1)

‖F‖Lq(Rn) ≤ C
∏

‖gk‖Lsk (Rn)‖H‖Lp(Rmn).

Proof. Consider the dual problem[ ∫ ∣∣∣
∫ ∏

k

gk(x − yk) h(x) dx
∣∣∣p

′

dy

]1/p′

≤ C
∏

‖gk‖Lsk (Rn)‖h‖Lq′ (Rn).

Choose the sequence βk = q/sk − q/p′ with
∑

βk = 1 and apply Hölder’s inequality
on the left-hand side. �

Remark 1. (1) Lorentz-space extensions follow using interpolation and Hardy–
Littlewood–Sobolev arguments. (2) In the special case where H is radial decreasing
and so bounded above by a multiple of |y|−mn/p which allows a splitting of H by
non-uniform inverse powers of |yk|, Kenig and Stein [20] show that the allowed range
of Lebesgue exponents is full for the indices sk and that the index q can go below one.
This latter result is not possible for the general case. (See their Lemma 7 on page 7 of
[20].) (3) The classical notion of trace is expanded here to include any integral which
is calculated over the diagonal restriction for variables. (4) In the special case where
p = q = 2, the optimal value for the constant C is determined by∫

Rn

∏
(gk ∗ gk)(x) dx.

(5) More general versions for multilinear fractional integral kernels are treated in
Christ [16], and in the conformally invariant setting by Beckner [4] (see Theorem 6 on
pages 48–49). (6) A formative treatment for rigorously describing dynamical processes
with many-body interaction in macroscopic systems appears in Spohn [25]. (7) Trace
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integrals have an intrinsic analytic character which allows facility in making exact
calculations. Physical motivation for analytic adaptation of the trace integral is
described in [1, 25]. But the results described here are natural since fractional smooth-
ness determines that restriction to a linear sub-variety is well defined (see Chapter 6
in [27], Theorem 11 in [12], the main theorem in [26] and discussion on page 32 in
[24]). Implicit recognition of this structure underlies one argument in [22].

The square-integrable paradigm that represents the motivating step for the
arguments developed here is the following representation for the Hardy–Littlewood–
Sobolev inequality:

Lemma 2. For f ∈ S(Rn), 1 < p < 2 and α = n(1/p − 1/2)
∫

Rn

|f |2 dx ≤ Cp

[ ∫
Rn

|(−Δ/4π2)α/2f |p dx

]2/p

,

Cp = πn/p−n/2
[
Γ(n/p′)/Γ(n/p)

][
Γ(n)/Γ(n/2)

]2/p−1

.

This lemma is an equivalent formulation using the fractional Laplacian for the sharp
Hardy–Littlewood–Sobolev inequality calculated by Lieb [23].

Consider m copies of R
n and let f be in the Schwartz class S(Rmn). Define

(Ff)(x) = f̂ (x) =
∫

e2πixyf(y) dy.

Observe that on R
n with 0 < λ < n

F[|x|−λ
]

= π−n/2 + λ

[
Γ
(

n−λ
2

)
Γ
(

λ
2

)
]
|x|−(n−λ).

For f ∈ S(Rmn), Δk = standard Laplacian on R
n in the variable xk, 0 < αk < n,

α =
∑

αk for k = 1 to m and (m − 1)n < α < mn, define

Λ(f ; α1, . . . , αm) =
∫

Rn×···×Rn

∣∣∣
m∏

k=1

(−Δk/4π2)αk/4f
∣∣∣2 dx1 . . . dxm

=
∫

Rn×···×Rn

m∏
k=1

|ξk|αk |f̂ |2 dξ1 . . . dξm.

Theorem 1 (Pitt’s inequality). For f ∈ S(Rmn) and n − β = mn − α
∫

Rn

|x|−β |f( x, . . . , x︸ ︷︷ ︸
m slots

)|2 dx ≤ Cβ Λ(f ; α1, . . . , αm),(1)

Cβ = π−(m−1)n/2+α
m∏

k=1

[
Γ
(

n−αk

2

)
Γ
(

αk

2

)
] [

Γ
(

β
2

)
Γ
(

n−β
2

)
] [

Γ
(

n−β
4

)
Γ
(

n+β
4

)
]2

.

The constant Cβ is sharp and no extremals exist for this inequality.
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Theorem 2 (Hardy–Littlewood–Sobolev inequality). For f ∈ S(Rmn) and mn−α =
2n/q

⎡
⎣
∫

Rn

|f( x, . . . , x︸ ︷︷ ︸
m slots

)|q dx

⎤
⎦

2/q

≤ Fα Λ(f ; α1, . . . , αm),(2)

Fα = πα/2
m∏

k=1

[
Γ
(

n−αk

2

)
Γ
(

αk

2

)
] [

Γ
(α−(m−1)n

2

)
Γ
(
n − mn−α

2

)
] [

Γ(n)
Γ
(

n
2

)
]α−(m−1)n

n

.

The constant Fα is sharp and extremals are given by

f(x1, . . . , xm) =
∫

Rn

m∏
k=1

|xk − w|−(n−αk/2)|1 + w2|−n/q dw

up to conformal automorphism of the factor |1 + w2|−n/q.

Remark 2. If m = 1, the sharp forms of the classical Pitt’s inequality and the
Hardy–Littlewood–Sobolev inequality are recovered. By choosing f to be a product
function, special cases of the general Pitt’s inequality and the Stein–Weiss theorem
can be obtained without sharp constants (see Appendix in [8]). For both inequalities,
the term on the left-hand side can be viewed as “restriction to the diagonal”. Simple
iteration allows extension of these estimates to diagonal restriction traces on subblocks
of the manifold R

mn.

Proof of Theorem 1. Inequality (1) is equivalent to the multilinear fractional integral
inequality:

∫
Rn

∣∣∣
∫

Rmn

m∏
k=1

|x − yk|−(n−αk/2)f(y1, . . . , ym) dy
∣∣∣2 |x|−β dx

≤ Dβ

∫
Rmn

|f(x1, . . . , xm)|2 dx,

Cβ = π−mn+α
m∏

k=1

[
Γ
(

2n−αk

4

)
Γ
(

αk

4

)
]2

Dβ .

By L2 duality this is equivalent to
∫

Rmn

∣∣∣
∫

Rn

m∏
k=1

|yk − x|−(n−αk/2)|x|−β/2g(x) dx
∣∣∣2 dy ≤ Dβ

∫
Rn

|g(x)|2 dx.

Using rearrangement arguments this inequality is reduced to non-negative radial de-
creasing functions g(x). The left-hand side becomes

∫
Rn×Rn×Rmn

g(x)|x|−β/2
m∏

k=1

|yk − x|−(n−αk/2)|

×
m∏

k=1

|yk − w|−(n−αk/2)|w|−β/2g(w)dx dw dy.
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Integrating out the yk variables∫
Rn×Rn

g(x)|x|−β/2|x − w|−mn+α|w|−β/2g(w) dx dw ≤ Eβ

∫
Rn

|g(x)|2 dx,

Cβ = π−mn/2+α
m∏

k=1

Γ
(n − αk

2

)/
Γ
(αk

2

)
Eβ .

Since mn − α = n − β, this becomes the classical Stein–Weiss fractional integral:∫
Rn×Rn

g(x)|x|−β/2|x − w|−(n−β)|w|−β/2g(w) dx dw ≤ Eβ

∫
Rn

|g(x)|2 dx

with

Eβ = πn/2

[
Γ
(

β
2

)
Γ
(

n−β
2

)
] [

Γ
(

n−β
4

)
Γ
(

n+β
4

)
]2

.

See Theorem 3 in [7] and also [5]. Then

Cβ = π−(m−1)n+α
m∏

k=1

Γ
(

n−αk

2

)
Γ
(

αk

2

)
[

Γ
(

β
2

)
Γ
(

n−β
2

)
] [

Γ
(

n−β
4

)
Γ
(

n+β
4

)
]2

with mn − α = n − β.

Remark 3. For notation, the Lebesgue measure dx incorporates the dimension of
the underlying domain. Observe that as β → 0 the constant Cβ is unbounded so that
the requirement β > 0 is strict. This reflects that the multilinear estimate is fully at
the L2 spectral level where one would not expect homogeneous Sobolev embedding
without weights. The constant Cβ is sharp and no extremals exist which follows from
reduction to the one variable case in R

n. Note that if f is a product function, for
example f(x) =

∏
u(xk), then the inequality reduces to the case of fractional Sobolev

embedding on R
n where the index is an even integer and one can set β = 0. But the

calculation here provides no information on the constant in that case. For large m,
some αk must approach n and so again the constant will be unbounded. Iterative
methods are not effective which indicates that the results are clearly multidimensional.
The appearance of the factors Γ(αk/2) in the denominator of the constant Cβ raises
the question of how this constant will behave as one of the αk’s goes to zero. Observe
that since αk =

∑′(n − α�) + β is represented as a sum of positive terms with the
sum taken for � 	= k, each term must also approach zero and in such case Cβ → ∞.

Proof of Theorem 2. Inequality (2) is equivalent to the multilinear fractional integral
inequality:

[ ∫
Rn

∣∣∣
∫

Rmn

m∏
k=1

|x − yk|−(n−αk/2)f(y1, . . . , ym) dy
∣∣∣qdx

]2/q

≤ Gα

∫
Rmn

|f(x1, . . . , xm)|2 dx,

Fα = π−mn+α
m∏

k=1

[
Γ( 2n−αk

4 )
Γ(αk

4 )

]2

Gα.



180 WILLIAM BECKNER

By duality this is equivalent to∫
Rmn

∣∣∣
∫

Rn

m∏
k=1

|yk − x|−(n−αk/2)g(x) dx
∣∣∣2 dy ≤ Gα

[ ∫
Rn

|g(x)|p dx

]2/p

,

where 1
p + 1

q = 1, 1 < p < 2 and mn − α = 2n/q. As with the calculation for
Theorem 1, the left-hand side becomes∫

Rn×Rn×Rmn

g(x)
m∏

k=1

|yk − x|−(n−αk/2)
m∏

k=1

|yk − w|−(n−αk/2)g(w) dx dw dy.

Integrating out the yk variables∫
Rn×Rn

g(x)|x − w|−mn+αg(w) dx dw ≤ Hα

[ ∫
Rn

|g(x)|p dx

]2/p

,

Fα = π−mn/2+α
m∏

k=1

Γ
(

n − αk

2

)/
Γ

(αk

2

)
Hα.

Since mn−α = 2n/q, this becomes the classical Hardy–Littlewood–Sobolev inequality:
∫

Rn×Rn

g(x)|x − w|−2n/qg(w) dx dw ≤ Hα

[ ∫
Rn

|g(x)|p dx

]2/p

with

Hα = πn/q
Γ
(

n
p − n

2

)

Γ
(

n
p

)
⎡
⎣ Γ(n)

Γ
(

n
p

)
⎤
⎦

2/p−1

.

Then

Fα = πα/2
m∏

k=1

[
Γ
(

n−αk

2

)
Γ
(

αk

2

)
] [

Γ
(α−(m−1)n

2

)
Γ
(
n − mn−α

2

)
] [

Γ(n)
Γ
(

n
2

)
]α−(m−1)n

n

.

Extremal functions are determined by the classical inequality. �
The Stein–Weiss lemma (see Appendix in [8]) allows the trace inequality of Theo-

rem 1 to be formulated in more general terms:

Theorem 3 (Stein–Weiss trace). For f ∈ S(Rmn) consider

F (x) = |x|−β/2

∫
Rmn

m∏
k=1

Kk(x, yk)f(y1, . . . , ym) dy1, . . . , dym,

where {Kk(x, y)} is a family of non-negative kernels defined on R
n ×R

n, each kernel
being continuous on any domain that excludes the diagonal, homogeneous of degree
−σk (0 < σk < n), Kk(δu, δv) = δ−σkKk(u, v), and Kk(Ru, Rv) = Kk(u, v) of any
R ∈ SO(n); 0 < β < n with 2σ + β − mn = n where σ =

∑
σk, Then∫

Rn

|F (x)|2 dx ≤ Aσ

∫
Rmn

|f(y1, . . . , ym)|2 dy,(3)

Aσ =
∫

Rn

|x|− β
2 −n

2

∏
k

[ ∫
Rn

Kk(x, y)Kk(ξ1, y) dy

]
dx

with ξ1 a unit vector in the first coordinate direction.
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Proof. Apply the argument used for the proof of Theorem 1 and observe that the
kernel

K̂(x, w) = |x|−β/2|w|−β/2
∏
k

∫
Rn

Kk(x, y)Kk(w, y) dy

satisfies the requirements of the Stein–Weiss lemma. The requirement for this trace
estimate to hold is that Aσ is finite. �

In looking to understand how fractional smoothness controls size at the spectral
level, and taking into account the dual representation given by the Fourier transform in
balancing differentiability versus decay at infinity, the Stein–Weiss integral expresses
a realization of the uncertainty principle

(4) c

∫
Rn

|f |2 dx ≤
∫

Rn

|(−Δ/4π2)α/4|x|α/2f(x)|2 dx.

An asymptotic argument gives directly the classical inequality. More broadly, this
principle extends to include restriction to a k-dimensional linear sub-variety

(5) d

∫
Rk

|Rf |2 dx ≤
∫

Rn

∣∣∣(−Δ/4π2)α/4|x|β/2f(x)
∣∣∣2 dx,

where n − α = k − β, n ≥ k > β > 0 and

d = π−α Γ(α
2 )

Γ(β
2 )

[
Γ(k+β

4 )

Γ(k−β
4 )

]2

.

Using the principle of the Stein–Weiss trace formulated above, multilinear trace inte-
gral embedding estimates described here can be extended to include iterated multipli-
cation of fractional powers with successive alternation between the function side and
the Fourier transform side where the optimal constants will be given as closed-form
integrals. Although the integral kernel does not have translation invariance on R

n,
dilation invariance transforms the problem to repeated convolution integrals on the
multiplicative group R+ (see for example the section on iterated Stein–Weiss integrals
in [7]) which facilitates the closed-form computation of sharp constants.

To illustrate this framework and outline the strategy needed to treat iterated mul-
tilinear embedding forms

∫
Rn×···×Rn

∣∣∣ ∏
|xk|ρk/2

∏
j

[ ∏
k

(−Δk/4)αjk/4|xk|βjk/2
]
f
∣∣∣2dx1 · · · dxm,

the following theorem includes the critical steps:

Theorem 4 (iterated Stein–Weiss). For f ∈ S(Rmn), 0 < αk < n, α =
∑

αk,
0 < βk < n, β =

∑
βk, 0 < ρk < n, ρ =

∑
ρk and n − β − ρ = mn − α with
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0 < β + ρ < n

∫
Rn

|f(x, · · · , x︸ ︷︷ ︸
m slots

)|2 dx ≤ C

∫
Rn×···×Rn

∣∣∣
m∏

k=1

|xk|ρk/2(−Δk/4π)αk/4

× |xk|βk/2f
∣∣∣2dx1 · · · dxm,

C = π−mn+α
m∏

k=1

[
Γ(2n−αk

4 )
Γ(αk

4 )

]2 2−mn+α/2

σ(Sn−1)

∫
R

H(x) dx

with H defined in the proof below. The constant C is sharp and no extremals exist
for this inequality.

Proof. Following the argument given for Theorem 1, and using L2 duality, the func-
tional to estimate for h ∈ L2(Rn) is

∫
Rn×Rn×Rmn

h(x)|x|−β/2
m∏

k=1

[
|yk|−ρk

(
|yk − x| |yk − w|

)−(n−αk/2)]
|w|−β/2h(w) dx dw dy.

Observe that either by the nature of the Stein–Weiss kernel or by applying the
Brascamp–Lieb–Luttinger rearrangement theorem [11], the function h can be taken
to be radial. Let yk = |yk|ξk, x = |x|η1, w = |w|η2. By transferring the analysis first
to the multiplicative group R+ and then to the real line, the functional integral above
is equivalent to the form

∫
R×R

g(x)H(x − y)g(y) dx dy,

where g(x) = h(ex)enx/2 and

H(x) =
∫

Sn−1×Sn−1

∏
k

Bk(x, n1, n2) dη1 dη2

with

Bk(x, η1, η2)

=
∫

R×Sn−1
e−(ρk−αk)t

[(
cosh

(x

2
− t

)
− ξ · η1

) (
cosh

(x

2
+ t

)
− ξ · η2

)]−(n/2−αk/4)

dt dξ.

Differentials on Sn−1 correspond to standard surface measure. Then by Young’s
inequality, the constant for bounding the above form in terms in (‖h‖2)2 is

1
σ(Sn−1)

∫
R

H(x) dx

which provides the sharp value for C in Theorem 4. �
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Bessel potentials provide a framework that extends the result of Theorem 2 in the
sense of Gagliardo–Nirenberg estimates. Define

Λ∗(f ; α1, . . . , αm) =
∫

Rn×···×Rn

∣∣∣
m∏

k=1

(1 − Δk)αk/4 f
∣∣∣2dx1, . . . , dxm

=
∫

Rn×···×Rn

m∏
k=1

(1 + |ξk|2)αk/2| f̂ |2 dξ1, . . . , dξm.

Bessel potentials are defined by

Gα(x) =
1

(4π)α/2Γ(α/2)

∫ ∞

0

e−π|x|2/δ e−δ/4π δ−(n−α)/2 1
δ

dδ

with the properties:

Gα(x) ≥ 0 , Gα ∈ L1(Rn) , Gα = F
[
(1 + 4π2|ξ|2)−α/2

]
, α > 0

and for 0 < α < n

Gα(x) = π−n/2 2−α Γ
(n − α

2

)/
Γ
(α

2

)
|x|−n+α + o(|x|−n+α) as |x| → 0

and

Gn(x) � −
[
(4π)n/2Γ(n/2)

]−1

ln |x|2 as |x| → 0,

|Gβ(x)| ≤
∫

Rn

(1 + 4π2|ξ|2)−β/2 dξ for β > n

and for α > 0

Gα(x) = O(e−ε|x|) as |x| → ∞ for some ε > 0

(see Stein [27, p. 132]).

Theorem 5 (Gagliardo–Nirenberg inequality). For f ∈ S(Rmn), 0 < αk < n, α =∑
αk, k = 1, . . . , m, 1

q + 1
p = 1 with 2 ≤ q ≤ 2n/(mn − α) and mn − α < n

[ ∫
Rn

|f( x, . . . , x︸ ︷︷ ︸
m slots

)|q dx

]2/q

≤ Cα,qΛ∗(f ; α1, . . . , αm),(6)

∫
Rn×Rn

h(x)
m∏

k=1

Gαk
(x − w)h(w) dx dw ≤ Cα,q

(
‖h‖Lp(Rn)

)2

.(7)

Proof. Apply the method used for Theorem 2. For q below the critical index, use
Young’s inequality to obtain (7). At the critical index q∗ = 2n/(mn − α) use the
asymptotic behavior of the Bessel potential together with the Hardy–Littlewood–
Sobolev inequality. �

Remark 4. This argument gives a sharp estimate for the case p = q = 2. Then the
sharp constant is given by

Cα,2 =
∫

Rn

m∏
k=1

Gαk
(x) dx.
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For m = 2 this constant is (4π)−n/2 Γ((α−n)/2). For m = 1 this theorem reduces to
a Gagliardo–Nirenberg inequality for the fractional Laplacian if α > 2n/q. Observe
that there exists a constant C so that

m∏
k=1

(1 + |ξk|2)αk/2 ≤ C

[
1 +

m∏
k=1

|ξk|αk

]
,

then

Λ∗(f ; α1, . . . , αm) ≤ C

[ ∫
Rmn

|f(x1, . . . , xm)|2 dx + Λ(f ; α1, . . . , αm)
]
.

Using a variational argument, this corollary is obtained from Theorem 5.

Corollary 1. For f ∈ S(Rmn), 0 < αk < n, α =
∑

αk, 2 ≤ q < 2n/(mn − α),
mn − α < n and θ = (mn − 2n

q )/α,

[∫
Rn

|f( x, . . . , x︸ ︷︷ ︸
m slots

)|q dx

]2/q

≤ Dα,q

[ ∫
Rmn

|f(x1, . . . , xm)|2 dx

]1−θ[
Λ(f ; α1, . . . , αm)

]θ

.

(8)

The case q = 2 is included here. The parameter θ is restricted: 1 − 1
n < θ < 1. It is

not tractable to calculate sharp values for this constant.
By allowing values of the fractional powers of (1−Δ) to increase to the dimension

of the space and above, the inequality in Theorem 5 can be extended. Define for two
multi-indices of positive numbers

ᾱ = (α1, . . . , αm1) and β̄ = (βm1+1, . . . , βm1+m2),

0 < αk < n, n ≤ β�, k = 1, . . . , m1, � = (m1 + 1, . . . , m1 + m2), m = m1 + m2,

Λ#(f ; ᾱ, β̄) =
∫

Rn×···×Rn

∣∣∣
m1∏
k=1

(1 − Δk/4π2)αk/4

×
m∏

�=m1+1

(1 − Δ�/4π2)βk/4f
∣∣∣2 dx1 . . . dxm

=
∫

Rn×···×Rn

m1∏
k=1

(1 + |ξk|2)αk/2
m∏

�=m1+1

(1 + |ξ�|2)β�/2|f̂ |2 dξ1 . . . dξm.

Theorem 6 (Gagliardo–Nirenberg inequality). For f ∈ S(Rmn), 0 < αk < n, α =∑
αk, k = 1, . . . , m1, 1

q + 1
p = 1 with 2 ≤ q ≤ 2n/(m1n − α) and m1n − α < n

[ ∫
Rn

|f(x, . . . , x︸ ︷︷ ︸
m slots

)|q dx
]2/q

≤ Cᾱ,β̄,qΛ#(f ; ᾱ, β̄),(9)

∫
Rn×Rn

h(x)
m1∏
k=1

Gαk
(x − w)

m∏
�=m1+1

Gβ�
(x − w)h(w) dx dw ≤ Cᾱ,β̄,q(‖h‖Lp(Rn))2.

(10)
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For p = q = 2

(11) Cᾱ,β̄,2 =
∫

Rn

m1∏
k=1

Gαk
(x)

m∏
�=m1+1

Gβ�
(x) dx.

Proof. Apply Theorem 5 together with asymptotic estimates for the Bessel poten-
tials for large and small values of |x|. If all fractional powers are larger than the
dimension n, then the allowed range of p extends to 1 ≤ p ≤ 2 for estimate (10) with
1 < p ≤ 2 if some values of the fractional power are equal to n. �

Remark 5. In [15] Chen and Pavlovic “introduce a generalization of Sobolev and
Gagliardo–Nirenberg inequalities on the level of marginal density matrices”, and their
stated result corresponds to the case q = 2 with uniform αk’s for inequality (9) above
though the methods are entirely different from those used here. Their work is related
to obtaining a priori energy bounds for solutions to the Gross–Pitaevskii hierarchy.
But there is possible confusion between their notation and that used by Klainerman
and Machedon [22] (see also [17, 18, 21]) as they use 〈∇〉 =

√
1 − Δ. To clarify

potential issues, it is not possible, even for multivariable functions invariant under
the symmetric group, to have global homogeneous Sobolev inequalities of trace type
for the index q = 2 in contrast to the special case of product functions. Such a result in
the general case would force integrability for Riesz potentials and on a conceptual level
would “break” the uncertainty principle. This phenomena is similar to the limitation
discussed earlier in the context of the Kenig–Stein theorem for fractional integration.
The arguments described here clearly illustrate examples where multilinear structure
cannot be reduced to the case of product functions or simple iterative processes though
the proofs use quadratic functional integration to simplify the calculation where the
spirit is similar to application of a Hilbert–Schmidt norm or the Plancherel theorem.

Extension of the Hardy–Littlewood–Sobolev inequality on R
n to include the mul-

tilinear embedding estimates described here suggests that analogous results should
hold for the sphere Sn. Following the development outlined in [4] (see p. 62):

Hardy–Littlewood–Sobolev inequality on Sn. Let F be a smooth function on
Sn with corresponding expansion in spherical harmonics, F =

∑
Yk; α = n − 2n/q

for q > 2 and define

B =
[
−Δ +

(n − 1
2

)2
]1/2

, Dα =
Γ(B + (1 + α)/2)
Γ(B + (1 − α)/2)

observe

DαYk =
Γ( n

q′ + k)

Γ(n
q + k)

Yk.

Then
[‖F‖Lq(Sn)

]2 ≤
∞∑

k=0

Γ(n
q ) Γ( n

q′ + k)

Γ( n
q′ ) Γ(n

q + k)

∫
Sn

|Yk|2 dξ,(12)

[‖F‖Lq(Sn)

]2 ≤ Γ(n−α
2 )

Γ(n+α
2 )

∫
Sn

F (DαF ) dξ,(13)

where dξ denotes normalized surface measure on Sn.
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This theorem is the sharp Hardy–Littlewood–Sobolev inequality for the n-dimensional
sphere as obtained by Lieb [23] in terms of fractional integrals. The representation
using spherical harmonics was given by Beckner in [2].

Theorem 7 (Hardy–Littlewood–Sobolev inequality). For F in the Schwartz class
formed over m copies of Sn, and mn − α = 2n/q with 0 < αk < n, α =

∑
αk and

(m − 1)n < α < mn. Let

ΛS(F, α1, . . . , αm) ≡
m∏

k=1

Γ(n−αk

2 )
Γ(n+αk

2 )

∫
Sn×···×Sn

F
( ∏

k

Dαk
F

)
dξ1, . . . , dξm,

where Dαk
acts on the kth coordinate. Then

[ ∫
Sn

|F (ξ, . . . , ξ︸ ︷︷ ︸
m slots

)|q dξ

]2/q

≤ Fα,SΛS(F, α1, . . . , αm),(14)

Fα,S =

[
Γ(n

q )

Γ(n)

]m−1
Γ(n

2 − n
q )

Γ(n
p )

∏
k

Γ(n+αk

2 )
Γ(αk

2 )
.

Proof. Let Tαk
= [Γ(n−αk

2 )/Γ(n+αk

2 )]Dαk
; then Tαk

is a positive-definite self-adjoint
invertible operator and T−1

αk
can be realized as a fractional integral operator on Sn:

(T−1
αk

G)(ξ) = 2n−αk
Γ(n

2 )
Γ(n)

Γ(n+αk

2 )
Γ(αk

2 )

∫
Sn

|ξ − η|−(n−αk)G(η) dη.

Inequality (14) is equivalent to the inequality
[ ∫

Sn

∣∣∣
( ∏

k

T−1/2
αk

F
)
(ξ)

∣∣∣q dξ

]2/q

≤ Fα,S

∫
Sn×···×Sn

|F (ξ1, . . . , ξm)|2 dξ1, . . . , dξm

and by duality this is equivalent to
∫

Sn×···×Sn

∣∣∣
( ∏

k

T−1/2
αk

G
)
(ξ1, . . . , ξm)

∣∣∣2 dξ1, . . . , ξm ≤ Fα,S

[ ∫
Sn

|G(ξ)|p dξ

]2/p

,

where 1
p + 1

q = 1, 1 < p < 2 and mn − α = 2n/q. As with earlier calculations, the
left-hand side becomes∫

Sn×Sn

G(η)
∏
k

T−1
αk

(ξ, η)G(ξ) dξ dη ≤ Fα,S

[ ∫
Sn

|G(ξ)|p dξ

]2/p

,

∏
k

T−1
αk

(ξ, η) =
∏
k

2n−αk
Γ(n

2 )
Γ(n)

Γ(n+αk

2 )
Γ(αk

2 )
|ξ − η|−(n−αk)

= 22n/q

[
Γ(n

2 )
Γ(n)

]m ∏
k

Γ(n+αk

2 )
Γ(αk

2 )
|ξ − η|−2n/q.

Re-writing the previous inequality

(15) Aα

∫
Sn×Sn

G(η)|ξ − η|−2n/qG(ξ) dξ dη ≤ Fα,S

[ ∫
Sn

|G(ξ)|p dξ

]2/p

,
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where

Aα = 22n/q

[
Γ(n

2 )
Γ(n)

]m ∏
k

Γ(n+αk

2 )
Γ(αk

2 )
.

Now inequality (15) is the classical Hardy–Littlewood–Sobolev inequality on the
sphere, and by comparison with the sharp constant (see [3])

Fα,S = Aα 2−2n/q Γ(n)
Γ(n

2 )
Γ(

n− 2n
q )

2

Γ(n
p )

,

Fα,S =
[
Γ(n

2 )
Γ(n)

]m−1 Γ(n
2 − n

q )

Γ(n
p )

∏
k

Γ(n+αk

2 )
Γ(αk

2 )
.(16)

With the calculation of the sharp constant Fα,S , the proof of Theorem 7 is complete.
�

Remark 6. While the inequalities in Theorems 2 and 7 directly depend on the
conformally invariant Hardy–Littlewood–Sobolev inequality, these inequalities are not
in themselves conformally invariant. This circumstance may be reflected in the lack
of limiting phenomena for the allowed range of Lebesgue exponents.

The arguments given here, and especially for Theorem 7, allow a fairly general for-
mulation of the essential idea embodied in these theorems. Suppose {Tk} is a family
of positive-definite self-adjoint invertible operators acting on smooth function classes
on an n-dimensional manifold equipped with a suitable measure. For simplicity, as-
sume that T−1

k can be realized by action of an integral kernel. Then the preceding
theorems may be reformulated in the following form:

Theorem 8 (Multilinear trace). For f ∈ S(M × · · · × M) and some suitable q ≥ 2
with 1

p + 1
q = 1 and Tk acting on the kth variable

(17)
[ ∫

M

|f(x, . . . , x︸ ︷︷ ︸
m slots

)|q dx

]2/q

≤ ET

∫
M×···×M

f
( ∏

k

Tk f
)

dx1, . . . , dxm.

ET is the optimal constant for the inequality

(18)
∫

M×M

h(w)
∏
k

T−1
k (x, w)h(x) dx dw ≤ ET

[ ∫
M

|h|p dx

]2/p

.

Proof. Just follow the steps in the previous argument. �

Remark 7. In the context of the conformally invariant structure discussed in the
author’s papers [4, 6], and more recent treatments of the fractional Laplacian ([13,
14]), it is natural to consider the multilinear trace estimate in the setting where M is
a hyperbolic manifold. Broader questions can be addressed in that context, and they
will be treated in a forthcoming paper [10].
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