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REGULARITY DEFECT STABILIZATION OF
POWERS OF AN IDEAL

David Berlekamp

Abstract. When I is an ideal of a standard graded algebra S with homogeneous max-
imal ideal m, it is known by the work of several authors that the Castelnuovo–Mumford
regularity of Im ultimately becomes a linear function dm + e for m � 0.

We give several constraints on the behavior of what may be termed the regularity
defect (the sequence em = reg Im − dm) in various cases. When I is m-primary we
give a family of bounds on the first differences of the em, including an upper bound on

the increasing part of the sequence; for example, we show that the ei cannot increase
for i ≥ dim(S). When I is a monomial ideal, we show that the ei become constant for
i ≥ n(n − 1)(d − 1), where n = dim(S).

1. Introduction

When I is an ideal of a standard graded algebra S with homogeneous maximal ideal m,
it is known by the work of several authors that the Castelnuovo–Mumford regularity
of Im ultimately becomes a linear function dm + e for m � 0 (cf. [1, 4, 10, 11]).
The leading coefficient d is the asymptotic generating degree of I, i.e., the minimal
number such that I is integral over I≤d, where I≤d denotes the ideal generated by
the forms in I of degree at most d. The other coefficient, e, is significantly more
mysterious. When I is m-primary and generated by general forms of a single degree,
I determines a finite morphism φ : Proj(S) → P

r, and Eisenbud and Harris [5] showed
that e+1 is the maximum regularity of a fibre of φ. Following a conjecture of Ha [2],
Chardin [9] extended this result to the case in which I is generated by arbitrary forms
of a single degree in terms of the associated map from the blowup of Proj(S) along
the subscheme defined by I. This is quite a tantalizing phenomenon, but so far no
similar interpretation has presented itself in a more general situation.

We define the regularity defect sequence (or, shortly, the defect) to be the sequence
em = reg(Im) − dm, the asymptotic or stable defect e∞ to be em for m � 0, and the
stabilization power to be the smallest positive integer m∞ such that em = e∞ for all
m ≥ m∞. Geramita et al. [8] showed that when dim(S/I) = 1, reg(Im) ≤ m · reg(I),
i.e. that em ≤ m(reg(I)− d) for all m. Conca [3] showed that m∞ can be arbitrarily
large even for monomial ideals in 4 variables. Again in the case where I is m-primary
and generated by forms of a single degree, Eisenbud and Harris [5] showed that the
defect sequence is weakly decreasing, and Eisenbud and Ulrich [7] gave an explicit
bound on m∞, not more than the (0, 1)-regularity of the Rees algebra R(I). They also
explored some examples in the case where I may not be generated in a single degree,
although the situation there thus far eludes clear characterization. M. Chardin has
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announced a related result giving a criterion for stabilization of the defect; specifically,
that em+1 = em if m is at least regk[V ](R(I)e∞,∗), where V ⊆ Id is a subspace such
that V + mId−1 = Id, and also

m ≥ min
(

min{t|It ⊆ I≤d}, reg (I≤d) − d

d + 1

)
.

This nicely parallels the stabilization theorem of [7] in the equigenerated case, in
which the fact that I = I≤d renders the latter requirement trivial. The bound therein
is much like one of those of our Theorem 2.2 ensuring that the defect sequence is
weakly decreasing. In the general case, despite this progress, many properties of the
regularity defect remain elusive.

In this note, we give several constraints on the behavior of the defect sequence when
I is not necessarily equigenerated (that is, generated in a single degree). In particular,
we show that when I is m-primary and S has characteristic 0, the defect sequence is
weakly decreasing for m larger than (reg I≤d)/(d + b′), where d + b′ is the degree of a
minimal generator of I of minimal degree strictly greater than d (if no such generator
exists, as is for instance the case when I is generated in a single degree, the defect
sequence is weakly decreasing, recovering a result of [5]). We observe that this bound
is strictly smaller than the dimension of S. We also show that all first differences
of the defect sequence are bounded above by b, where d + b is the maximal degree
of a minimal generator of I, and give an interpolating set of increasingly powerful
bounds on the first differences of the defect sequence kicking in at larger values of m.
These bounds relate to a question of [7] as to whether the sequence of first differences
is weakly decreasing; such is not the case once the defect sequence has begun to
decrease (witness examples in Section 4), but seems to be so for the increasing part.
All of this comprises Section 2 of this paper.

In Section 3, we focus on the case where I is an m-primary monomial ideal. Here
we observe that if n is the number of variables of S, then the minimal generators of I
include a regular sequence of pure powers of the variables, and d is the maximum pure
power to appear. We are able to show that if l ≤ n is the number of variables appearing
to the power d as minimal generators of I, then the regularity defect sequence achieves
its asymptotic value for all m at least l(n − 1)(d − 1); a somewhat sharper result
requiring more technical apparatus to articulate is also presented.

Finally, in Section 4 we turn to the computation of some specific examples exploring
the precision of the bounds we have obtained.

2. First differences of the regularity defect sequence

Fix a polynomial ring S = k[x] = k[x1, . . . , xn]. Let

σ(I) = {α ∈ S/I : α �= 0, mα = 0}
i.e., σ(I) is the set of nonzero elements of the socle of S/I. In this situation, we define
ω(I) ⊂ σ(I) to be the set of maximal total degree elements of σ(I). We also define
s(I) and w(I) to be the sets of homogeneous elements of S mapping to σ(I) and ω(I),
respectively, under the quotient. Observe that if S/I is artinian and f ∈ w(I), then
deg(f) = reg S/I = reg I − 1. We call w(I) the witness set of I, and a form f ∈ w(I)
a witness for (the regularity of) I.
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Theorem 2.1. Let I ⊂ S be any m-primary homogeneous ideal of asymptotic gen-
erating degree d, and let reg Im = dm + em. Let J ⊂ I be another m-primary ho-
mogeneous ideal, and let c be the maximal degree of a minimal generator of J . If
J ∩ w(Im+1) �= ∅, then reg Im+1 − reg Im ≤ c, and hence

em+1 − em ≤ c − d.

Proof. Let f ∈ J ∩ w(Im+1). By definition, as f ∈ w(Im+1) we have f /∈ Im+1 and
deg(f) = reg S/Im+1 = d(m + 1) + em+1 − 1.

As f ∈ J , write f =
∑

uigi, where the gi are minimal generators of J and the ui

are some forms, such that no summand can be discarded. As f /∈ Im+1, not all of the
ui lie in Im; without loss of generality assume u1 /∈ Im. Then deg(u1) ≤ reg S/Im,
so

reg Im+1 = deg(f) + 1 = deg(u1) + deg(g1) + 1 ≤ reg Im + c.

Hence
em+1 − em = reg Im+1 − (reg Im + d) ≤ c − d. �

Corollary 2.1. Let J ⊂ I be m-primary homogeneous ideals of S, with d the as-
ymptotic generating degree of I, reg Im = dm + em, and c the maximal degree of a
minimal generator of J . Whenever reg Im+1 > reg J , we have

em+1 − em ≤ c − d.

Proof. reg Im+1 > reg J implies that w(Im+1) ⊂ J ; the result follows by Theo-
rem 2.1. �

Regularity is weakly increasing in powers (simply because Im+1 ⊂ Im). However,
regularity often fails to strictly increase in products; for example, if I, J are distinct
ideals of the same regularity, it is not generally the case that the regularity of the
product will be larger. For example, if n = 4, I is generated by the squares of the
variables, and J is generated by squares of four generic linear forms, then reg I =
reg J = reg IJ = 5.

This observation leads to some more general questions: if n ≥ 4 and I, J are
generated by distinct generic regular sequences of the same degree d ≥ 2, is it the
case that reg IJ = reg I = reg J? Is the same true if I is generated by pure powers
of the variables and J by pure powers of generic linear forms? Experimental evidence
indicates an affirmative answer, i.e., that a generic form f of the appropriate degree
satisfies f ∈ w(I) ∩ w(J) and mf ∈ IJ , so reg I = reg J = reg IJ . A heuristic
justification for the significance of n = 4 may be given by the following argument.
Let I, J be given by distinct maximal regular sequences of degree d, so reg I = reg J =
n(d − 1) + 1 =: q. Then as any form in w(I) + w(J) cannot be in IJ , reg IJ = reg I
if and only if mq ⊂ IJ . Observing that (IJ)q = IdJq−d, this requires dimk(mq) ≤
ndimk(Jq−d). As S/J is Gorenstein with socle in degree q − 1, dimk((S/J)q−d) =
dimk((S/J)d−1) = dimk(md−1), and dimk(Jq−d) = dimk(mq−d) − dimk((S/J)q−d);
hence the requirement on n and d comes down to(

nd

n − 1

)
≤ n

[(
(n − 1)d
n − 1

)
−

(
d + n − 2

n − 1

)]

and this is true for n ≥ 4, d ≥ 2 (but not for n = 2 nor n = 3 for any d). Though there
has been substantial work establishing upper bounds for the regularity of products
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in many cases (cf. [6]), not many lower bounds are known, and an answer to this
question in general would be a fascinating result.

Nonetheless, with a bit more work we can show that the regularity is in fact strictly
increasing in powers (at least in characteristic 0).

Proposition 2.1. Let I1, . . . , Im be homogeneous ideals of S, with a form f ∈ S such
that

mf ∈
∏

i

Ii

and assume the characteristic of S does not divide n + deg(f). Then

f ∈
∑

i

∏
j �=i

Ij .

Proof. Let m = (x1, . . . , xn). If h ∈ S and 1 ≤ i ≤ n, let [h]xi denote the partial
derivative of h with respect to xi. By hypothesis, there are finitely many forms gik ∈ Ii

such that for 1 ≤ k ≤ n we have xkf =
∑

k

∏
i gik. Then∑

k

[xkf ]xk
=

∑
k,i

[gik]xk

∏
j �=i

gjk ∈
∑

i

∏
j �=i

Ij

but also ∑
k

[xkf ]xk
= nf +

∑
k

xk[f ]xk
= (n + deg(f))f

and thus f ∈ ∑
i

∏
j �=i Ij . �

Henceforth, we assume that S has characteristic 0 so as to apply Proposition 2.1.

Proposition 2.2. Let I be a homogeneous ideal of S, and let m > m′ > 0. Then
s(Im) ⊂ Im′

. In particular, s(Im) ∩ s(Im′
) = ∅.

Proof. Let Ii = I, i = 1, . . . , m, and apply Proposition 2.1 to see that any f ∈ s(Im)
satisfies f ∈ Im−1 ⊂ Im′

. For the last, observe that any homogeneous ideal J is
disjoint from s(J). �

Lemma 2.1. Let I, J be m-primary homogeneous ideals. If there is a witness for I
that is neither in J nor a witness for J , then reg I < reg J .

Proof. Let f ∈ w(I)\(J ∪ w(J)). Then f /∈ J , and mf �⊂ J as f /∈ w(J). So let
g ∈ mf\J , and observe that reg I = deg(f) + 1 = deg(g) < reg J . �

Corollary 2.2. Let I be an m-primary homogeneous ideal. Then for all m > 0,
reg Im+1 > reg Im.

Proof. reg Im = degf , where f is any element of w(Im); since w(J) ⊂ s(J) for any
J , f /∈ w(Im+1) by Proposition 2.2. Now use Lemma 2.1. �

Set J = I in Corollary 2.1; as by Corollary 2.2, reg Im+1 > reg I for all m ≥
1, we recover the result of [7] that the defect sequence is weakly decreasing in the
equigenerated case, and also extend it to the case where all generators have degree at
most d.

We can also use these tools to get bounds on the increasing part of the regularity
defect sequence.
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Theorem 2.2. Let J ⊂ I be m-primary homogeneous ideals of S, with d the asymp-
totic generating degree of I, reg Im = dm + em, and c, c′, respectively, the maximal
and minimal degrees of minimal generators of J . Let d′ be the minimal degree of an
element of g(I)\J , where g(I) denotes the set of minimal generators of I. Whenever

m > min{(reg J)/d − 1, (reg J)/d′ − min{1, c′/d′}},
we have reg Im+1 > reg J (if J = I, we interpret d′ as ∞, so this holds for all m > 0).

Then by Corollary 2.1,
em+1 − em ≤ c − d.

This holds for each m such that w(J) �⊂ s(I ′m+1) + w(I ′mJ), where I ′ is the ideal
generated by g(I)\J .

Proof. When m > (reg J)/d − 1, manifestly reg Im+1 = d(m + 1) + em > reg J .
In the case J = I, we observe that reg Im+1 > reg I for all m ≥ 1 by Corollary 2.2.
Otherwise, assume d′ is finite and m > (reg J)/d′ − 1, so d′(m + 1) > reg J . Then

Im+1 ⊂ J , so reg Im+1 ≥ reg J . Now

Im+1 = (J + I ′)m+1 =
m+1∑
i=0

J iI ′m+1−i.

All but the first two terms are contained in J2, and since reg J2 > reg J , reg Im+1

can only equal reg J if
w(J) ⊂ s(I ′m+1) + w(I ′mJ).

The minimum degree of an element of s(I ′m+1) is d′(m+1)−1, which by assumption
is larger than reg J − 1, the degree of any element of w(J).

It therefore suffices to ensure that the minimum degree of an element of w(I ′mJ)
is also larger than reg J − 1. Let c′ be the minimal degree of a minimal generator of
J . Then the minimum degree of an element of s(I ′mJ) is d′m + c′ − 1. This will be
larger than reg J −1 if d′m > reg J −c′, which will hold when m > (reg J)/d′−c′/d′.
Then as w(I ′mJ) ⊂ s(I ′mJ), we are done.

In this second case, we have used m > (reg J)/d′ − 1 and m > (reg J)/d′ − c′/d′,
that is, m > (reg J)/d′ − min{1, c′/d′}. �

In the case where I is equigenerated, Eisenbud and Ulrich [7] showed that em+1 ≤
em for all m > 0. We extend this result as follows.

Corollary 2.3. Let I ⊂ S be an m-primary homogeneous ideal of asymptotic gen-
erating degree d, and let reg Im = dm + em. Let d + b be the maximal degree of a
minimal generator of I, let d + b′ be the minimal degree strictly greater than d of a
minimal generator of I (b′ = ∞ if no such generator exists), and let I≤d be the ideal
generated by the elements of I of degree at most d. Then for any positive integer m,

(1) em+1 ≤ em + b.
(2) em+1 ≤ em if m ≥ (reg I≤d)/(d + b′).

Note the latter case holds whenever m ≥ n.

Proof. Setting J = I in Theorem 2.2 yields the first statement.
Let J = I≤d. The minimal degree of an element of I\J is d + b′, and the maximal

degree of a generator of I≤d is d, so Theorem 2.2 yields em+1 ≤ em for all m >
(reg I≤d)/(d + b′)−min{1, c′/(d + b′)}, where c′ is the minimal degree of a generator
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of I. If I = I≤d, then b = 0 and the second statement follows from the first; otherwise
c′/(d + b′) > 0, which gives the second statement in general.

The largest possible value of reg I≤d is n(d − 1) + 1, attained only when I≤d is
generated by a regular sequence of degree d. Combining this with (2) makes the final
observation manifest. �

3. Stabilization in the monomial case

We continue with an analysis of the monomial case, in which we can give a bound on
the stabilization of the defect sequence that is in some instances sharp. The basic idea
will be, firstly, to show that for sufficiently large m, one can always find a monomial
witness a ∈ w(Im) that has a large order with respect to one of the variables; and
secondly, to show that for sufficiently large m, the monomials in Im+1 of large order
with respect to any one of the variables are simply a shift of those in Im. We will do
this by examining monomial exponent vectors modulo the lattice generated by the
exponents of the pure powers appearing as minimal generators of I.

Any m-primary monomial ideal I of S contains pure powers of each variable among
its minimal generators. Suppose that k is the largest power to which any variable
appears. Then I≤k contains all of the pure power generators of I, so is still m-
primary, but I≤k−1 does not contain pure powers of each variable, and is therefore
not m-primary. Thus k is d, the asymptotic generating degree of I.

Renaming the xi appropriately, such an ideal may therefore be written as

I = (xd, yd
1 , . . . , yd

l−1, z
d1
1 , zd2

2 , . . . , zdk

k , h1, . . . , hr),

where d > d1 ≥ d2 ≥ · · · ≥ dk, l + k = n and h1, . . . , hr are the nonpure minimal
generators of I.

Theorem 3.1. Let I be an m-primary monomial ideal of S, with asymptotic gener-
ating degree d, and number of pure generators of degree d equal to l as above. Then
em+1 = em for all

m > max{n − 1, (n − 1)[l(d − 1) − 1]}.
To prove this, we require some additional notation, which will also allow a stronger

statement.
Given a homogeneous ideal J and a form f ∈ S, let ordJ(f) denote the J-order

of f , i.e., the unique natural number t such that f ∈ J t\J t+1. If I is as above, let
Y = (yd

1 , . . . , yd
l−1), y = (y1, . . . , yl−1), Z = (zd1

1 , . . . , zdk

k ), and z = (z1, . . . , zn). If a
is a monomial of S, we factor a as

a = xmxd+oxy
my1d+oy1
1 · · · ymyl

d+oyl−1
l z

mz1d1+oz1
1 · · · zmzk

dk+ozk

k ,

where the mx, myi and mzi are as large as possible, so for instance ordY (a) =
∑

i myi .
We define the reduction of a to be ā = xoxy

oy1
1 · · · zozk

k , and ax = xmxdā. Given a
natural number m, we write m̄ = m̄(m, a) = m − mx − ordY (a) − ordZ(a). Finally,
let μm = mina∈w(Im) m̄(m, a).

The more refined theorem we shall prove is the following.

Theorem 3.2. Let I be an m-primary monomial ideal of S, with asymptotic generat-
ing degree d, and number of pure generators of degree d equal to l. Then em+1 ≥ em

if m > (n − 1)(d − 2) + (μm − 1)(l − 1)(d − 1).
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Given that μm ≤ n−1 by Proposition 3.1, this combines with Corollary 2.3 to give
Theorem 3.1. The proof requires a few technical results.

Proposition 3.1. If a is a monomial in w(Im), then
(1) 1 ≤ m̄ ≤ n − 1,
(2) m̄d − 1 ≤ deg(ā) < l(d − 1) +

∑k
i=1(di − 1) ≤ n(d − 1) − k,

(3) ordZ(a) ≤ deg(ā) − m̄d + 1 ≤ (n − 1)(d − 1) − k.

Proof. The monomial exponent vector of ā is the remainder of that of a when reduced
by the lattice of exponents of pure generators of I, so in particular a /∈ Im implies
that ā /∈ Im̄. This shows that m̄ ≥ 1. Also, each exponent of a variable in ā is less
than the corresponding pure power of that variable appearing as a minimal generator
of I, giving the upper bound in (2). The upper bound in (3) follows.

As em ≥ 0, the hypothesis of the proposition ensures that

md − 1 ≤ deg(a) = deg(ā) + mxd +
l−1∑
i=1

myid +
k∑

i=1

mzidi.

Subtracting (m − m̄)d from both sides yields

m̄d − 1 ≤ deg(ā) −
k∑

i=1

mzi(d − di)

and as all di < d this gives the lower bound in (2). Combined with the observation
that

∑
mzi = ordZ(a), this also gives the lower bound in (3). Finally, dividing (2)

by d gives m̄ < n
(

d−1
d

) − (
k−1

d

)
< n. �

Next, we will impose constraints on ā that guarantee stabilization of the defect.
The first lemma in this direction shows that the defect is nondecreasing if appropriate
shifts of a witness fail to lie in corresponding powers of I.

Lemma 3.1. Suppose a ∈ w(Im). If for all q ≥ 0 we have xdqax /∈ Imx+m̄+q, then
ordZ(a) = 0, and em′ ≥ em for all m′ ≥ m.

Proof. Set q = ordY (a) + ordZ(a) + q′; then the hypothesis ensures that xdqax /∈ Im+q′
,

and

deg(xdqax) = deg(a) + dq′ +
k∑

i=1

mzi(d − di).

Setting q′ = 0 gives a monomial xdqax /∈ Im, whose degree can be no larger than that
of a ∈ w(Im). As all di < d, this shows that all mzi = 0, so their sum ordZ(a) = 0
also. We now have a monomial not in Im+q′

of degree deg(a) + dq′ for all q′ ≥ 0,
showing that em+q′ ≥ em for all q′ ≥ 0. �

The next lemma shows that if the reduction of a witness has sufficiently large order
with respect to x, then we can find a witness with the same reduction and order 0
with respect to Y + Z, shifts of which will remain outside higher powers of I.

Lemma 3.2. If a ∈ w(Im) and ordx(ā) > m̄d− (mx + m̄+1), then ordZ(a) = 0, and
em′ ≥ em for all m′ ≥ m.
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Proof. Consider the set of monomials Bt = {monomials b′ ∈ It\xdIt−1}. A monomial
b′ ∈ Bt is a product of t monomials in I, none of which is divisible by xd, and thus
satisfies ordx(b′) ≤ t(d − 1). Thus if b /∈ Is is a monomial such that xdb ∈ Is+1, we
have xdb ∈ Bs+1, and so ordx(b) ≤ (s + 1)(d − 1) − d = s(d − 1) − 1. Therefore, if
b /∈ Is is a monomial such that ordx(b) > s(d−1)−1, it follows that xdb /∈ Is+1. Since
ordx(xdb) = ordx(b) + d > s(d − 1) − 1 + d > (s + 1)(d − 1) − 1, the same argument
applies to xdb to show that x2db /∈ Is+2, and inductively yields xdqb /∈ Is+q for all
q ≥ 0. Again, a ∈ w(Im) implies that ax /∈ Imx+m̄, and ordx(ax) = ordx(ā) + mxd,
so under the hypothesis of the lemma, ordx(ax) > (mx + m̄)(d − 1) − 1. Setting
b = ax and s = mx + m̄ shows that xdqax /∈ Imx+m̄+q for all q ≥ 0; again, apply
Lemma 3.1. �

With this, we can complete the proof of Theorem 3.2.

Proof. Suppose em+1 < em. Observe that Lemma 3.2 applies when x is replaced by
any yi. Relabel x as yl (and include yl in y, and yd

l in Y accordingly). Then, for all
a ∈ w(Im) and all i with 1 ≤ i ≤ l it must be that ordyi(ā) ≤ m̄d − (myi + m̄ + 1).
Summing over i, we have

ordy(ā) ≤ m̄l(d − 1) − l − ordY (a)

and remembering that ordY (a) + ordZ(a) + m̄ = m we have

ordy(ā) ≤ m̄l(d − 1) − l − m + m̄ + ordZ(a).

Applying Proposition 3.1 (3), this implies

ordy(ā) ≤ m̄l(d − 1) − l − m + m̄ + ordy(ā) + ordz(ā) − m̄d + 1.

Adding m − ordy(ā) to each side of this inequality gives

m ≤ m̄(l − 1)(d − 1) − (l − 1) + ordz(ā)

and combining this with the trivial bound on ordz(ā) yields

m ≤ m̄(l − 1)(d − 1) − (n − 1) +
k∑

i=1

di.

Finally, using that each di ≤ d − 1 gives

m ≤ (m̄ − 1)(l − 1)(d − 1) + (n − 1)(d − 2)

and the theorem follows. �

Since we know that em+1 ≤ em for all m ≥ n by Corollary 2.3, and that all μm < n
by Proposition 3.1, we have Theorem 3.1.

4. Examples

The following examples illustrate some subtleties of the above.
For a ∈ N

n, let xa = xa1
1 · · ·xan

n , and let ma = (xa1
1 , . . . , xan

n ). We also write
1 = (1, . . . , 1), so 1 · a =

∑
ai is the total (Z-)degree of xa.



REGULARITY DEFECT STABILIZATION OF POWERS OF AN IDEAL 117

4.1. Necessity of the hypotheses of Theorem 2.2. Let n = 3,

J =
∑

1≤i,j,k≤3

〈x8
i , x

7
i x

2
j , x

7
i xjxk〉

and I = J + m10. Then I2 ⊂ J ⊂ I, S/J is generated as a vector space by x6
1x

6
2x

6
3,

and ω(I2) is generated by the image of w(J) and x7
i x

6
jx

5
k for (ijk) ∈ S3. Note that

reg I = 10, reg J = reg I2 = 19, and w(J) � w(I ′J) = w(I2); incidentally, this
affords a monomial example of a situation in which multiplying a given ideal (namely
J) by a nontrivial ideal (namely I ′) fails to induce the regularity to increase. In the
notation of Theorem 2.2, we have I ′ generated by the monomials of degree 10 not
in J , d = c′ = 8, c = 9, d′ = 10; so we should have et+1 − et ≤ 1 for t < 2, while
et+1 − et ≤ 0 for t ≥ 2. Indeed, e1 = 2 and e2 = 3, so the defect sequence in this
case is

e = (2, 3, 3, . . .).

4.2. Initially increasing defect sequences. Let d = d1, and let I = md + md+b

(where b ≤ n(d − 1) − d).
For all positive integer t we have mt(d+b) ⊂ It. As long as

t(d + b) ≤ reg I≤d = reg md = 1 · (d − 1) + 1 = n(d − 1) + 1,

there are elements of degree t(d + b) − 1 not in md, hence not in It ⊂ mt(d+b) + md.
But this is the maximal such degree, because reg It ≤ reg (md+b)t = t(d + b). In fact
every element of md not in It is of degree at most (t−1)(d+b)+d−1 = t(d+b)−1−b.
Therefore for t in this range, ω(It) is generated by the image of g(mt(d+b)−1)\md) and
reg It = t(d + b).

Hence for t ≤ t0 :=
⌊

n(d−1)+1
d+b

⌋
, et = tb, so et − et−1 = b. For t > t0, we have

et = et+1. Finally,

et0+1 − et0 = δ := max{0, n(d − 1) + 1 − t0(d + b) − d} < b.

Observe that this example exactly achieves the bound on the length of the increasing
part of the sequence, as well as the bound on the first differences of the sequence,
given in Corollary 2.3. Also observe that μt = t0 for large t, so if b is small and d
large, μt = t − 1, although in this case the defect sequence never decreases.

Here, the defect sequence is

e = (b, 2b, 3b, . . . , t0b, t0b + δ, t0b + δ, . . .)

4.3. Slowly decreasing defect sequences. Let

I = xd−1m + (zd−1
1 , . . . , zd−1

k )

Here l = 1 and k = n − 1. w(I) is generated by xd−2 (
∏

i zi)
d−2; in fact, for t <

(n−1)(d−2), w(It) is generated by
{

xjd−j−1
(∏

i∈Λ zd−1
i

)
(
∏

i zi)
d−2

}
where j ∈ [t] :=

{1, 2, . . . , t}, and Λ is a multiset on [k] with |Λ| = t− j. Hence for t < (n− 1)(d− 2),
et+1 − et = −1, while for larger t, et+1 − et = 0.

Observe that this example exactly achieves the bound on the length of the decreas-
ing part of the sequence given by Theorem 3.2 (as in this case l − 1 = 0). Observe
also that if the zi variables were to instead appear to the power d, the defect sequence
would stabilize immediately to e1 = e∞ = n(d − 1) − 1.
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Thus, the defect here is

e = ((n − 1)(d − 2), (n − 1)(d − 2) − 1, . . . , 1, 0, 0, . . .).

Careful consideration of such behavior leads to the following interesting character-
ization of m-primary monomial ideals with stable defect equal to 0. This extends the
corresponding result in the equigenerated case obtained in [7].

Proposition 4.1. Let I be an m-primary monomial ideal of S, with asymptotic gen-
erating degree d. Then e∞ = 0 if and only if for each pure minimal generator xd of
degree d, xd−1m ⊂ I.

Proof. If xd−1m �⊂ I, let a ∈ (xd−1m)\I. Then xdqa /∈ Iq+1 for all q ≥ 0, so eq ≥
deg(xdqa) − ((q + 1)d − 1) = 1 for all q ≥ 0 and e∞ ≥ 1.

On the other hand, if xd−1m ⊂ I for each pure minimal generator xd of degree d,
then for large q every monomial in mdq outside of Y +Z will lie in Iq. By the proofs of
Lemma 3.2 and Theorem 3.2, for sufficiently large q there exists a witness a ∈ w(Iq)
lying outside of Y + Z relative to some pure minimal generator xd of degree d. This
witness has degree at most dq − 1; so eq = 0. Hence e∞ = 0 also. �

4.4. Initially increasing then later decreasing defect sequences. Let

I =
n∑

i=1

(xd−1
i m) + md+b,

where n > 2. When d is large and b is small, the defect sequence must initially increase
according to b with each power of I, as in Example 4.2; however, by Proposition 4.1,
e∞ = 0.

Example 2.4 of [7] is the case n = 4, d = 5, b = 1, where

e = (1, 2, 2, 1, 1, 1, 1, 1, 0, 0, . . .),

while for n = 4, d = 5, b = 2 we have

e = (2, 3, 2, 2, 2, 2, 2, 1, 0, 0, . . .)

and for n = 4, d = 6, b = 2 the defect sequence begins with (2, 4, 4, 3, . . .), but
e∞ = e12 = 0.
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