
Math. Res. Lett. 19 (2012), no. 01, 81–93 c© International Press 2012

FROM QUANTUM SCHUBERT POLYNOMIALS TO k-SCHUR
FUNCTIONS VIA THE TODA LATTICE

Thomas Lam and Mark Shimozono

Abstract. We show that Lapointe–Lascoux–Morse k-Schur functions (at t = 1) and
Fomin–Gelfand–Postnikov quantum Schubert polynomials can be obtained from each

other by a rational substitution. This is based on Kostant’s solution of the Toda lattice
and Peterson’s work on quantum Schubert calculus.

1. The theorem

1.1. Quantum Schubert polynomials. Fomin, Gelfand and Postnikov’s quantum
Schubert polynomials Sq

w are a family of polynomials in the variables x1, x2, . . . , xn

and the quantum parameters q1, q2, . . . , qn−1 indexed by permutations w ∈ Sn. They
show [1] that quantum Schubert polynomials represent quantum Schubert classes in
the Givental–Kim presentation [3] of the quantum cohomology ring QH∗(Fln) of the
flag manifold.

Example 1.1. Let n = 3. Then

Sq
1 = 1, Sq

s1
= x1, Sq

s2
= x1 + x2,

Sq
s1s2

= x1x2 + q, Sq
s2s1

= x2
1 − q, Sq

s1s2s1
= x2

1x2 + q1x1.

1.2. k-Schur functions. Let k = n − 1. Lapointe, Lascoux and Morse’s k-Schur
functions [9] s

(k)
λ are a basis of the Hopf subalgebra Λ(n) = C[h1, h2, . . . , hn−1] ⊂ Λ of

symmetric functions generated by the first n − 1 homogeneous symmetric functions.
They are indexed by k-bounded partitions, that is, partitions λ with λ1 ≤ k. Lam [6]
showed that k-Schur functions represent affine Schubert classes under the realization
of the homology ring H∗(Gr) ∼= Λ(n) of the affine Grassmannian Gr = GrSL(n) inside
symmetric functions.

Example 1.2. Let n = 3 = k + 1. Then

s
(2)

2a12b = ha
2eb

2,

s
(2)

2a12b+1 = ha
2eb

2h1,

where e2 = h2
1 − h2 is the second elementary symmetric function.
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1.3. The substitution. For i ∈ [0, n], let Ri denote the rectangular partition in−i

having i columns and n − i rows. Let R′
i denote the partition obtained from Ri

by removing the outer corner of the Young diagram of Ri. In the following, let
sR0 = sRn = 1 and sR′

0
= sR′

n
= 0.

Define a map Φ : C[x1, x2, . . . , xn, q1, q2, . . . , qn−1] → Λ(n)[s−1
R1

, . . . , s−1
Rn−1

] by

x1 + x2 + · · · + xi �−→
sR′

i

sRi

qi �−→
sRi−1sRi+1

s2
Ri

.

Theorem 1.1. Let w ∈ Sn. Then

Φ(Sq
w) =

s
(k)
λ(w)

∏
i∈Des(w) sRi

,

where λ(w) is a k-bounded partition explicitly described in Section 6 and Des(w) =
{i | wsi < w} denotes the descent set of w, where si is a simple reflection and < is
the Bruhat order.

Because of a factorization result (Theorem 3.3) of Lapointe and Morse, the above
theorem determines s

(k)
λ for all λ.

Example 1.3. Take w = s1s2s1. Then

Φ(Sq
s1s2s1

) = Φ(x2
1x2 + q1x1)

=
(

h1

e2

)2 (
h1

h2
− h1

e2

)

+
h2

e2
2

h1

e2

=
h1

e2h2
.

Since Des(w) = {1, 2} and λ(w) = (1), this agrees with s
(2)
1 = h1.

This theorem allows for the direct comparison of two very different kinds of for-
mulae. On the one hand, the Gromov–Witten invariants of the flag manifold can be
studied using the quantum Bruhat graph (related to the strong Bruhat order) and
the combinatorics of quantum Schubert polynomials. On the other hand, the struc-
ture constants of the Pontryagin product of Schubert classes in the homology of the
affine Grassmannian, involve the weak order on the affine symmetric group and the
combinatorics of k-Schur functions. Using Theorem 1.1 facts known on one side can
be transferred to the other, leading to new insights in both contexts.

Let us give an outline of the proof. One first obtains an abstract isomorphism
between localizations of the quantum cohomology QH∗(Fln) of the flag variety and the
homology H∗(Gr) of the affine Grassmannian by the composition of three theorems:
(1) the theorem of Kim and of Givental and Kim [3, 4], which identifies QH∗(Fln)
with the coordinate ring of the nilpotent Toda lattice; (2) a theorem of Ginzburg [2]
and of Peterson which identifies H∗(Gr) with the coordinate ring of the centralizer
of a principal nilpotent element in PGL(n); and (3) a theorem of Kostant [5], which
solves the nilpotent Toda lattice. The substitution Φ arises in this way.
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The quantum and affine Schubert classes are compared using a result of Peterson
[13] (also proved in [8,11]). Using this we obtain the description of Theorem 1.1. The
results of Fomin, Gelfand and Postnikov [1] and of Lam [6] allow us to formulate the
result explicitly in terms of polynomials.

Remark 1.1. The form of the denominator in Theorem 1.1 probably follows from the
affine Grassmannian homology Schubert class factorization result of Magyar [12, Thm.
A].

Remark 1.2. Let f⊥ denote the linear operator adjoint to multiplication by a sym-
metric function f under the Hall inner product. One can get k-Schur functions
straight from ordinary Schubert polynomials by directly substituting the ratio (h⊥

i ·
SRm)/SRm of two Schur functions for each elementary symmetric polynomial ei(m) =
ei(x1, x2, . . . , xm), after the Schubert polynomial is written in terms of products of
ei(m) (see Section 2.3): one may compute the image of Sq

w in Λ(n)[s−1
R1

, . . . , s−1
Rn−1

]
by replacing each Eq

i (m) by (h⊥
i · SRm)/SRm (see Proposition 5.2). However this is

the same as taking the expansion of Sw in the ei1(1)ei2(2) · · · ein−1(n − 1) basis and
making the substitution ei(m) �→ (h⊥

i · SRm)/SRm .

1.4. Further directions. In future work, we plan to investigate the generalizations
to equivariant (quantum) (co)homology and extensions to other Dynkin types.

A tantalizing open problem is to give a conceptual answer to the question: does the
Toda lattice know about Schubert calculus? More precisely, do the quantum (=affine)
Schubert classes, considered as functions on the nilpotent Toda lattice, have a direct
interpretation in terms of the dynamics of the integrable system?

2. Toda lattice and quantum cohomology of flag manifolds

2.1. Toda lattice. The Toda lattice is the Hamiltonian system consisting of n par-
ticles with positions q̃i and momenta p̃i and Hamiltonian

H(p̃, q̃) =
n∑

i=1

p̃2/2 +
n−1∑

i=1

eq̃i−q̃i+1 .

The Toda lattice can be reformulated as the system of differential equations dL/dt =
[L, L−] in terms of the Lax pair

L = L(x, q) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1 −1

q1 x2 −1

q2 x3
. . .

. . . . . . −1
qn−1 xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

L− =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0

q1 0 0

q2 0
. . .

. . . . . . 0
qn−1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the variables xi are multiples of p̃i, and qi are multiples of eq̃i−q̃i+1 . It follows
from general theory that Hk := tr(Lk+1/(k + 1)) gives a complete set of commuting
Hamiltonians. Thus, the Toda lattice is a completely integrable system.
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2.2. Givental and Kim’s description of QH ∗(Fln). Let

Y0 = {L(x, q) | L is nilpotent}
be the nilpotent Toda leaf. This is the part of phase space, where all Hamiltonians
vanish. Let

Y ◦
0 = {L ∈ Y0 | qi �= 0}

be the part of the nilpotent Toda lattice where the quantum parameters are non-zero.

Theorem 2.1. [3, Thm. 1] [4, Thm. I, Section 5]

QH∗(Fln) 	 C[Y0] = C[x1, . . . , xn, q1, . . . , qn−1]/〈Hk〉.
2.3. Explicit Schubert representatives. Let w ∈ Sn be a permutation, and let
si1si2 · · · si�

be a reduced decomposition of w−1w0, where w0 ∈ Sn is the longest
permutation. The Schubert polynomial Sw ∈ Z[x1, x2, . . . , xn−1] is defined as

∂i1∂i2 · · · ∂i�
(xn−1

1 xn−2
2 · · ·xn−2),

where ∂i denotes the divided difference operator

(∂if)(x1, x2, . . . , xn−1) =
f(x1, . . . , xn−1) − f(x1, . . . , xi+1, xi, . . . , xn−1)

xi − xi+1
.

Let ei(m) = ei(x1, x2, . . . , xm) denote the elementary symmetric functions in
m-variables. Let Eq

i (m) be the quantum analogue of the ith elementary symmetric
polynomial in variables x1, x2, . . . , xm. It is defined by

(2.1) Eq
i (m) = Eq

i (m − 1) + xmEq
i−1(m − 1) + qm−1E

q
i−2(m − 2),

where Eq
i (m) = 0 if i < 0 or i > m and Eq

0(m) = 1 for m ≥ 0. Fomin, Gelfand, and
Postnikov [1] define the quantum Schubert polynomial Sq

w by expanding the ordinary
Schubert polynomial Sw into the basis ei1(1)ei2(2) · · · ein−1(n−1) where (i1, . . . , in−1)
is a tuple of integers such that 0 ≤ ir ≤ r− 1 for 1 ≤ r ≤ n− 1 and then substituting
the quantum elementary symmetric polynomial Eq

i (m) for each ei(m).
The quantum cohomology ring QH∗(Fln) has a C[q1, . . . , qn−1]-basis of quantum

Schubert classes {σw | w ∈ Sn} labeled by permutations.

Theorem 2.2. [1, Thm. 1.2] Under the isomorphism of Theorem 2.1 we have
σw �→ Sq

w mod 〈Hk〉.

3. Centralizer groups and homology of affine Grassmannian

Let Gr = SLn(C((t)))/SLn(C[[t]]) denote the affine Grassmannian of G = SL(n).
Let G∨ = PGL(n) denote the Langlands dual of G. Let e =

∑n−1
i=1 e∨i denote the

principal nilpotent element

e =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −1

0 −1

0
. . .
. . . −1

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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in the Lie algebra g∨. Write

X = G∨
e =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 h1 h2 h3 · · · hn−1

0 1 h1 h2 · · · hn−2

0 0 1
. . . . . .

...
0 0 0 1 h1 h2

0 0 0 0 1 h1

0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⊂ G∨

for the centralizer subgroup of e in G∨.
The following result is due to Ginzburg [2] and Peterson [13].

Theorem 3.1. [2, Cor. 5.3.2] [13] There are Hopf isomorphisms

H∗(Gr) 	 C[X] 	 Z[h1, h2, . . . , hn−1] = Λ(n).

3.1. Explicit Schubert representatives. The homology H∗(Gr, C) has a C-basis
of affine Schubert classes {ξx | x ∈ S̃n/Sn} indexed by cosets of the symmetric
group in the affine symmetric group S̃n. Recall that the k-Schur functions s

(k)
λ [9,10]

are labeled by k-bounded partitions: partitions λ satisfying λ1 ≤ k. The following
theorem of the first author was conjectured by the second author.

Theorem 3.2. [6, Thm. 7.1] Under the isomorphism of Theorem 3.1 we have
ξx �→ s

(k)
b(x), where the bijection x ↔ b(x) between S̃n/Sn and (n−1)-bounded partitions

is described in [7, Prop. 8.15].

For two partitions λ, μ, we let λ∪ μ be the partition obtained by taking the union
of parts of λ and μ. The k-rectangles Ri play a special role in the theory of k-Schur
functions because of the following factorization result of Lapointe and Morse:

Theorem 3.3. [10, Thm. 40]

s
(k)
λ∪Ri

= s
(k)
λ sRi .

4. Kostant’s solution to the Toda lattice

Since C[X] 	 C[h1, h2, . . . , hn−1], via the Jacobi–Trudi formula sλ = det(hλi−i+j)
the Schur functions sRi can be considered as polynomial functions on X. We define
the Zariski-open set X◦ ⊂ X by

X◦ = {g ∈ X | sRi(g) �= 0 for i ∈ [1, n − 1]}.
Kostant [5] solves the nilpotent Toda lattice by

Theorem 4.1. There is an isomorphism Ψ : X◦ → Y ◦
0 such that the induced map

Ψ∗ : C[Y ◦
0 ] → C[X◦] is given by Ψ∗ = Φ.

Thus, coordinates on X can be considered as angle coordinates for the nilpotent
Toda leaf. The map Ψ is constructed as follows: for g ∈ X◦, find a lower unitriangular
matrix n−(g) so that gn−(g) has the form

gn−(g) =

⎛

⎜
⎜
⎝

0 0 0 ∗
0 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞

⎟
⎟
⎠ .
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Then Ψ(g) = n−1
− (g)en−(g). The formula we give in Theorem 1.1 for Φ is a symmetric

function translation of Kostant’s description of Ψ(g).

Remark 4.1. In fact, n−(g) has (i, j)-th entry (−1)i−j(e⊥i−j · sRj )/sRj for i > j, and
n−(g)−1 is lower unitriangular with (i, j) entry (h⊥

i−j · sRi−1)/sRi−1 for i > j.

Composing Ψ∗ with Theorems 2.1 and 3.1, we obtain an isomorphism QH∗(Fln)
[q−1

i ] ∼= H∗(Gr)[s−1
Ri

]. We shall now discuss the behavior of Schubert classes under
this isomorphism.

5. Isomorphisms in terms of Schubert classes

5.1. Peterson’s isomorphism. We first develop some notation allowing us to label
affine Schubert classes with extended affine symmetric group elements.1 Our notation
for affine Weyl groups mostly follows that in [8] (see also Appendix A). For explicit
affine symmetric group notation, we refer the reader to [7].

Let Q∨ and P∨ denote the coroot lattice and coweight lattice of the root system
An−1. Let Ŝn denote the extended affine symmetric group, so that Ŝn

∼= Z/nZ �

S̃n
∼= W � P∨. Let Ŝ0

n and S̃0
n denote the minimum length coset representatives

in Ŝn/Sn and S̃n/Sn respectively. An affine permutation x ∈ Ŝn can be thought of
as a bijection x : Z → Z satisfying the periodicity condition x(i + n) = x(i) + n,
and is determined by the window [x(1), x(2), . . . , x(n)]. The two affine permutations
[x(1), x(2), . . . , x(n)] and [x(1) + n, x(2) + n, . . . , x(n) + n] are considered identical.
Given (λ1, λ2, . . . , λn) ∈ P∨ = Z

n/(1, 1, . . . , 1), the translation element tλ has window
notation tλ = [1 + nλ1, 2 + nλ2, . . . , n + nλn]. Some distinguished elements in P∨

are the fundamental coweights ω∨
i = e1 + e2 + · · · + ei, and the simple coroots

α∨
i = ei − ei+1, where ei ∈ Z

n/(1, 1, . . . , 1) denotes the standard basis vectors.
For x ∈ Ŝn, we write x = zy where z ∈ Z/nZ and y ∈ S̃0

n. Then we define ξx = ξy

in H∗(Gr).
For i ∈ [1, n − 1] let wωi

0 denote the longest minimal length coset representa-
tive of Sn/(Si × Sn−i). In one line notation, wωi

0 is given by [n − i + 1, n − i +
2, . . . , n, 1, 2, . . . , n− i]. We then set qω∨

i
= σw

ωi
0 . With this definition one obtains qλ

for each λ ∈ P∨, satisfying qλ+μ = qλqμ. See Appendix A for further details.
In his study of geometric models for quantum cohomology of partial flag varieties,

Peterson relates the quantum cohomology rings with the homology of affine Grassma-
nians. Peterson’s statement [13] and our proof in [8] labels Schubert classes only by
non-extended affine Weyl group elements. In Appendix A, we show that the notation
can be included to include extended affine Weyl group elements.

Theorem 5.1. There is an isomorphism QH∗(Fln)[q−1
i ] → H∗(Gr)[ξ−1

tλ
| λ ∈ P∨]

given by

σwqμ−λ �−→ ξwtμξ−1
tλ

,

where μ, λ ∈ P∨ are antidominant.

1We could alternatively work with H∗(GrPGL(n)), but it is simpler to always use Gr = GrSL(n)

throughout.
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5.2. k-rectangles. Define di ∈ S̃0
n to be the unique affine Grassmannian element

in the same left Z/nZ coset as t−ω∨
i
. Equivalently, di is obtained by affine Dynkin

rotation of wωi
0 . There is a bijection w �→ b(w) [7] between S̃0

n and the set of (n− 1)-
bounded partitions. Under this bijection we have di �→ Ri.

Example 5.1. Let n = 5 and i = 2 so that i∗ := n− i = 3. Then wω3
0 = s2s1s3s2s4s3

which in one-line notation is [3, 4, 5, 1, 2]. and d2 = s4s3s0s4s1s0. The reduced word
for di is obtained by reading the entries from the French tableau of shape Ri obtained
by placing c − r mod n into the cell in the rth row and cth column.

3 4
4 0
0 1 .

By Theorem 3.2, the isomorphism H∗(GrSLn) ∼= Z[h1, . . . , hn−1] of Theorem 3.1
sends ξw to the k-Schur function s

(n−1)
b(w) . Therefore, ξdi �→ sRi under the isomorphism

of Theorem 3.1. This isomorphism extends to a localized isomorphism

H∗(GrSLn)[ξ−1
tλ

| λ ∈ Q̃] ∼= Z[h1, . . . , hn−1][s−1
R1

, . . . , s−1
Rn−1

](5.1)

under which ξtω∨
i

= ξ−1
−tω∨

i

�→ 1/sRi . We denote by Φ′ the isomorphism

QH∗(Fln)[q−1
1 , q−1

2 , . . . , q−1
n−1] → Z[h1, . . . , hn−1][s−1

R1
, . . . , s−1

Rn−1
]

given by composing Theorem 5.1 with (5.1). By the above discussion we have
Φ′(qω∨

i
) = 1/sRi .

Recall that Φ is defined before Theorem 1.1.

Proposition 5.1. We have Φ = Φ′, where both are considered as algebra maps from
QH∗(Fln)[q−1

i ] to Z[h1, . . . , hn−1][s−1
Ri

].

Proof. It suffices to check equality on algebra generators qi and x1 + · · ·+ xi. For qi,
defining ω∨

0 = ω∨
n = 0 we have α∨

i = −ω∨
i+1 + 2ω∨

i − ω∨
i−1. Therefore

Φ′(qi) = Φ′(qα∨
i
) =

sRi+1sRi−1

s2
Ri

= Φ(qi)(5.2)

for 1 ≤ i ≤ n − 1. We also have

Φ′(x1 + · · · + xi) = Φ′(Eq
1(i)) =

h⊥
1 Ri

Ri
= Φ(x1 + · · · + xi),

where we have used Proposition 5.2 for λ a column of size i. �

5.3. Quantum Schur symmetric polynomials. For a partition λ = (λ1, . . . , λm)
define the quantum Schur function

Sq
λ(x1, . . . , xm) = det(Eq

λ′
i−i+j(x1, . . . , xm)).(5.3)

Proposition 5.2. For λ1 ≤ n − m, we have

Φ′(Sq
λ(x1, . . . , xm)) =

s⊥λ′sRm

sRm

.
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Proof. Let 1 ≤ m ≤ n − 1 and λ a partition such that �(λ) ≤ m and λ1 ≤ n − m,
so that λ ⊂ Rn−m. Let wλ,m be the unique m-Grassmannian permutation in Sn

of shape λ: in one line notation, wλ,m starts with 1 + λm, 2 + λm−1, . . . , m + λ1,
and ends with the complementary numbers in increasing order. It is known that
sλ(x1, . . . , xm) = det(eλ′

i−i+j) is the ordinary Schubert class of the m-Grassmannian
permutation wλ,m in H∗(Gr(m, n)). Quantizing this relation (that is, using [1]) yields
σwλ,m = det(Eq

λ′
i−i+j) = Sq

λ(m). We have

Φ′(Sq
λ(m)) = Φ′(σwλ,m) = ξwλ,mt−ω∨

m
ξ−1
t−ω∨

m

.

By direct computation, wλ,mt−ω∨
m

= b−1(λ∨) where λ∨ is the partition obtained by
taking the complement of λ in Rn−m and then taking the transpose. Therefore,

Φ′(Sq
λ(m)) =

sλ∨

sRm

.

�

6. Explicit computation of λ(w)

We now describe the map w �→ λ(w) of Theorem 1.1 explicitly. For simplicity of
notation, we first assume that w ∈ Sn satisfies w(1) = 1.

Let ci = sn−i · · · sn−2sn−1 ∈ Sn for 1 ≤ i ≤ n−1. Then there is a unique sequence
(m1, m2, . . . , mn−1) of integers such that 0 ≤ m1 ≤ n − 2, 0 ≤ m2 ≤ n − 3, . . . ,
0 ≤ mn−2 ≤ 1 such that

w = cm1
n−2 · · · cmn−3

2 c
mn−2
1 .

Then λ(w) is the (n−1)-irreducible bounded partition λ with mi equal to the number
of parts of size i. The following example shows how to obtain mi from w algorithmi-
cally. Another description of w in terms of the inversion set of w is given in the proof
of Lemma 6.1.

Example 6.1. Let n = 6 and λ = (4, 3, 2, 2, 2, 1, 1) so that m1 = 2, m2 = 3, m3 = 1,
m4 = 1. We have

w = (s2s3s4s5)2(s3s4s5)3(s4s5)1(s5)1.

In one line notation w = [1, 4, 3, 6, 5, 2]. To go from w to λ(w), we start with
[1, 2, 3, 4, 5, 6] and must obtain 4 in position 2. Therefore we must left circular shift
twice in the last five positions, that is, m1 = 2. We obtain [1, 4, 5, 6, 2, 3]. Next we
must get 3 into position 3, which requires three left circular shifts in the last four
positions, that is, m2 = 3. We obtain [1, 4, 3, 5, 6, 2]. To get 6 to position 4 we need
m3 = 1 and we obtain [1, 4, 3, 6, 2, 5]. Finally to get 5 to position 5 we need m4 = 1
and we obtain [1, 4, 3, 6, 5, 2] as required.

Lemma 6.1. The element y = w
∏

i∈Des(w) t−ω∨
i

lies in Ŝ0
n, and modulo conjugation

by an affine Dynkin diagram rotation, is equal to x ∈ S̃0
n where b(x) = λ(w).

Proof. For 1 ≤ i ≤ n, let desi(w) denote the number of descents of w which lie before
i. In one line notation, one has y(i) = w(i) − desi(w)n. Since y ∈ Ŝ0

n if and only if
y(1) < y(2) < · · · < y(n), the first claim follows.
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To obtain b(x), we use [7, Proposition 8.15]. In the current setting, the proposition
says that we must show

(6.1) λ′
r = #{j < r | y(j) > y(r)},

where we think of y as a bijection from Z to Z when evaluating y(j). For 1 ≤ i < j ≤ n,
define a(i, j) := desj(w) − desi(w) − χ(w(i) > w(j)). The right-hand side (RHS) of
(6.1) is then equal to

∑
j>r a(r, j).

It is straightforward to prove by induction the following characterization of the per-
mutations w = cm1

n−2 · · · cmr−1
n−r : these are exactly the permutations satisfying w(r) <

w(r + 1) < · · · < w(s) > w(s + 1) < w(s + 2) < · · · < w(n) < w(r). In other words,
the word w(r)w(r+1) · · ·w(s) has one cyclic descent. Using this, it is easy to see that
successive multiplication by cn−r increases

∑
j>r′ a(r′, j) by 1 for each r′ ∈ [1, r − 1].

This establishes (6.1). �

To complete the description of λ(w), we remove the condition w(1) = 1. For w ∈ Sn

in one line notation w = [w(1), w(2), . . . , w(n)], define w′ = [w(1)−1 mod n, w(2)−1
mod n, . . . , w(n)−1 mod n] where the mod n function takes values in {1, 2, . . . , n}.
The following result includes a property of quantum Schubert classes, which may be
new.

Proposition 6.1. We have λ(w′) = λ(w) and

qω∨
w−1(1)−1

σw′
= qω∨

w−1(1)
σw,

where qω∨
0

= qω∨
n

= 1.

Proof. One has w′ = sn−1sn−2 · · · s2s1w. Now we have sn−1 · · · s2s1 = wω1
0 = τ1t−ω∨

1
.

We have

Φ(σw′
) = Φ(σw

ω∨
1

0 w) = ξ
w

ω∨
1

0 wtβ

ξ−1
tβ

for sufficiently antidominant β ∈ Q̃. We compute

w
ω∨

1
0 wtβ = w

ω∨
1

0 wt−w−1·ω∨
1
tβ+w−1·ω∨

1
= w

ω∨
1

0 t−ω∨
1
wtβ+w−1·ω∨

1
= τ1wtβ+w−1·ω∨

1
.

It follows that

Φ(σw′
) = Φ(σw)

sRw−1(1)−1

sRw−1(1)

.

Now Des(w′) is obtained from Des(w) by removing w−1(1) − 1 and adding w−1(1);
hence the result follows. �

w λ(w)
(1, 2) ()

w λ(w)
(1, 2, 3) ()
(1, 3, 2) (1)

w λ(w)
(1, 2, 3, 4) ()
(1, 2, 4, 3) (2)
(1, 3, 2, 4) (2, 1)
(1, 3, 4, 2) (1)
(1, 4, 2, 3) (1, 1)
(1, 4, 3, 2) (2, 1, 1)
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w λ(w)
(1, 2, 3, 4, 5) ()
(1, 2, 3, 5, 4) (3)
(1, 2, 4, 3, 5) (3, 2)
(1, 2, 4, 5, 3) (2)
(1, 2, 5, 3, 4) (2, 2)
(1, 2, 5, 4, 3) (3, 2, 2)
(1, 3, 2, 4, 5) (2, 2, 1)
(1, 3, 2, 5, 4) (3, 2, 2, 1)
(1, 3, 4, 2, 5) (3, 1)
(1, 3, 4, 5, 2) (1)
(1, 3, 5, 2, 4) (2, 1)
(1, 3, 5, 4, 2) (3, 2, 1)
(1, 4, 2, 3, 5) (2, 1, 1)
(1, 4, 2, 5, 3) (3, 2, 1, 1)
(1, 4, 3, 2, 5) (3, 2, 2, 1, 1)
(1, 4, 3, 5, 2) (2, 2, 1, 1)
(1, 4, 5, 2, 3) (1, 1)
(1, 4, 5, 3, 2) (3, 1, 1)
(1, 5, 2, 3, 4) (1, 1, 1)
(1, 5, 2, 4, 3) (3, 1, 1, 1)
(1, 5, 3, 2, 4) (3, 2, 1, 1, 1)
(1, 5, 3, 4, 2) (2, 1, 1, 1)
(1, 5, 4, 2, 3) (2, 2, 1, 1, 1)
(1, 5, 4, 3, 2) (3, 2, 2, 1, 1, 1)
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Appendix A. Extending the Peterson isomorphism

In this appendix, we work in the setting of an arbitrary Weyl group W of a simply-
connected algebraic group G. Our notation follows that of [8]. Let I = {1, 2, . . . , r}
and

P∨ =
r⊕

i=1

Zω∨
i , P̃ = {μ ∈ P∨ | 〈μ , αi〉 ≤ 0 for all i ∈ I},

Q∨ =
r⊕

i=1

Zα∨
i , Q̃ = P̃ ∩ Q∨.

Let {σw ∈ QH∗(G/B) | w ∈ W} denote the Schubert basis of the small quantum
cohomology ring of G/B. Let {ξx ∈ H∗(GrG) | x ∈ W 0

af} be the Schubert basis of the
homology ring of the affine Grassmannian of G.
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Lemma A.1. Let w ∈ W and μ ∈ Q∨. Then wtμ ∈ W 0
af if and only if μ ∈ Q̃

and whenever wri < w for some i ∈ I we have 〈μ , αi〉 < 0. In particular, letting
ρ∨ =

∑
i∈I ω∨

i , for any w ∈ W we have wtμ ∈ W 0
af for all μ ∈ Q∨ such that μ+2ρ ∈ Q̃.

Peterson [13] (see also [8]) defined a ring isomorphism

QH∗(G/B)[q−1
1 , . . . , q−1

r ] ∼= H∗(GrG)[ξ−1
tμ

| μ ∈ Q̃]

σwqλ−μ �→ ξwtλ
ξ−1
tμ

(A.1)

for w ∈ W and λ, μ ∈ Q̃ such that wtμ ∈ W 0
af . We wish to give a more precise

description of the denominators that occur in the RHS of (A.1).
Let Aut(Iaf) denote the group of automorphisms of the affine Dynkin diagram.

Let Is = Aut(Iaf) · {0} be the set of special nodes where 0 ∈ Iaf is the distinguished
affine node. There is a bijection Is ∼= P∨/Q∨ such that i �→ −ω∨

i + Q∨ where ω∨
i is

the fundamental coroot for i ∈ Is \ {0} and ω∨
0 = 0. For each i ∈ Is, subtraction by

ω∨
i +Q∨ induces a permutation of Is denoted τi, which extends uniquely to an element

τi ∈ Aut(Iaf), which is called the special automorphism associated with i ∈ Is. It
satisfies τi(i) = 0. There is a group monomorphism P∨/Q∨ → Aut(Iaf) such that
−ω∨

i + Q∨ �→ τi for i ∈ Is. We denote the image of this map by Auts(Iaf), the
subgroup of special automorphisms. We write i �→ i∗ for the element of Aut(Iaf) such
that 0∗ = 0 and w0riw0 = ri∗ for i ∈ I. Equivalently, −w0 ·αi = αi∗ or −w0 ·ω∨

i = ω∨
i∗ ,

or −ω∨
i + Q∨ = ω∨

i∗ + Q∨ for i ∈ Is.
Let We

∼= W � P∨ ∼= Auts(Iaf) � Waf be the extended affine Weyl group. For
w ∈ W and μ ∈ P∨ we have wtμw−1 = tw·μ and for z ∈ Auts(Iaf) and i ∈ Iaf we
have zriz

−1 = rz(i). We use the level zero action of We on P∨ given by utλ ·μ = u ·μ
for λ, μ ∈ P∨ and u ∈ W . Then we have ztμz−1 = tz·μ for all z ∈ We and μ ∈ P∨.
With this notation we have

τi = wωi
0 t−ω∨

i
, for i ∈ Is,(A.2)

where wωi
0 ∈ W is the shortest element in the coset w0Wωi where Wωi is the stabilizer

of ωi and w0 ∈ W is the longest element. In particular, if i = 0 then wω0
0 = id.

For i ∈ I, define di ∈ Waf to be the unique element such that

Auts(Iaf) t−ω∨
i

= Auts(Iaf) di.

Lemma A.2. di ∈ W 0
af . If i ∈ Is,

di = τi∗ wωi∗
0 τ−1

i∗ = τi∗t−ω∨
i

= wωi∗
0 t−ω∨

i −ω∨
i∗

.(A.3)

For general i ∈ I, let j ∈ Is be such that ωi ≡ ωj mod Q∨. Then

di = dj t
w

ωj∗
0 ·(−ω∨

i +ω∨
j )

.(A.4)

Proof. Suppose first that i ∈ Is. Then

t−ω∨
i

= (wωi
0 )−1τi

= τiτ
−1
i (wωi

0 )−1τi

= τi(τi∗w
ωi∗
0 τ−1

i∗ ).

By definition di satisfies (A.3). We now check that di ∈ W 0
af . Using the automorphism

τi∗ we see that this holds if and only if wωi∗
0 is lengthened by right multiplication by
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rk for all k �= i∗. This is true for k = 0, since wωi∗
0 ∈ W and true for k ∈ I \ {i∗} by

definition. So di ∈ W 0
af .

Let i ∈ I be general with j ∈ Is and β ∈ Q∨ such that ω∨
i = ω∨

j + β. We have

t−ω∨
i

= tβ t−ω∨
j

= tβ τj dj

= τj tτj∗ ·β dj

= τj t
w

ωj∗
0 ·β dj .

By definition (A.4) holds. We have di ∈ W 0
af essentially because the factorization

(tβ)(t−ω∨
j
) is length additive. �

Say that w ∈ W 0
af is i-reducible for i ∈ I, if �(w) = �(wdi) + �(di). Say that

w ∈ W 0
af is irreducible if it is not i-reducible for any i ∈ I.

Proposition A.1. H∗(GrG)[ξ−1
tμ

| μ ∈ Q̃] has Z-basis given by ξw

∏
i∈I ξei

di
for w ∈

W 0
af irreducible and ei ∈ Z for i ∈ I.

Lemma A.3. Suppose w ∈ W 0
af is i-reducible. Let j ∈ Is be such that ω∨

i + Q∨ =
ω∨

j + Q∨. Then τjwdiτ
−1
j ∈ W 0

af and

ξw = ξτjwdiτ
−1
j

ξdi .

Magyar has a criterion [12, 4.2] for finding the largest product of elements ξdi that
factor out of ξw for w ∈ W 0

af .
Define W 0

e be the set of elements of minimum length in their cosets in We/W .
Then W 0

e = Auts(Iaf) � W 0
af . Note that W 0

e ∩P∨ = P̃ . For x ∈ W 0
e let x = zy where

z ∈ Auts(Iaf) and y ∈ W 0
af . Then define ξx ∈ H∗(GrG) by

ξx = ξy.(A.5)

In particular, for all i ∈ Is,

ξt−ω∨
i

= ξτidi = ξdi .(A.6)

For μ ∈ P∨ let λ ∈ Q∨ and i ∈ Is be the unique elements such that μ = ω∨
i + λ.

Then define qμ ∈ QH∗(G/B) by

qμ = qλ qω∨
i

= qλ σw0
ωi

.(A.7)

One may show that qλqμ = qλ+μ for all λ, μ ∈ P∨. We may extend the notation of
Peterson’s isomorphism by writing

σwqμ−λ �→ ξwtμξ−1
tλ

(A.8)

where λ, μ ∈ P̃ are such that wtμ ∈ W 0
e .
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