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BIFURCATION VALUES AND MONODROMY OF MIXED
POLYNOMIALS

Ying Chen and Mihai Tibăr

Abstract. We study the bifurcation values of real polynomial maps f : R
2n → R

2,
which reflect the lack of asymptotic regularity at infinity. We formulate real counter-

parts of some structure results, which have been previously proved in case of complex
polynomials by Kushnirenko, Némethi and Zaharia and other authors, emphasizing the
typical real phenomena that occur.

1. Introduction

For a complex polynomial function f : C
n → C, it is well known that there is a C∞

locally trivial fibration f| : C
n \ f−1(Λ) → C \ Λ over the complement of some finite

subset Λ ⊂ C; see e.g. [Va, Ve]. The minimal such Λ is called the set of bifurcation
values, or the set of atypical values, and shall be denoted by B(f). It was studied in
several papers, such as [Br1, Br2, Ne1, NZ1, ST, Pa] etc. Besides the critical values of
f , B(f) may contain other values due to the asymptotical “bad” behaviour at infinity.

If one keeps only the real algebraic structure and views f as a map f : R
2n → R

2, it
is natural to ask what can be still proved. We study the bifurcation locus of such real
polynomial maps by regarding them as real maps C

n → C, called “mixed polynomials”
by Mutsuo Oka, who has studied in a recent series of papers [Oka2, Oka3, Oka1] the
topology of germs of mixed polynomials and mixed hypersurfaces.

For a polynomial map F : R
m → R

p, m > p, the bifurcation locus B(F ) is
the minimal set such that F is a C∞ locally trivial fibration over R

p \ B(F ). For
m = 2 and p = 1 there exists a characterization of B(F ), cf, [TZ], which is more
involved than the one of the corresponding complex setting, cf. [HL]. For higher
p > 1, by using Rabier’s [Ra] regularity condition at infinity, Kurdyka, Orro and
Simon [KOS] found a closed semi-algebraic set K(F ) including B(F ) and called it
the set of generalized critical values. In this paper, we work with the ρ-regularity at
infinity, a condition derived from Milnor’s local condition. It allows us to exhibit a
certain semi-algebraic closed set S(f) of asymptotic “bad” values, which estimates
from above the set of atypical values at infinity and is related to the set K∞(f)
introduced in [KOS]. Namely, we prove in Proposition 2.2 and Theorem 2.2 that one
has the inclusions B(f) ⊂ S(f)∪ f(Singf) ⊂ K(f), where the second one appears to
be strict. Moreover, the inclusion S(f) ⊂ K∞(f) may be strict in general, as shown
by an example in Remark 2.1.
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In order to get a more effective estimation of S(f), we focus to the class of Newton
non-degenerate mixed polynomials, as defined by Oka [Oka3]. In case of a Newton
non-degenerate holomorphic polynomial f : C

n → C with f(0) = 0, Némethi and
Zaharia [NZ1, Theorem 2] defined the set B of “bad faces” of the support supp(f)
and showed the inclusion:

(1.1) B(f) ⊂ f(Singf) ∪ {0} ∪ ∪
Δ∈B

fΔ(SingfΔ ∩ C
∗n).

In the mixed setting, the bifurcation set turns out to be of real dimension ≤ 1.
After re-defining “bad faces”, see Definition 3.3 and Remark 3.2, we get a similarly
looking estimation of S(f):

Theorem 1.1. Let f : R
2n → R

2 be a mixed polynomial, which depends effectively
on all the variables and let f(0) = 0. If f is Newton non-degenerate then:

(a) S(f) ⊂ {0} ∪ ⋃

Δ∈B

fΔ(Sing fΔ ∩ C
∗n).

(b) If f is moreover Newton strongly non-degenerate then f(Sing f) and S(f) are
bounded.

We present in Section 4.4 several examples, some of them illustrating the differences
to the holomorphic setting. In particular, Example 4.4 shows a phenomenon which
could not occur before (i.e. for holomorphic polynomials): a bad face that is in the
same time a non-degenerate face of the Newton boundary, but which contributes to
the bifurcation locus.

It was proved in [NZ1, Proposition 6] that the inclusion Theorem 1.1(a) becomes
an equality whenever n = 2. Example 4.2 shows that this is no more the case in
the mixed setting. In the same example, we compute explicitly the bifurcation set
B(f) (which appears to be a real one-dimensional closed curve) and particularly the
change of the topology of the fibres when crossing it. This change of topology and in
particular the explicit description of B(f) are given in Example 4.3 too.

The proof of Theorem 1.1 in Section 4 provides in addition some more precise
information on how to detect the values c �= 0 such that the fibre f−1(c) contains
unbounded branches of M(f), see Remark 4.2. We also draw some consequences of
Theorem 1.1 for the convenient and the weighted-homogeneous mixed functions.

One may remark that Theorem 1.1(b) implies the existence of a monodromy
fibration at infinity which is quite unexpected in the real setting. This includes the
special property that the image of f contains the complement of some disks in R

2.
We then prove the stability of the monodromy at infinity within a family of mixed
polynomials with constant Newton boundary at infinity. This represents not only an
extension of the corresponding result in the holomorphic case [NZ2, Theorem 17], [Ph,
Theorem 1.1], but also yields the following result, Corollary 5.1: if f and g are two
Newton strongly non-degenerate mixed polynomials with the same Newton boundary
at infinity Γ+ and such that the restrictions fΓ+ and gΓ+ are holomorphic, then their
monodromies at infinity are isotopic. This holds in spite of the fact that in the mixed
setting, unlike in the complex setting, the set of Newton (strongly) non-degenerate
polynomials is neither connected nor dense, see Section 3.3.
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2. Atypical values of mixed polynomials

In the setting of holomorphic polynomials, it is well known that in certain cases f
has no atypical values at infinity, for instance: convenient polynomials with non-
degenerate Newton principal part at infinity” (Kushnirenko [Ku]), see Section 3.1,
polynomials that are “tame” (Broughton [Br1, Br2]), “M-tame” (Némethi [Ne1, Ne2]),
“cohomologically tame” (Sabbah, Némethi [NS, Sa]). For n = 2 one has several
characterizations of the atypical values at infinity, see e.g. [HL, Du, Ti1]. In higher
dimensions the problem is still open and one looks for some significant set A ⊃
B(f), which bounds B(f) reasonably well. For instance, in case of non-convenient
but still Newton non-degenerate polynomials, Némethi and Zaharia [NZ1] found an
interesting approximation A ⊃ B(f) in terms of certain faces of the support of f ; see
below. This provides a large class of polynomials for which we control rather well the
bifurcation locus.

Let us now leave the holomorphic setting. We first set some notations and
definitions, then show that the fibres of a mixed polynomial f , which are asymp-
totically tangent to the spheres may cause atypical behaviour at infinity and that the
ρ-regularity is weaker than some other regularity conditions at infinity.

If f := (g, h) : R
2n → R

2, where g(x1, . . . , yn) and h(x1, . . . , yn) are real poly-
nomial functions, then, by writing z = x + iy ∈ C

n, where zk = xk + iyk for
k = 1, . . . , n, one gets a polynomial function f : C

n → C in variables z and z̄, namely
f(z, z̄) := g(z+z̄

2 , z−z̄
2i ) + ih(z+z̄

2 , z−z̄
2i ), and reciprocally. The notation f(z, z̄) instead

of simply f(z) is useful since we shall often use derivation with respect to z and z̄,
such as in the following notations: df :=

(
∂f
∂z1

, . . . , ∂f
∂zn

)
, d̄f :=

(
∂f
∂z̄1

, . . . , ∂f
∂z̄n

)
, and

df :=
(

∂f̄
∂z̄1

, . . . , ∂f̄
∂z̄n

)
is the conjugate of df . We shall therefore write f as a mixed

polynomial1, after Oka [Oka3]:

f(z) = f(z, z̄) =
∑

ν,μ

cν,μzν z̄μ

where cν,μ ∈ C, zν := zν1
1 , . . . , zνn

n for ν = (ν1, . . . , νn) ∈ N
n and z̄μ := z̄μ1

1 , . . . , z̄μn
n

for μ = (μ1, . . . , μn) ∈ N
n.

Lemma 2.1. Let f : C
n → C be a mixed polynomial. The intersection of the fibre

f−1(f(z, z̄)) with the sphere S2n−1
r of radius r = ‖z‖ is not transversal at z ∈ C

n\{0}
if and only if there exist μ ∈ C

∗, λ ∈ R such that:

λz = μdf(z, z̄) + μ̄d̄f(z, z̄).

Proof. Let f : C
n = R

2n −→ R
2, f(z, z̄) = (Ref(z, z̄), Imf(z, z̄)), and let us denote

v := (x1, y1, . . . , xn, yn). If f−1(f(z, z̄)) does not intersect transversely the sphere
S2n−1

r at z, then there exist α, β, γ ∈ R, |α| + |β| + |γ| �= 0 such that:

γv = αdRef(v) + βdImf(v).

By displaying this equality we easily get γzk = (α+βi) ∂f̄
∂z̄k

+(α−βi) ∂f
∂z̄k

for every
k ∈ {1, . . . , n}. Our claim follows by taking λ = γ and μ = α + βi. �

1The concept appears in the work by A’Campo [A’C] and by Ruas, Seade and Verjovsky [RSV]
who actually studied a subclass of such mixed polynomials. One may look up [Oka2, Oka3, Oka1]

for more references.
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The singular locus Singf of a mixed polynomial f is by definition the set of critical
points of f as a real-valued map. From Lemma 2.1, by taking λ = 0 and dividing by
μ, we get the following characterization:

Lemma 2.2. [Oka2, Proposition 1] One has z ∈ Singf if and only if there exist
μ ∈ C, |μ| = 1, such that df(z, z̄) = μd̄f(z, z̄).

2.1. ρ-regularity.

Definition 2.1. The Milnor set of a mixed polynomial f is

M(f) =
{
z ∈ C

n | ∃λ ∈ R and μ ∈ C
∗, such that λz = μdf(z, z̄) + μ̄d̄f(z, z̄)

}
.

In case of holomorphic f , M(f) was called “Milnor set” in [NZ1]. By its definition
and by its geometric interpretation, M(f) is a closed semi-algebraic subset of C

n and
this fact will be used in the following. Lemma 2.1 gives the geometric interpretation
of M(f) as the critical locus of the map (f, ρ), where ρ : R

2n → R≥0 is the Euclidean
distance function. Like in the holomorphic setting [NZ1], one may define:

Definition 2.2. The set of asymptotic ρ-non-regular values of a mixed polynomial
f is

S(f) =
{

c ∈ C |∃ {zk}k∈N ⊂ M(f), lim
k→∞

‖zk‖ = ∞ and lim
k→∞

f(zk, zk) = c

}

.

A value c �∈ S(f) will be called an asymptotic ρ-regular value2. The condition
S(f) = ∅ for a holomorphic f was called “M-tameness” in [NZ1, NZ2, NS].

In order to investigate the properties of S(f) we need a version of the curve selection
lemma at infinity. Milnor [Mi] has proved this lemma at points of the closure of a
semi-analytic set. Némethi and Zaharia [NZ1, NZ2], showed how to extend the result
at infinity at some fibre of a holomorphic polynomial function. We give here a more
general statement including the case when the value of |f | tends to infinity. Since the
proof is similar to the one in [NZ2] and uses Milnor’s result, we may safely leave it to
the reader.

Lemma 2.3. Curve selection Lemma at infinity. Let U ⊆ R
n be a semi-analytic set.

Let g : R
n −→ R be a polynomial function. If there is {yk}k∈N ⊂ U such that lim

k→∞
‖yk‖ = ∞ and lim

k→∞
g(yk) = c, where c ∈ R, c = ∞ or c = −∞, then there exists a

real analytic path x(t) = x0tα +x1tα+1 +h.o.t. defined on some small enough interval
]0, ε[ with x(t) ∈ U , such that x0 �= 0, α < 0, α ∈ Z, and that limt→0 g(x(t)) = c.

We have the following structure result:

Proposition 2.1. If f : C
n → C is a mixed polynomial, then S(f) and f(Sing f) ∪

S(f) are closed semi-algebraic sets.

Proof. S(f) may be presented as the projection of a semi-algebraic set. Indeed,
consider the embedding of C

n into C
n+1 × C given by the semi-algebraic map:

ϕ : (z1, . . . , zn) �→
(

z1√
1 + ‖z‖2

, . . . ,
zn√

1 + ‖z‖2
,

1
√

1 + ‖z‖2
, f(z, z̄)

)

.

2The name “ρ-regularity’ was used in the setting of real and complex polynomial functions in

[Ti1, Ti2].
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Then U1 := ϕ(M(f)) ∩ {(x1, . . . , xn+1, c) ∈ C
n+1 × C | xn+1 = 0} is a semi-algebraic

set and S(f) = π(U1), where π : C
n+1 × C → C is the projection. Therefore S(f) is

semi-algebraic, by the Tarski–Seidenberg theorem.
Let now c ∈ S(f). There exists a sequence {ci}i ⊂ S(f) such that lim

i→∞
ci = c. For

any i, we have by definition a sequence {zi,n}n ⊂ M(f) such that limn→∞ ‖zi,n‖ = ∞
and limn→∞ f(zi,n, z̄i,n) = ci. Take a sequence {ri}i ⊂ R+ such that limi→∞ ri = ∞.
For each i there exists n(i) ∈ N such that zi,n > ri implies |f(zi,n, z̄i,n) − ci| < 1

ri
,

∀n � n(i). Setting zk := zk,n(k) we get a sequence {zk}k such that lim
k→∞

‖zk‖ = ∞
and lim

k→∞
f(zk, z̄k) = c, which shows that c ∈ S(f).

Let now a ∈ f(Singf) ∪ S(f). Since we have proved that S(f) is closed, we
may assume that a ∈ f(Singf). Then there exists a sequence {zn}j∈N ⊂ Singf ,
such that limj→∞ f(zj , z̄j) = a. If {zj}j∈N is not bounded, then we may choose
a subsequence {zjk

}k∈N such that limk→∞ zjk
= ∞ and limk→∞ f(zjk

, z̄jk
) = a.

Since Singf ⊂ M(f), it follows that a ∈ S(f), see also Remark 4.2. In the other
case, if {zj}j∈N is bounded, then we may choose a subsequence {zjk

}k∈N such that
limk→∞ zjk

= z0 and limk→∞ f(zjk
, z̄jk

) = a. Since Singf is a closed algebraic set,
this implies z0 ∈ Singf , so a = f(z0, z̄0) ∈ f(Singf). �

2.2. KOS-regularity. For holomorphic polynomials one has the Malgrange regular-
ity condition, mentioned by F. Pham and used in many papers; see e.g. [Pa, ST]. This
is known to be more general than “tame” ([Br1, Br2]) or “quasi-tame” ([Ne1, Ne2]).
It was extended to real maps by Kurdyka, Orro and Simon. These authors define in
[KOS] the set of generalized critical values K(F ) = F (SingF )∪K∞(F ) of a differen-
tiable semi-algebraic map F : R

n → R
k, where

K∞(F ) := {y ∈ R
k | ∃{xl}l ⊂ R

n, ‖xl‖ → ∞,

F (xl) → y and ‖xl‖ν(dF (xl)) → 0}
is the set of asymptotic critical values of F . In this definition they use the following
distance function:

(2.2) ν(A) := inf
‖ϕ‖=1

‖A∗ϕ‖

for A ∈ L(Rn, Rk), where A∗ denotes its transpose. In the holomorphic setting one
has ν(df(x)) = ‖ grad f(x)‖. The main result of [KOS] is the following:

Theorem 2.1. [KOS, Theorem 3.1]. Let F : R
n → R

k be a differentiable semi-
algebraic map. Then K(F ) is a closed semi-algebraic set of dimension less than k.

Moreover, if F is of class C2, then F : R
n \ F−1(K(F )) → R

k \ K(F ) is a locally
trivial fibration over each connected component of R

k \ K(F ). In particular, the set
B(F ) of bifurcation values of F is included in K(F ).

2.3. The fibration theorem. By the next two results we prove that S(f) contains
the atypical values due to the asymptotical behaviour and that S(f) is contained in
K∞(f).

Proposition 2.2. Let f : C
n → C be a mixed polynomial. Then S(f) ⊂ K∞(f).
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Remark 2.1. The above inclusion is strict in general. This holds already in the
holomorphic setting; to prove it, we may use the examples constructed by Păunescu
and Zaharia in [PZ], as follows. Let fn,q : C

3 → C, fn,q(x, y, z) := x − 3x2n+1y2q +
2x3n+1y3q + yz, where n, q ∈ N \ {0}. These polynomials are ρ-regular at infinity
and therefore we have S(fn.q) = ∅. It was also shown in [PZ] that fn,q satisfies
Malgrange’s condition for any t ∈ C if and only if n ≤ q. Therefore, in case n > q, we
have ∅ = S(fn.q) � K∞(fn.q) �= ∅.
Proof of Proposition 2.2. Let (g, h) be the corresponding real map of the mixed poly-
nomial f and denote ν(x) := ν(d(g, h)(x)). Let us first show the equality:

(2.3) ν(x) = inf
μ∈S1

‖μdf(z, z̄) + μ̄d̄f(z, z̄)‖.

By the definition (2.2) of ν(x), we have ν(x) = inf
(a,b)∈S1

‖adg(x)+ bdh(x)‖. But the

proof of Lemma 2.1 shows the equality: ‖adg(x)+ bdh(x)‖ = ‖μdf(z, z̄)+ μ̄d̄f(z, z̄)‖
for μ = a + ib ∈ S1. Our claim is proved.

Let then c ∈ S(f). By Definition 2.2 and Lemma 2.3, there exist real analytic
paths, z(t) in M(f), λ(t) in R and μ(t) in C

∗, defined on a small enough interval
]0, ε[, such that limt→0 ‖z(t)‖ = ∞ and limt→0 f(z(t), z̄(t)) = c and that:

(2.4) λ(t)z(t) = μ(t)df(z(t), z̄(t)) + μ̄(t)d̄f(z(t), z̄(t)).

Let us assume that λ(t) �≡ 0. Dividing (2.4) by ‖μ(t)‖ yields:

(2.5) λ0(t)z(t) = μ0(t)df(z(t), z̄(t)) + μ̄0(t)d̄f(z(t), z̄(t)),

where λ0(t) := λ(t)
‖μ(t)‖ and μ0(t) := μ(t)

‖μ(t)‖ ; therefore β := ordt(μ0(t)) = 0.

Since lim
t→0

f(z(t), z̄(t)) = c, we have α := ordt
d
dtf(z(t), z̄(t)) ≥ 0. Then the following

computation:

μ̄0(t)
d
dt

f(z(t), z̄(t)) + μ0(t)
d
dt

f̄(z(t), z̄(t))

=
〈

μ0(t)df(z(t), z̄(t)) + μ̄0(t)d̄f(z(t), z̄(t)),
d
dt

z(t)
〉

+
〈

d
dt

z(t), μ0(t)df(z(t), z̄(t)) + μ̄0(t)d̄f(z(t), z̄(t))
〉

by(2.5)
= λ0(t)

(〈

z(t),
d
dt

z(t)
〉

+
〈

d
dt

z(t), z(t)
〉)

= λ0(t)
d
dt

‖z(t)‖2

shows that ordt(λ0(t) d
dt‖z(t)‖2) ≥ α + β ≥ 0. But since ordt(z(t)) < 0, this implies

that limt→0 |λ0(t)|‖z(t)‖2 = 0. Note that this limit holds true for λ(t) ≡ 0 too.
From the last limit, by using (2.5), we obtain:

(2.6) lim
t→0

‖z(t)‖‖μ0(t)df(z(t), z̄(t)) + μ̄0(t)d̄f(z(t), z̄(t))‖ = 0,

which, by (2.3), implies lim
t→0

‖x(t)‖‖ν(x(t))‖ = 0, showing that c ∈ K∞(f). �
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Theorem 2.2. (Fibration theorem). Let f : C
n → C be a mixed polynomial. Then

the restriction:

f| : C
n \ f−1(f(Singf) ∪ S(f)) → C \ f(Singf) ∪ S(f)

is a locally trivial C∞ fibration over each connected component of C\(f(Singf)∪S(f)).
In particular, we have the inclusion B(f) ⊂ f(Singf) ∪ S(f).

Remark 2.2. In the setting of mixed functions, our Theorem 2.2 extends [Ra, The-
orem 6.1] and [KOS, Theorem 3.1] since, by our Proposition 2.2 and Remark 2.1, we
have S(f) � K∞(f) and therefore we get a sharper approximation of the bifurcation
set B(f). While our proof does not explicitly bound the dimension of S(f), it fol-
lows from the preceding inclusion and from [KOS, Theorem 3.1] that S(f) has real
dimension less than 2.

Proof of the Fibration theorem. Let c �∈ f(Singf)∪ S(f). Then there is a closed disk
D centred at c such that D ⊂ C \ f(Singf) ∪ S(f), since the latter is an open set
by Proposition 2.1. Let us first observe that there exists R0 � 0 such that M(f) ∩
f−1(D) \ B2n

R0
= ∅. Indeed, if this were not true, then there would exist a sequence

{zk}k∈N ⊂ f−1(D) ∩ M(f) such that lim
k→∞

‖zk‖ = ∞. Since D is compact, there is a

sub-sequence {zki}i∈N ⊂ M(f) and c0 ∈ D such that lim
i→∞

‖zki‖ = ∞ and lim
i→∞

f(zki) =

c0, which contradicts D ⊂ C \ S(f).
We claim that the map:

(2.7) f| : f−1(D) \ B2n
R0

→ D

is a trivial fibration on the manifold with boundary (f−1(D) \B2n
R0

, f−1(D)∩S2n−1
R ),

for any R ≥ R0. Indeed, this is a submersion by hypothesis but it is not proper,
so one cannot apply Ehresmann’s theorem directly. Instead, we consider the map
(f, ρ) : f−1(D) \ B2n

R0
→ D × [R0,∞[. As a direct consequence of its definition, this

is a proper map. It is moreover a submersion since Sing(f, ρ) ∩ f−1(D) \ B2n
R0

= ∅
by the above remark concerning the set M(f), which is nothing else but Sing(f, ρ).
We then apply Ehresmann’s theorem to (f, ρ) and conclude that it is a locally trivial
fibration, hence a trivial fibration over D × [R0,∞[. It follows that our map (2.7) is
a trivial fibration too since it is the composition π ◦ (f, ρ), where π : D× [R0,∞[→ D
denotes the trivial projection.

Next observe that, since D ∩ f(Singf) = ∅, the restriction:

(2.8) f| : f−1(D) ∩ B̄2n
R0

→ D

is a proper submersion on the manifold with boundary (f−1(D) ∩ B̄2n
R0

, f−1(D) ∩
S2n−1

R0
) and therefore a locally trivial fibration by Ehresmann’s theorem, hence a

trivial fibration over D.
We finally glue the two trivial fibrations (2.8) and (2.7) by the standard

procedure. �
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3. Bifurcation values of Newton non-degenerate mixed polynomials

We prove an estimation for the set of ρ-non-regular values at infinity under the con-
dition of Newton non-degeneracy of the mixed polynomial. We first introduce the
necessary notions, then state the result. Let C

∗n := (C∗)n.

3.1. Newton boundary at infinity and non-degeneracy. Let f be a mixed
polynomial:

Definition 3.1. We call supp(f) = {ν + μ ∈ N
n | cν,μ �= 0} the support of f . We

say that f is convenient if the intersection of supp(f) with each coordinate axis is
non-empty. We denote by supp(f) the convex hull of the set supp(f) \ {0}. The
Newton polyhedron of a mixed polynomial f , denoted by Γ0(f), is the convex hull of
the set {0} ∪ supp(f). The Newton boundary at infinity, denoted by Γ+(f), is the
union of the faces of the polyhedron Γ0(f), which do not contain the origin. By “face”
we mean face of any dimension.

Definition 3.2. For any face Δ of supp(f), we denote the restriction of f to Δ ∩
supp(f) by fΔ :=

∑
ν+μ∈Δ∩supp(f) cν,μzν z̄μ. The mixed polynomial f is called non-

degenerate if Sing fΔ ∩ f−1
Δ (0) ∩ C

∗n = ∅, for each face Δ of Γ+(f). Following Oka’s
terminology [Oka3], we say that f is Newton strongly non-degenerate if Sing fΔ ∩
C

∗n = ∅ for any face Δ of Γ+(f).

The later condition is stronger and in general not equivalent to the former, but
they coincide in the holomorphic setting since fΔ is quasi-homogeneous of non-zero
degree.

Kushnirenko [Ku] had first introduced the Newton boundary of holomorphic germs,
which we denote by Γ− and which is different from Γ+. Recently, Mutsuo Oka took
over the program in the setting of mixed function germs and proved, among other
results, the following local fibration theorem:

Theorem 3.1. [Oka3, Lemma 28, Theorem 29]. Let f : (Cn, 0) → (C, 0) be the germ
of a mixed polynomial which has a strongly non-degenerate and convenient Newton
boundary Γ−(f). Then f has an isolated singularity at 0 and the mapping:

f| : B2n
ε ∩ f−1(D∗

δ ) → D∗
δ .

is a locally trivial fibration, for any small enough ε > 0 and 0 < δ � ε.

In the setting of holomorphic polynomials, similar objects were studied by
Broughton [Br2]. He proved for instance that if f is a complex polynomial with
Newton non-degenerate and convenient polyhedron Γ+(f), then S(f) = ∅. Later,
Némethi and Zaharia [NZ1] dropped the convenience condition, defined the set B of
“bad faces” of suppf and proved the result quoted in Section 1.

Remark 3.1. If f satisfies the conditions of Theorem 1.1 except for f(0) = 0, then
we replace f by h = f − f(0) and apply to it Theorem 1.1. Since df(z, z̄) = dh(z, z̄)
and d̄f(z, z̄) = d̄h(z, z̄), we get M(f) = M(h) and c ∈ S(f) ⇔ c − f(0) ∈ S(h).

Before giving the proof in Section 4, we need to define the ingredients and prove
several preliminary facts.
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3.2. The “bad” faces of the support. We consider a mixed polynomial f : C
n →

C, f �≡ 0.

Definition 3.3. A face Δ ⊆ supp(f) is called bad whenever:
(i) there exists a hyperplane H ⊂ R

n with equation a1x1 + · · ·+anxn = 0 (where
x1, . . . , xn are the coordinates of R

n) such that:
(a) there exist i and j with ai < 0 and aj > 0,

(b) H ∩ supp(f) = Δ.
Let B denote the set of bad faces of supp(f). A face Δ ∈ B is called strictly
bad if it satisfies in addition the following condition:

(ii) the affine subspace of the same dimension spanned by Δ contains the origin.

Remark 3.2. In our Theorem 1.1, we use the above definition for “bad faces”. For
holomorphic mappings, the set B of bad faces used in the main formula (1.1) of [NZ1]
corresponds to our definition of “strictly bad faces”.

Let us observe that not all bad faces are strictly bad. Nevertheless, our Theo-
rem 1.1(a) reduces in case of complex polynomials to precisely the statement (1.1) of
[NZ1]. If Δ is a bad face which is not strictly bad, then it follows from the definitions
that Δ is a face of Γ+(f). If we assume that f is non-degenerate, then Δ is a non-
degenerate face. If fΔ is moreover holomorphic, then it follows that Δ is strongly
non-degenerate. Indeed, there exists a hyperplane V not passing through 0 and such
that V ∩ supp(f) = Δ, thus fΔ is also weighted homogeneous of degree �= 0 and
therefore SingfΔ ⊂ {fΔ = 0}. This shows in particular that in case of holomorphic
f , the bad faces which are not strictly bad do not contribute with non-zero values in
the formula of our Theorem 1.1(a), hence indeed only the strictly bad faces may play
a role.

The following lemma will be used in the proof of our theorem.

Lemma 3.1. Let lp(x) =
∑n

i=1 pixi be a linear function such that p = min
1≤i≤n

{pi} < 0.

We consider the restriction of lp(x) to supp(f) and denote by Δp the unique maximal
face of supp(f) (with respect to the inclusion of faces) where lp(x) takes its minimal
value dp. Let dp ≤ 0.

(a) If dp < 0, then Δp is a face of Γ+(f).
(b) If dp = 0, then either Δp is a face of Γ+(f) or Δp satisfies condition (ii) of

Definition 3.3.

Proof. Let us first remark that from Definition 3.1, we have Γ0(f) = cone0(Γ+(f)),
where cone0(A) denotes the compact cone over the set A with vertex the origin. For
each face Δ of Γ0(f), we have that either Δ is a face of Γ+(f) or Δ � 0 and in this
case we have Δ = cone0(Δ ∩ supp(f)) = cone0(Δ ∩ Γ+(f)).

Next, considering the restriction of lp(x) to Γ0(f), we denote by Δ1 the maximal
face of Γ0(f) where lp(x) takes its minimal value d. Note that lp(x) can not attain
its minimal value d at interior points of Γ0(f). Since Γ+(f) ⊂ supp(f) ⊂ Γ0(f), we
have d ≤ dp.

(a) If dp < 0 then it follows by our initial remark that Δ1 is a face of Γ+(f), since
otherwise we have 0 ∈ Δ1 and d = 0. We therefore get Δp = Δ1 ⊂ Γ+(f) and d = dp.



68 YING CHEN AND MIHAI TIBĂR

(b) If dp = 0 and Δ1 is not a face of Γ+(f), then by the same initial remark we
have Δ1 � 0 and therefore d = 0. Since Δ1 is the maximal face of Γ0(f) where lp(x)
takes its minimal value d, we get Δp ⊂ Δ1 ⊂ H, where H denotes the hyperplane
{x ∈ R

n | lp(x) = 0}. We then have Δp = supp(f) ∩ H, Δ1 = Γ0(f) ∩ H, and
therefore Δp = Δ1 ∩ supp(f). Let us assume that Δp does not verify condition
(ii) of Definition 3.3, namely that we have dim cone0(Δp) > dim Δp. This implies
that Δp does not contain any interior point of cone0(Δp). By the initial remark,
Δ1 = cone0(Δ1∩Γ+(f)) = cone0(Δp). Then Δp is a face of Γ+(f), which contradicts
our assumption. �

Let I ⊂ {1, . . . , n}. We shall use the following notations:
C

I = {(z1, . . . , zn) ∈ C
n | zj = 0, j /∈ I}, and similarly R

I
≥0, C

∗I := C
I ∩ C

∗n,
f I := f|CI .

From Definition 3.1, the faces of f I are among the faces of f , so we have the
following:

Remark 3.3. Let f be a mixed Newton (strongly) non-degenerate polynomial. If
I ⊂ {1, 2, . . . , n} is such that f I is not identically zero then:

(1) f I is a mixed Newton (strongly) non-degenerate polynomial.
(2) Γ+(f I) = Γ+(f) ∩ R

I
≥0.

We shall use the following fact for the restriction of f to its bad faces.

Remark 3.4. If a mixed polynomial f is Newton (strongly) non-degenerate then,
for any bad face Δ ⊂ supp(f), fΔ is Newton (strongly) non-degenerate. Indeed, any
face Δ

′
of Γ+(fΔ) is also a subface of Δ, hence a subface of Γ+(f). The Newton

(strong) non-degeneracy of f implies that the restriction fΔ is also Newton (strongly)
non-degenerate.

3.3. Newton non-degeneracy is an open condition. For a fixed polyhedron Γ
which is the Newton boundary at infinity of some mixed polynomial, we may define
the subset Us

Γ := {[c1, c2, . . . , cm] ∈ P
m−1
C

| the polynomial fc(z, z̄) = f(z, z̄, c) =∑m
j=1 cjzμj z̄νj is Newton strongly non-degenerate and Γ+(fc) = Γ}. Similarly we

define the set UΓ ⊃ Us
Γ by just dropping the word “strongly” in the above definition.

Then:

Proposition 3.1. The subsets UΓ ⊂ P
m−1 and Us

Γ ⊂ UΓ of Newton non-degenerate
and, respectively, strongly non-degenerate mixed polynomials, with fixed Newton
boundary Γ at infinity, are semi-algebraic open sets.

Remark 3.5. In the holomorphic setting one has “Zariski-open” instead of “open”
and such a result was proved by Kushnirenko [Ku] as a consequence of the Bertini–
Sard theorem and of the the fact that “strongly non-degenerate” is equivalent to
“non-degenerate”.

Nevertheless in the real setting this proof does not apply and, in general, one does
not have neither the connectedness, nor the density. Let us show by a simple example
that Newton strong non-degeneracy does not insure density. Consider f : C → C,
f(z, z̄) = az2 + bzz̄ + cz̄2, where a, b, c ∈ C. By direct computations using the
homogeneity of f , we get that f is Newton strongly non-degenerate if and only if
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(|a|2 − |c|2)2 > |āb − cb̄|2. This inequality describes a homogeneous open set in C
3,

which is not dense and not connected. Note also that supp(f) is a single point.

Proof of Proposition 3.1. Let us show that Us
Γ is open and semi-algebraic. The idea

of this proof took its inspiration from Oka’s alternate proof in the holomorphic setting
[Oka1, Appendix]. For every face Δ ⊂ Γ we define:

V (Δ) := {(z, c) ∈ C
n × P

m−1 | ∃λ ∈ S1
1 , dfΔ(z, z̄, c) = λd̄fΔ(z, z̄, c)},

V (Δ)∗ := V (Δ) ∩ {(z, c) ∈ C
n × P

m−1 | z1z2 . . . zn �= 0}.

Note that V (Δ) is closed and that V (Δ)∗ = V (Δ). Let us consider the union
V ∗ = ∪Δ⊂ΓV (Δ)∗ and the projection π : C

n × P
m−1 → P

m−1. Showing that Us
Γ is

an open set means to prove that its complement W = π(V ∗) is a closed set. One
observes that W is a semi-algebraic set, since it is the projection of a semi-algebraic
set.

Let c0 ∈ W̄ . By the Curve Selection Lemma, there exists a face Δ0 of Γ and a real
analytic path (z(t), c(t)) ⊂ V (Δ0)∗ defined on a small enough interval ]0, ε[ such that
limt→0 c(t) = c0 and either limt→0 ‖z(t)‖ = ∞ or limt→0 z(t) = z0 ∈ V (Δ0).

Let then zi(t) = ait
pi + h.o.t. for 1 ≤ i ≤ n where ai �= 0, pi ∈ Z and λ(t) =

λ0 + λ1t + h.o.t., where λ0 ∈ S1
1 . Let a := (a1, . . . , an) ∈ C

∗n, P := (p1, . . . , pn) ∈ Z
n

and consider the linear function lP =
∑n

i=1 pixi defined on Δ0. Let Δ1 be the maximal
face of Δ0 where lP takes its minimal value, say this value is dP. We have:

∂fΔ1

∂zi
(a, ā, c(t))tdp−pi + h.o.t. = λ0

∂fΔ1

∂z̄i
(a, ā, c(t))tdp−pi + h.o.t.

By taking the limit c(t) → c0 and focusing on the first terms of the expansions:

dfΔ1(a, ā, c0) = λ0d̄fΔ1(a, ā, c0)

we get that (a, c0) ∈ V (Δ1)∗ ⊂ V ∗, since a ∈ C
∗n, thus c0 ∈ W , which concludes the

proof that W = W̄ .
If in the definition of V (Δ) we add the supplementary equation fΔ = 0, then the

same proof works for UΓ instead of Us
Γ. �

4. Proof of Theorem 1.1, some consequences and examples

4.1. Proof of Theorem 1.1(a). Let c ∈ S(f). By Definition 2.2 and Lemma 2.3,
there exist real analytic paths, z(t) in M(f), λ(t) in R and μ(t) in C

∗, defined on a
small enough interval ]0, ε[, such that limt→0 ‖z(t)‖ = ∞ and limt→0 f(z(t), z̄(t)) = c
and that:

(4.1) λ(t)z(t) = μ(t)df(z(t), z̄(t)) + μ̄(t)d̄f(z(t), z̄(t)).

Consider the expansion of f(z(t), z̄(t)). We have two situations, either:

(4.2) f(z(t), z̄(t)) ≡ c
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or

(4.3) f(z(t), z̄(t)) = c + btδ + h.o.t., where c, b ∈ C, b �= 0, δ ∈ N
∗.

Let I = {i | zi(t) ��≡ 0}, observe that I �= ∅ since lim
t→0

‖z(t)‖ = ∞, and write:

(4.4) zi(t) = ait
pi + h.o.t., where ai �=0, pi ∈ Z, i ∈ I.

By eventually transposing the coordinates, we may assume that I = {1, . . . , m} and
that p = p1 ≤ p2 ≤ · · · ≤ pm. Since lim

t→0
‖z(t)‖ = ∞, this implies p = min

j∈I
{pj} < 0.

We denote a = (a1, . . . , am) ∈ C
∗I , p = (p1, . . . , pm) ∈ Z

m and consider the linear
function lp =

∑m
i=1 pixi defined on supp(f I).

Let us observe that since f(0) = 0, if c �= 0, then supp(f I) is not empty in both
situations (4.2) and (4.3). Let then Δ be the maximal face of supp(f I) where lp takes
its minimal value, say dp. We have:

(4.5) f(z(t), z̄(t)) = f I(z(t), z̄(t)) = f I
Δ(a, ā)tdp + h.o.t.

where dp ≤ ordt(f(z(t), z̄(t)) = 0.
In the following we keep the assumption3 c �= 0. For i ∈ I we have the equalities:
∂f
∂zi

(z(t), z̄(t)) = ∂fI

∂zi
(z(t), z̄(t)) and ∂f

∂z̄i
(z(t), z̄(t)) = ∂fI

∂z̄i
(z(t), z̄(t)). Then we may

write:

∂f

∂zi
(z(t), z̄(t)) =

∂f I
Δ

∂zi
(a, ā)tdp−pi + h.o.t.,(4.6)

∂f

∂z̄i
(z(t), z̄(t)) =

∂f I
Δ

∂z̄i
(a, ā)tdp−pi + h.o.t.

Consider the expansion of λ(t), in case λ(t) �≡ 0, and that of μ(t):

λ(t) = λ0t
γ + h.o.t., where λ0 ∈ R

∗, γ ∈ Z,

μ(t) = μ0t
l + h.o.t., where μ0 �= 0, l ∈ Z.

Using all the expansions we get from (4.1), for any i ∈ I:
(

μ0
∂f I

Δ

∂zi
(a, ā) + μ0

∂f I
Δ

∂z̄i
(a, ā)

)

tdp−pi+l + h.o.t. = λ0ait
pi+γ + h.o.t.

Since λ0ai �= 0, comparing the orders of the two sides in the above formula, we
obtain:

(4.7) μ0
∂f I

Δ

∂zi
(a, ā) + μ0

∂f I
Δ

∂z̄i
(a, ā) =

⎧
⎪⎨

⎪⎩

λ0ai, if dp − pi + l = pi + γ,

0, if dp − pi + l < pi + γ.

3For the case c = 0, we refer to Remark 4.1.
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Let J = {j ∈ I | dp − pj + l = pj + γ}. If we suppose that J �= ∅, then J = {j ∈ I |
pj = p = min

j∈I
{pj} < 0}. In the situation (4.3) we have df(z(t),z̄(t))

dt = bδtδ−1 + h.o.t

and on the other hand:

df(z(t), z̄(t))
dt

=
m∑

i=1

(
∂f

∂zi
· ∂zi

∂t
+

∂f

∂zi
· ∂zi

∂t

)

=
m∑

i=1

(
∂f I

∂zi
· ∂zi

∂t
+

∂f I

∂zi
· ∂zi

∂t

)
(4.8)

=
[〈

pa, df I
Δ(a, ā)

〉
+
〈
pā, d̄f I

Δ(a, ā)
〉]

tdp−1 + h.o.t.

where pa = (p1a1, . . . , pmam). Comparing the orders of the two expansions of
df(z(t),z̄(t))

dt and using the inequality dp < δ implied by c �= 0 (see after (4.5)), we
find:

(4.9)
〈
pa, df I

Δ(a, ā)
〉

+
〈
pā, d̄f I

Δ(a, ā)
〉

= 0.

Let us observe here that the proof of formula (4.9) holds under the more general
condition dp < δ.

Let now consider the situation (4.2). In this case the formula (4.9) is true more
directly, since df(z(t),z̄(t))

dt = 0 and after comparing this to (4.8).
Next, multiplying (4.9) by μ̄0 and taking the real part, we obtain:

Re
〈
pa, μ0df I

Δ(a, ā)
〉

+ Re
〈
pā, μ0d̄f I

Δ(a, ā)
〉

(4.10)

= Re
〈
pa, μ0df I

Δ(a, ā) + μ̄0d̄f I
Δ(a, ā)

〉
= 0.

On the other hand, from (4.7), we have:

Re
〈
pa, μ0df I

Δ(a, ā) + μ̄0d̄f I
Δ(a, ā)

〉
=
∑

i∈J

λ0p‖aj‖2

which is different from zero since λ0 �= 0, p < 0 and aj �= 0. This contradicts formula
(4.10). We have therefore proved that J = ∅.

From (4.7) we obtain:

(4.11) μ0df I
Δ(a, ā) + μ̄0d̄f I

Δ(a, ā) = 0.

Let us observe that in case λ(t) ≡ 0 we have J = ∅ and therefore we get
directly (4.11).

What (4.11) tells us is that a is a singularity of f I
Δ. Set now A =(a, 1, 1, . . . , 1)

with the ith coordinate zi = 1 for i /∈ I. Since Δ ⊂ supp(f I ), the restriction
fΔ does not depend on the variables zm+1, . . . , zn or their conjugates. Thus for
any i ∈ {1, 2, . . . , n}, we have ∂fΔ

∂z̄i
(z(t), z̄(t)) = ∂fI

Δ
∂z̄i

(z(t), z̄(t)) and ∂fΔ
∂zi

(z(t), z̄(t)) =
∂fI

Δ
∂zi

(z(t), z̄(t)). By replacing f I
Δ with fΔ in (4.11), we get that A ∈ C

∗n is a singularity
of fΔ.

We may now apply Lemma 3.1 to dp and Δ. We have the following two cases:
(I) If dp < 0, then, by Lemma 3.1(a), Δ is a face of Γ+(f I). Since A ∈ C

∗n is
a singularity of fΔ and since we have fΔ(A, Ā) = 0 by (4.5) for dp < 0, this
contradicts the Newton non-degeneracy of f (Definition 3.2) assumed in the
statement of Theorem 1.1.
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(II) Let dp = 0. Then c = f I
Δ(a, ā) = fΔ(A, Ā) ∈ fΔ(SingfΔ ∩ C

∗n). By Lemma
3.1(b), Δ is either a face of Γ+(f I) or satisfies the condition (ii) of Defi-
nition 3.3. Note that these two conditions are exclusive, which fact follows
immediately from the definitions. Let us show that Δ is a bad face of supp(f ).

Let d denote the minimal value of the restriction of lp to supp(f). Since supp(f I ) =
supp(f) ∩ R

I
≥0, we have d ≤ dp = 0. Let H be the hyperplane defined by the

equation
∑m

i=1 pixi + q
∑n

i=m+1 xi = 0, where q > −d + 1 > 0. Then, for any
(x1, . . . , xn) ∈ supp(f) \ supp(f I), the value of

∑m
i=1 pixi + q

∑n
i=m+1 xi is positive.

We therefore get Δ = supp(f I ) ∩ H = supp(f) ∩ H.
If Δ does not satisfy condition (i)(a) of Definition 3.3, then we have m = n and

pi ≤ 0 for all 1 ≤ i ≤ n. Since by hypothesis f depends effectively on all variables, in
particular on the variable z1, the value dp must be negative, which is a contradiction
to the above original assumption.

This ends our proof. �

Remark 4.1. The equality (4.11) is the key of the above proof of Theorem 1.1(a).
If c = 0, then we have two cases in situation (4.3):

(1) If dp = ordt(f(z(t), z̄(t)), then formula (4.11) might be not true.
(2) If dp < ordt(f(z(t), z̄(t)), then we get the same proof of formula (4.11) as in

Proof of (a) (see the remark after formula (4.9)).

Remark 4.2. Let Σ∞ := {c ∈ C | f−1(c) ∩ M(f) is not bounded}. Under the
hypotheses of Theorem 1.1, the above proof also shows that if c ∈ Σ∞ and c �= 0 then
c is a critical value of fΔ, for some bad face Δ. Indeed, if the path z(t) ⊂ M(f)∩f−1(c)
is not bounded, then it must be included in the singular locus Singf−1(c) since the
fibre f−1(c) is an algebraic set. (An alternate argument may be extracted from the last
part of the proof of Proposition 2.2). This shows the inclusion Σ∞ ⊂ S(f)∩f(Singf).
By Theorem 1.1(a) we then have Σ∞ \ {0} ⊂ ⋃

Δ∈B

fΔ(SingfΔ).

4.2. Proof of Theorem 1.1(b). By absurd, let us suppose f(Singf) is not bounded.
Since Singf is a semi-algebraic set, by Lemma 2.3, there exists a real analytic path
z(t) ⊂ Singf defined on a small enough interval ]0, ε[ such that:

lim
t→0

‖z(t)‖ = ∞, and lim
t→0

|f(z(t), z̄(t))| = ∞.

We follow the proof of (a). Since z(t) ⊂ Singf , we have λ(t) ≡ 0 in (4.1) and
therefore we obtain (4.11) directly, as remarked after it. From lim

t→0
|f(z(t), z̄(t))| = ∞,

it follows that dp ≤ ordt(f(z(t), z̄(t)) < 0. We are in the situation of (I) from the proof
of Theorem 1.1(a) but without being able to insure the equality fΔ(A, Ā) = 0. That
is why we need here the Newton strong non-degeneracy in order to get a contradiction.

To prove that fΔ(SingfΔ) is bounded, for any bad face Δ ⊂ supp(f ), we use
Remark 3.4 and the above proof for fΔ in place of f .

Since supp(f ) has finitely many faces and since, by Theorem 1.1(a), we have the
inclusion S(f) ⊂ {0} ∪ ∪

Δ∈B
fΔ(SingfΔ), it follows that S(f) is bounded. �
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4.3. Some consequences. We get some sharper statements for significant partic-
ular classes of non-degenerate mixed polynomials. The following result extends the
one for holomorphic polynomials proved in [Ku].

Corollary 4.1. If f is a mixed Newton non-degenerate and convenient polynomial,
then S(f) = ∅.
Proof. Under the same notations and definitions as in the proof of Theorem 1.1(a),
since lp(x) =

∑m
i=1 pixi has at least a coefficient pj < 0 for some j and the intersection

of supp(f) with each positive coordinate axis is non-empty, the value of lp(x) at a
point of the intersection of supp(f) with the j-axis is negative. This implies that the
minimal value dp is negative. By Lemma 3.1(a), Δ is a face of Γ+(f).

Since we have here dp < ordt(f(z(t), z̄(t)), by using Remark 4.1, we get formula
(4.11) and a singularity A ∈ C

∗n of fΔ with fΔ(A) = 0 as in (I) above. This
contradicts the Newton non-degeneracy of f . �

Definition 4.1. A mixed polynomial f is called (radial) weighted-homogeneous if
there exist positive integers q1, . . . , qn with gcd(q1, . . . , qn) = 1 and a positive integer
m such that

∑n
j=1 qj(νj + μj) = m, or, equivalently, such that f(t ◦ z) = tmf(z, z̄)

for any t ∈ R
∗, where t ◦ z := (tq1z1, . . . , t

qnzn).

Corollary 4.2. Let f be a mixed polynomial, weighted-homogeneous and Newton
strongly non-degenerate. Then:

(a) Singf ∩ C
∗n = ∅,

(b) S(f) ∪ f(Singf) ⊂ {0}.
Proof. Since f is weighted-homogeneous, let us say of degree m, we have f(0) = 0
and supp(f) is contained in a single hyperplane, which does not pass through the
origin. Therefore, the Newton boundary Γ+(f) has a single maximal face and its
non-degeneracy implies Singf ∩C

∗n = ∅. Since supp(f) has no bad face and since by
Theorem 1.1(a) we have S(f) ⊂ {0} ∪ ∪

Δ∈B
fΔ(SingfΔ), it follows that S(f) ⊂ {0}.

By absurd, let us suppose that c ∈ f(Singf) ∩ C
∗. For any z ∈ Singf such

that f(z, z̄) = c, there exists λ ∈ S1
1 such that df(z, z̄) = λd̄f(z, z̄). Multiplying

by tm−qi the equalities ∂f
∂zi

(z, z̄) = λ ∂f
∂z̄i

(z, z̄) for i = 1, 2 . . . , n, and using that f is
weighted-homogeneous, we get that df(t ◦ z, t ◦ z̄) = λd̄f(t ◦ z, t ◦ z̄). This implies
that t ◦ z ∈ Singf and tmc ∈ f(Singf), therefore f(Singf) is not bounded, which
contradicts Theorem 1.1(b). This proves that f(Singf) ⊂ {0}. �

4.4. Examples.

Example 4.1. The polynomial f : C
2 → C, f = z1 + z2 + z̄2

1 + z̄2
2 , is Newton

strongly non-degenerate and convenient. By direct computation of M(f) we obtain
that S(f) = ∅, as predicted by Corollary 4.1, and f(Singf) = {a + 1

2 ā2 | a ∈ S1}, a
closed cuspidal curve, which agrees with Theorem 1.1(b).

Example 4.2. Némethi and Zaharia have proved in [NZ1, Proposition 6] that if
the holomorphic polynomial f : C

2 → C is Newton non-degenerate, not convenient,
not depending of just one variable and with f(0) = 0, then one has the equality
B(f) = f(Singf) ∪ {0} ∪ ∪

Δ∈B
fΔ(SingfΔ), and in particular 0 ∈ B(f).
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Let us show that this is no more true for mixed polynomials, by using the
example f : R

4 → R
2, f(z1, z2) = z1(1 + |z2|2 + z1z

4
2). This is Newton strongly

non-degenerate, not convenient and f(0) = 0. Standard computations yield that
f(Singf) = ∅, hence 0 /∈ f(Singf). It is more tedious to show that 0 /∈ K∞(f) by
using an argument based on the curve selection lemma 2.3. Then use Proposition 2.2
to get 0 /∈ S(f) and Theorem 2.2 to conclude 0 /∈ B(f).

Finally, let us compute explicitly B(f). The above named computations also show
the equalities K∞(f) = S(f) = {c ∈ C | |c| = 1/4}. Let us then take some c with
|c| > 1/4. Using Theorem 5.1 which will be proved in the next section, i.e., the
stability of the monodromy at infinity in certain families, we get the homeomorphism
f−1(c) � g−1(c), where g = z1(1 + z1z

4
2). By a direct computation we get the

homotopy equivalence g−1(c) � ∨4S
1. If one takes some c with |c| < 1/4, then a

similar computation shows that f−1(c) is homotopy equivalent to C � C
∗. Together

with Theorem 2.2, this shows B(f) = S(f) = {c ∈ C | |c| = 1/4}.
Example 4.3. Let f : R

4 → R
2, f = z1z2 + z̄2

1 z̄2
2 . This is a Newton strongly non-

degenerate mixed polynomial, where Γ+(f) = (2, 2) and supp(f) consists of just one
face Δ which is a bad face. The solution of df(z, z̄) = λd̄f(z, z̄) for λ ∈ S1

1 , is the set
{z1z2 = 1

2λ
} ∪ {z1 = z2 = 0}. We obtain f(SingfΔ) = f(Singf) = {0} ∪ { 1

2λ
+ 1

4λ2 |
λ ∈ S1

1}. By taking z1z2 = 1
2λ

with z1 → 0, hence z2 → ∞, by straightforward
computations we get f(Singf) \ {0} ⊂ S(f) and {0} �∈ S(f). On the other hand, for
{zk}k∈N ⊂ M(f) \ Singf such that lim

k→∞
‖zk‖ = ∞, we get |f(zk)| → ∞. This shows

that S(f) \ f(Sing(f)) = ∅, by using Theorem 1.1(b) too. Moreover, it shows that
the inclusion of Theorem 1.1(a) may be strict.

One may also compute explicitly the topology of the fibres with the method
described in the preceding example. Let us note that the complement of S(f), which
is a simple closed plane curve containing the origin, has two connected components.
The fibre of f over some point of the exterior of this curve is homotopy equivalent to
C

∗ � C
∗ (by using a deformation from f to g := z̄2

1 z̄2
2 and then Theorem 5.1). One

computes directly that a fibre over some interior point, different from the origin, is
homotopy equivalent to the disjoint union of four C

∗ and that the fibre over the origin
is homotopy equivalent to the disjoint union of three C

∗ and the union of complex
axes {z1z2 = 0}. In particular these computations show the change of topology of
fibres and provide explicitly the bifurcation set: B(f) = {0} ∪ { 1

2λ
+ 1

4λ2 | λ ∈ S1
1}.

Example 4.4. The following is an example of a Newton non-degenerate, not strongly
non-degenerate, mixed polynomial. It also shows that bad faces which are not strictly
bad may contribute to the bifurcation set B(f), a phenomenon which does occur for
holomorphic functions (compare Theorem 1.1 to Némethi–Zaharia statement [NZ1],
cf. (1.1)). Let f : C

2 → C, f = |z1|2(z2
2 + 2z2z̄2 + 1).

The support supp(f) has three faces, all of which are contained in Γ+(f), and the
restrictions of f look as follows: f�1 = |z1|2(z2

2 +2z2z̄2), f�2 = |z1|2 and f�3 = f . We
observe that {f�i = 0}∩C

∗2 = ∅, for i = 1, 2, 3, so f is non-degenerate. However, f�2

is not strongly non-degenerate. There is a single bad face �1 and it is not strictly bad.
By Theorem 1.1(a) we have S(f) ⊂ {0} ∪ f�1(Singf�1 ∩C

∗2), and by straightfor-
ward computations we get f(Singf) = R≥0 and f�1(Singf�1 ∩ C

∗2) = {(3
2 ±

√
3

2 i)t |
t > 0}.
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Let us show that the inclusion B(f) ⊂ S(f)∪f(Singf) of the Fibration Theorem 2.2
is an equality. Assuming that f(Singf) ⊂ B(f) by definition, it remains to prove the
inclusion S(f) ⊂ B(f). We fix some t > 0 and consider a small disk neighbourhood U

of the point (3
2 +

√
3

2 i)t. Let |z1|2 = c �= 0, z2 = x+ iy. The equality f = a+ ib yields:
c(3x2 + y2 + 1) = a, −2cxy = b, and by combing these two equations we obtain:

(4.12) 3bx2 + 2axy + b(y2 + 1) = 0.

Solving in x, the discriminant 4a2y2 − 12b2(y2 + 1) shows that (4.12) has no solution
if and only if a2 < 3b2. This implies that the fibres of f are empty over one half of the
disk U and non-empty over the other half, so there is no locally trivial fibration at
( 3
2 +

√
3

2 i)t. The same proof applies to (3
2 −

√
3

2 i)t. Altogether these yield the claimed
inclusion S(f) ⊂ B(f).

5. Families of mixed polynomials and stability of the monodromy
at infinity

As a consequence of Theorems 2.2 and 1.1(b), the class of Newton strongly non-
degenerate polynomials f has the property that B(f) is bounded. One has the fol-
lowing general definition.

Definition 5.1 (Monodromy at infinity). Let f : R
2n → R

2 be a real polynomial
map and assume that the bifurcation set B(f) is bounded. Let δ0 > 0 such that B(f)
is included in the open disk Dδ0 of radius δ0 centred at 0 ∈ C. We call monodromy
(fibration) at infinity the fibration:

f| : f−1(S1
δ ) → S1

δ .

over some circle S1
δ of radius δ which, by the Fibration Theorem 2.2, exists and is

independent of δ ≥ δ0.

We then prove the following result:

Theorem 5.1. Let Fs(z, z̄) := F (z, z̄, s) : R
2n → R

2 be a family of Newton strongly
non-degenerate polynomials depending analytically of a parameter s, where s ∈ [0, 1].
If the Newton boundary Γ+(Fs) is constant in this family, then the monodromy at
infinity is stable4.

In the holomorphic setting such a result was proved first by Némethi and Zaharia
in the convenient case [NZ2, Theorem 17], then extended by Pham [Ph] to non-
convenient. In our mixed setting, the technique developed for the proof of Theorem 1.1
enables us to pursue the extension of these results for families of mixed polynomials,
along the pattern of [NZ2] and [Ph, Lemmas 3.2–3.5]. Let us point out that in the
holomorphic case the Newton non-degeneracy is a Zariski open dense and connected
condition, hence there exists a family of Newton non-degenerate polynomials with the
same Newton boundary at infinity joining any two such polynomials. However, in the
mixed case, we have shown in Remark 3.5 that the Newton strongly non-degenerate
condition is neither dense, nor connected, but it is still an open condition (see §3.3).
Therefore, in order to obtain a stability theorem in the mixed case, one has to work
with a given family of mixed polynomials.

4Here, “stable” means that in this family the radius δ0 is the same and the monodromy fibrations

at infinity are equivalent.
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Example 5.1. Let us consider a family of twisted Brieskorn mixed polynomials5:
Fs(z, z̄) =

∑n
i=1 zai+bi

i z̄bi
i + s

∑n
i=1 zai+2bi

i , where ai, bi ∈ N
+ for 1 ≤ i ≤ n and

0 ≤ s < min
1≤i≤n

ai

ai+2bi
. It turns out by an easy computation that Fs(z, z̄) is a family

of Newton strongly non-degenerate polynomials. Thus, by our Theorem 5.1, the
monodromy at infinity of Fs is isotopic to that of F0(z, z̄) =

∑n
i=1 zai+bi

i z̄bi
i .

For the proof of the theorem, we need some preliminaries. Let Fs stand for
F (z, z̄, s), let F (SingF ) := ∪

s∈[0,1]
Fs(SingFs), S(F ) := ∪

s∈[0,1]
S(Fs). We also consider

the restriction Fs,Δ of Fs to some face Δ of suppFs and write FΔ(z, z̄, s) := Fs,Δ.

Proposition 5.1. Under the assumption of Theorem 5.1, the set F (SingF ) ∪ S(F )
is bounded.

Proof. If F (SingF ) were not bounded then, by the curve selection Lemma 2.3, there
exist analytic paths z(t) ∈ C

n, λ(t) ∈ S1 and s(t) ∈ [0, 1] defined on a small enough
interval ]0, ε[ such that

lim
t→0

‖z(t)‖ = ∞, lim
t→0

F (z(t), z̄(t), s(t)) = ∞,(5.1)

lim
t→0

s(t) = s0, dFs(t)(z(t), z̄(t)) = λ(t)d̄Fs(t)(z(t), z̄(t)).(5.2)

We may then apply the proof of Theorem 1.1(b) and find a face Δ of supp(F I
s(t)),

which by assumption is independent of s, such that F I
s(t),Δ has a singularity in C

∗n.
By using Remark 3.3, this contradicts the Newton strong non-degeneracy.

To show that S(F ) is bounded, we proceed as follows. By Theorem 1.1(a), one has
the inclusion S(F ) ⊂ ∪s∈[0,1]{Fs(0)} ∪s∈[0,1] ∪

Δ∈Bs

Fs,Δ(SingFs,Δ ∩ C
∗n) where Bs is

the set of bad faces of supp(Fs) for s ∈ [0, 1]. We have that ∪s{Fs(0)} is bounded by
the continuity with respect to s, and that {Bs}s∈[0,1] is a finite set since Γ+(Fs) is
independent of s. If S(F ) were not bounded, then we may assume that FΔ0(s)(Sing
FΔ0(s) ∩ C

∗n) is not bounded as s → s0, for some bad face Δ0(s) which is actually
independent of s in some small enough interval ]s0 − ε, s0 + ε[. Since Γ+(Fs) is
independent of s and since Γ+(Fs,Δ0) ⊂ Γ+(Fs), we get that Γ+(Fs,Δ0) is independent
of s within a neighbourhood of s0. We may then apply the above proof to FΔ0 in
place of F . �

Proposition 5.2. Under the assumption of Theorem 5.1, there exists r0 > 0 such
that, for any r ≥ r0, there exists R0(r) � 1 such that one has the transversality
f−1

s (c) � S2n−1
R , ∀c ∈ S1

r , ∀R ≥ R0(r) and ∀s ∈ [0, 1].

Proof. The above Proposition 5.1 implies that there exists r0 > 0 independent on
s ∈ [0, 1] such that the following inclusion holds:

(5.3) F (SingF ) ∪s∈[0,1] {Fs(0)} ∪s∈[0,1] ∪
Δ∈Bs

Fs,Δ(SingFs,Δ ∩ C
∗n) ⊂

◦
Dr0 .

5Terminology used by Oka [Oka2].
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If the above assertion were not true, then by Lemma 2.3 there exist analytic paths
z(t) ⊂ C

n, λ(t) ⊂ R, μ(t) ⊂ C
∗ and s(t) ⊂ [0, 1] such that:

lim
t→0

‖z(t)‖ = ∞, lim
t→0

F (z(t), z̄(t), s(t)) = c ∈ S1
r ,(5.4)

lim
t→0

s(t) = s0, λ(t)z(t) = μ(t)dF (z(t), z̄(t), s(t)) + μ̄(t)d̄F (z(t), z̄(t), s(t)).(5.5)

By a similar analysis as in the proof of Theorem 1.1(a) one finds a singular point
A ∈ C

∗n of FΔ where Δ is either a face of Γ+(Fs) or a bad face of supp(Fs). This
contradicts (5.3). �

5.1. Proof of Theorem 5.1. By the above two propositions, for r ≥ r0, the global
monodromy fibration Fs| : F−1

s (S1
r ) → S1

r is diffeomorphic to the fibration

(5.6) Fs| : F−1(S1
r ) ∩ BR → S1

r

for all R ≥ R0(r) and all s ∈ [0, 1].
Consider the map F̃ : C

n × I → C × I, (z, s) �→ (Fs(z, z̄), s), where I := [0, 1].
The above proposition show that the restriction F̃| : F̃−1(S1

r×I)∩(BR×I) → S1
r×I

is a proper submersion on the couple of manifolds (F̃−1(S1
r × I)∩ (BR × I), F̃−1(S1

r ×
I)∩(∂BR×I)). Then Ehresmann’s theorem tells that the fibrations (5.6) are isotopic
for varying s. �

Theorem 5.1 appears to be useful in finding the topology of the fibres in Exam-
ples 4.3 and 4.2. As another consequence, one may extend the range of applicability
of the stability theorems in [NZ2, Theorem 17] and [Ph, Theorem 1.1], as follows:

Corollary 5.1. If f and g are two Newton strongly non-degenerate mixed polynomi-
als, such that Γ+(f) = Γ+(g) and that their restrictions to the boundaries at infinity
fΓ+ and gΓ+ are both holomorphic (or both anti-holomorphic), then the monodromies
at infinity of f and of g are isotopic.

Proof. In the holomorphic setting, the Newton strongly non-degenerate condition is
the same as Newton non-degenerate and is a Zariski open and connected condition.
This holds for anti-holomorphic instead of holomorphic. This fact allows us to con-
nect f to g by a family of Newton strongly non-degenerate mixed polynomials. For
instance, one may do as follows. First, one applies [Ph, Theorem 1.1] to the restric-
tions fΓ+ and gΓ+ . Next, we write f = fΓ+ + h and observe that the family of mixed
polynomials Fs := fΓ+ +(1−s)h satisfies the hypotheses of our Theorem 5.1 and con-
nects f to fΓ+ , hence the monodromy is stable in this family. A similar construction
for g completes the picture and ends our proof. �
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[Pa] A. Parusiński, On the bifurcation set of a complex polynomial with isolated singularities at
infinity, Compositio Math. 97 (1995), 369–384.
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