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CONTACT MONOIDS AND STEIN COBORDISMS

John A. Baldwin

Abstract. Suppose S is a compact surface with boundary, and let φ be a diffeo-
morphism of S which fixes the boundary pointwise. We denote by (MS,φ, ξS,φ) the

contact three-manifold compatible with the open book (S, φ). In this paper, we con-
struct a Stein cobordism from the contact connected sum (MS,h, ξS,h) # (MS,g, ξS,g) to
(MS,hg, ξS,hg). This cobordism accounts for the comultiplication map on Heegaard Floer
homology discovered in [3], and illuminates several geometrically interesting monoids in

the mapping class group Mod+(S, ∂S). We derive some consequences for the fillability
of contact manifolds obtained as cyclic branched covers of transverse knots.

1. Introduction

Let M be a closed, oriented three-manifold. In [14], Giroux proves that there is a
one-to-one correspondence between contact structures on M up to contactomorphism
and abstract open book decompositions of M up to an equivalence called positive
stabilization. Giroux’s work allows us to translate questions about tightness and filla-
bility of contact structures into questions about diffeomorphisms of compact surfaces
with boundary. In particular, one is tempted to ask whether certain operations which
are natural in the latter context, like composition of diffeomorphisms, have natural
contact-geometric counterparts. Our paper sets out to answer this question.

Suppose S is a compact, orientable surface with boundary, and let Mod+(S, ∂S)
denote the set of isotopy classes of orientation-preserving diffeomorphisms of S which
restrict to the identity on ∂S. Furthermore, let (MS,φ, ξS,φ) denote the contact man-
ifold supported by the open book (S, φ). In this paper, we point out three geomet-
rically significant “contact monoids” in Mod+(S, ∂S). Most of our results stem from
the following theorem.

Theorem 1.1. (MS,hg, ξS,hg) is the result of contact (−1)-surgery on a Legendrian
link L in the contact connected sum (MS,h, ξS,h)#(MS,g, ξS,g).

We may alternately view this theorem as the statement that there exists a Stein
two-handle cobordism from the contact connected sum (MS,h, ξS,h)#(MS,g, ξS,g) to
(MS,hg, ξS,hg). The theorem below is an immediate consequence of Theorem 1.1.

Theorem 1.2. Suppose H is a property of contact manifolds which is preserved under
contact connected sum and contact (−1)-surgery. Then the set of φ ∈ Mod+(S, ∂S)
for which (MS,φ, ξS,φ) satisfies the property H is closed under composition.1

Examples of such H are Stein fillability, as well as strong and weak symplectic
fillability [8, 11, 23]. In particular, let Stein(S, ∂S), Strong(S, ∂S) and Weak(S, ∂S)
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1If this set also contains the isotopy class of the identity, then it is a monoid.
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denote the subsets of Mod+(S, ∂S) whose elements give rise to open books supporting
Stein fillable, strongly symplectically fillable and weakly symplectically fillable contact
manifolds, respectively. Then Theorem 1.2 implies the following.

Theorem 1.3. Stein(S, ∂S), Strong(S, ∂S) and Weak(S, ∂S) are monoids.

The contact invariant in Heegaard Floer homology (HF) is well behaved with
respect to the maps induced by Stein cobordisms [20]. Specifically, if (M ′, ξ′) is
obtained from (M, ξ) by performing contact (−1)-surgery on a Legendrian knot, and
W is the corresponding two-handle cobordism from M to M ′, then the map

F−W : ̂HF(−M ′) → ̂HF(−M)

sends c(ξ′) to c(ξ). In addition, for two contact manifolds (M1, ξ1) and (M2, ξ2), the
contact invariant c(ξ1#ξ2) is identified with c(ξ1) ⊗ c(ξ2) via the isomorphism

̂HF(−(M1#M2)) ∼= ̂HF(−M1) ⊗Z2
̂HF(−M2).

Coupled with these facts, Theorem 1.1 immediately reproduces the following result
from [3].

Corollary 1.1 ( [3, Theorem 1.4]). There exists a “comultiplication” map

̂HF(−MS,hg) → ̂HF(−MS,h) ⊗Z2
̂HF(−MS,g),

which sends c(ξS,hg) to c(ξS,h) ⊗ c(ξS,g).

In particular, the set of φ∈Mod+(S, ∂S) for which c(ξS,φ) �= 0 forms a monoid,
which prompts the following question. Below, Tight(S, ∂S) is the set of φ∈Mod+(S,
∂S) for which (MS,φ, ξS,φ) is tight.

Question 1.1. Is Tight(S, ∂S) a monoid?

Corollary 1.1 does not provide an answer to Question 1.1, as there are tight contact
structures whose contact invariants vanish [12, 19]. In fact, the question of whether
tightness is preserved by contact (−1)-surgery remains open for closed2 contact man-
ifolds. Interestingly, Theorem 1.2 implies that this seemingly more basic question is
actually equivalent to Question 1.1.

The three monoids in Theorem 1.3 have been discovered independently by Baker
et al., who constructed their own Stein cobordism from (MS,h, ξS,h) � (MS,g, ξS,g)
to (MS,hg, ξS,hg) in [1]. Upon hearing of their result, I realized that the cobordism
from (MS,h, ξS,h) # (MS,g, ξS,g) to (MS,hg, ξS,hg) defined in the last section of my
paper with Plamenevskaya [4] carries a very natural Stein structure (which is the
one explained here). The proof of Theorem 1.1 in this paper makes use of standard
tools in convex surface theory. In contrast, the approach of Baker et al. relies on an
understanding of the contact structures associated to various cables of the binding of
an open book. It would be interesting to determine whether our different approaches
yield what are more or less the same Stein cobordisms in the end.

2There is a tight genus four handlebody which becomes overtwisted after contact (−1)-

surgery [18].
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The methods used in this paper can be applied in other settings as well. For
example, suppose that K is a transverse knot in the standard tight contact manifold
(S3, ξstd). A well-known result of Bennequin asserts that

sl(K) ≤ −χ(Σ),

where sl(K) denotes the self-linking number of K and Σ is any Seifert surface for
K [5]. We say that K realizes its Bennequin bound if sl(K) = −χ(Σ) for some Seifert
surface Σ. In [16], Hedden proves that if K is fibered and realizes its Bennequin bound
then the open book associated to K supports the contact manifold (S3, ξstd) (see [9]
for a more general result). If (S, φ) denotes this open book, then (S, φn) supports
the contact manifold obtained by taking the n-fold cyclic cover of (S3, ξstd) branched
along K. Since (S3, ξstd) is Stein fillable, Theorem 1.3 implies the following.

Corollary 1.2. If K is a fibered transverse knot in (S3, ξstd) which realizes its Ben-
nequin bound, then the n-fold cyclic cover of (S3, ξstd) branched along K is Stein
fillable.

Remark 1.1. The statement in Corollary 1.2 follows independently from the fact
that if K is a fibered transverse knot in (S3, ξstd) which realizes its Bennequin bound,
then K is strongly quasi-positive [15] and therefore bounds a complex curve Σ in B4 ⊂
C

2 [21]. Hence, the n-fold cyclic cover of (B4, i) branched along Σ is a holomorphic
filling of the n-fold cyclic cover of (S3, ξstd) branched along K. Lastly, a result of
Bogomolov and de Oliveira tells us that this holomorphic filling may be deformed
into the blow-up of a Stein filling [6].

Using a slight variation of the main technique in this paper as suggested by Van
Horn-Morris, combined with the ideas in [9, Section 3], we can prove a much stronger
result which does not assume that K is fibered.

Theorem 1.4. If K is a transverse knot in a Stein (resp. strongly/weakly sym-
plectically) fillable contact manifold (M, ξ) which realizes its Bennequin bound, then
the n-fold cyclic cover of (M, ξ) branched along K is Stein (resp. strongly/weakly
symplectically) fillable.

2. Proof of Theorem 1.1

First, we describe the contact three-manifold, (MS,φ, ξS,φ), which is compatible with
the open book (S, φ). Let U be the handlebody defined by U = S× [−1, 1]/ ∼, where
(x, t) ∼ (x, 0) for all x ∈ ∂S (see Figure 1). The oriented curve Γ = ∂S × {0} divides
Σ = ∂U into two pieces, Σ+ = S×{1} and Σ− = −S×{−1}. We may therefore view
φ as a boundary-fixing diffeomorphism of Σ+. Note that ∂Σ+ = Γ = −∂Σ−, and let
r : Σ → Σ be the orientation-reversing involution defined by reflection across Γ.

It is not hard to prove that there exists a unique (up to isotopy) tight contact
structure ξ0 on U for which Σ is convex with dividing set Γ (see [10], for example).
Let (U1, ξ1) and (U2, ξ2) be identical copies of (U, ξ0), with ∂U1 = Σ = ∂U2. According
to Torisu [22], (MS,φ, ξS,φ) is the contact three-manifold obtained by gluing (U2, ξ2)
to (U1, ξ1) via the orientation-reversing diffeomorphism Aφ : ∂U2 → ∂U1 defined by

Aφ(x) =
{

r(φ(x)), x ∈ Σ+,
r(x), x ∈ Σ−.
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Figure 1. The diagram on the left represents the surface S. The
diagram in the middle represents S × [−1, 1]; we have drawn some
of the S × {t} fibers. The diagram on the right represents the han-
dlebody U obtained from S × [−1, 1] by collapsing ∂S × [−1, 1] to
Γ = ∂S × {0}.

(The orientation on MS,φ is specified by MS,φ = U1 − U2.) The fact that Aφ sends
Γ ⊂ ∂U1 to Γ ⊂ ∂U2 is what makes it possible to glue these two contact structures
together, by Giroux’s flexibility theorem [13].

Now suppose that φ is the composition hg. Let I be the interval [−ε, ε], and let ξI

be the I-invariant contact structure on Σ × I for which each Σ × {s} is convex with
dividing set Γ×{s}.3 Then (MS,hg, ξS,hg) may also be obtained by first gluing (U2, ξ2)
to (Σ× I, ξI) by the diffeomorphism from ∂U2 to Σ×{ε} which sends x to (Ag(x), ε),
and then gluing the resulting contact manifold to (U1, ξ1) by the diffeomorphism
from Σ × {−ε} to ∂U1 which sends (x,−ε) to Ah(r(x)). This just amounts to the
fact that, in Torisu’s description, the convex surface Σ ⊂ MS,hg has an I-invariant
neighborhood. See Figure 2 for reference.

If S has genus g and r boundary components, then Σ has genus n = 2g + r − 1.
Let b1, . . . , bn be disjoint, properly embedded arcs in S for which S − ∪ibi is a disk.
For i = 1, . . . , n, we define the curve βi ⊂ Σ by

βi = bi × {−1} ∪ bi × {1},
where we are again thinking of Σ as S × {1} ∪ −S × {−1}. (See Figure 3 for an
example.) Note that βi bounds the attaching disk bi × [−1, 1] ⊂ U . In particular, U
may be recovered from Σ by thickening the surface, attaching two handles to one side
along the curves βi, and then gluing a three-ball to the S2 boundary component of
the resulting manifold.

Let Lβ be the link, contained in the Σ × I portion of MS,hg, whose components
are the curves βi × {0} ⊂ Σ × {0}. The link Lβ is nonisolating in the convex surface
Σ × {0}; that is, Lβ is transverse to Γ × {0}, and the closure of every component of

3The coordinate s on I is not to be confused with the coordinate t on the interval [−1, 1] described

previously.
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Figure 2. The diagram on the left illustrates the process of gluing
U2 to U1 to form MS,φ. Alternatively, MS,hg can be formed by gluing
U2 to Σ×I, and then gluing the result to U1, as shown in the diagram
on the right.

Figure 3. In this example, S is a genus one surface with one bound-
ary component. The diagram on the right shows the curves β1 and
β2 in blue, and the dividing set Γ in red.

Σ×{0}− (Γ×{0} ∪Lβ) intersects Γ×{0}. Therefore, by the Legendrian realization
principle, we may assume that Lβ is Legendrian [17]. Moreover, each βi×{0} intersects
the dividing set Γ × {0} in exactly two places. It follows that tw(βi × {0}, Σ × {0}),
which measures the contact framing of βi × {0} relative to the framing induced by
the surface Σ × {0}, is

−1
2 #(βi × {0} ∩ Σ × {0}) = −1.
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Therefore, contact (+1)-surgery on Lβ is the same as 0-surgery on Lβ with respect
to the framing induced by Σ × {0}.

For any contact manifold (M, ξ), and any Legendrian link L ⊂ M , let us denote
by (ML, ξL) the contact manifold obtained from M via contact (+1)-surgery on L.

Proposition 2.1. The contact manifold ((Σ × I)Lβ
, (ξI)Lβ

) is tight.

Proof. By construction, ((Σ×I)Lβ
, (ξI)Lβ

) embeds into ((MS,hg)Lβ
, (ξS,hg)Lβ

) for any
h and g. So, it is enough to find an h and g for which the latter is tight. Let h and
g each be the identity. In this case, MS,hg = MS,id

∼= #n(S1 × S2), and ξS,id is
the unique Stein fillable contact structure on this connected sum. Note that each
component βi × {0} of Lβ bounds the disk

bi × [−1, 1] ∪ βi × [−ε, 0] ⊂ (U1
∼= S × [−1, 1]) ∪ (Σ × [−ε, 0]).

Since these disks are all disjoint, small neighborhoods of these disks in U1 ∪ (Σ × I)
are also disjoint. Moreover, we can assume that these neighborhoods are Darboux
balls since ξS,id restricts to a tight contact structure on U1∪(Σ×I). Furthermore, the
framings induced by these disks agree with the framings induced by Σ × {0}. Since
contact (+1)-surgery on the Legendrian unknot in (S3, ξstd) with tb = −1 is the Stein
fillable contact manifold (S1 × S2, ξ0), ((MS,id)Lβ

, (ξS,id)Lβ
) is the contact connected

sum of ((MS,id), (ξS,id)) with n copies of (S1 × S2, ξ0), and is therefore tight. �

Proposition 2.2. The contact manifold ((MS,hg)Lβ
, (ξS,hg)Lβ

) is the contact con-
nected sum (MS,h, ξS,h) # (MS,g, ξS,g).

Proof. Let Ni ⊂ Σ × I be a tubular neighborhood of βi × {0} such that ∂Ni is the
union of two annuli, A1

i ⊂ Σ × [−ε, 0] and A2
i ⊂ Σ × [0, ε]. And let us think of S1 as

the union of two intervals, S1 = I1 ∪ I2. Topologically, (Σ × I)Lβ
is obtained from

Σ× I by performing 0-surgery on Lβ with respect to the framing induced by Σ×{0},
as discussed above. (Σ × I)Lβ

is therefore the result of gluing solid tori D2
i × S1 to

Σ × I − ∪i intNi so that ∂D2
i × I1 is glued to A1

i , and ∂D2
i × I2 is glued to A2

i (see
Figure 4). So, (Σ × I)Lβ

is the union

(2.1) (Σ × [−ε, 0] − ∪i intNi) ∪i (D2
i × I1)

⋃

(Σ × [0, ε] − ∪i intNi) ∪i (D2
i × I2).

Each of these two pieces is homeomorphic to the manifold obtained by thickening Σ
and attaching two handles to one side of this thickened surface along the curves βi;
in other words, each piece is the complement of a three-ball in a genus n handlebody,
and these pieces are attached along their common S2 boundary component.

Let us denote the left and right pieces in (2.1) by U3 −B3 and U4 −B3, respectively,
where U3 and U4 are genus n handlebodies with ∂U3 = −Σ×{−ε} and ∂U4 = Σ×{ε}.
According to Giroux [13], their common S2 boundary component can be made convex
in ((Σ × I)Lβ

, (ξI)Lβ
) after a small isotopy. By Proposition 2.1, the restriction of

(ξI)Lβ
to Ui − B3 is tight, for i = 3, 4. Therefore, by Honda’s gluing theorem [18,

Theorem 2.5], the restriction (ξI)Lβ
|Ui−B3 is isotopic to the contact structure on the

complement of a Darboux ball in (Ui, ξi), where ξi is the unique tight contact structure
on Ui for which ∂Ui is convex with dividing set Γ×{−ε} when i = 3, and Γ×{ε} when
i = 4. Said differently, ((Σ × I)Lβ

, (ξI)Lβ
) is the contact connected sum of identical

copies, (U3, ξ3) and (U4, ξ4), of the contact handlebody (U, ξ0).
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Figure 4. The diagram on the left shows the knot βi × {0} ⊂ Σ ×
{0}. The shaded disks in the middle diagram represent the tubular
neighborhood Ni. The diagram on the right illustrates the process
of performing 0-surgery on βi × {0} by removing Ni and gluing two
handles along the annuli A1

i and A2
i . We have drawn some of the

D2 × {t} fibers in these two handles.

As a result, ((MS,hg)Lβ
, (ξS,hg)Lβ

) may be pieced together as follows. First, glue
(U2, ξ2) to (U4, ξ4) by the diffeomorphism from ∂U2 to ∂U4 = Σ × {ε} which sends
x to (Ag(x), ε); this forms (MS,g, ξS,g). Next, glue (U3, ξ3) to (U1, ξ1) by the dif-
feomorphism from −∂U3 = Σ × {−ε} to ∂U1 which sends (x,−ε) to Ah(r(x)); this
forms (MS,h, ξS,h). Finally, remove Darboux balls from the U3 and U4 portions of
MS,h and MS,g, and glue the resulting contact manifolds together by a diffeomor-
phism which identifies the dividing curves on their S2 boundary components. This
process realizes ((MS,hg)Lβ

, (ξS,hg)Lβ
) as the contact connected sum of (MS,h, ξS,h)

with (MS,g, ξS,g). �

Proof of Theorem 1.1. According to Ding and Geiges [7, Proposition 8], Proposi-
tion 2.2 implies that (MS,hg, ξS,hg) is the result of contact (−1)-surgery on a link
in the contact connected sum (MS,h, ξS,h) # (MS,g, ξS,g). �

3. Fillability of cyclic branched covers

The essential idea in the proof of Theorem 1.1 is that we can find curves on the convex
surface Σ × {0} ⊂ MS,hg which each intersect the dividing set twice and which are
attaching curves for the handlebody S× [−1, 1]. These conditions guarantee that con-
tact (+1)-surgery on these curves is the same as 0-surgery with respect to the framing
induced by Σ, and, therefore, that such surgery results in the appropriate connected
sum. This idea can be applied more generally to prove results like Theorem 1.4, as
below.

Proof of Theorem 1.4. Suppose that K is a transverse knot in a tight contact manifold
(M, ξ), and that S is a Seifert surface for K for which slξ(K) = −χ(S). Following the
discussion in [9, Section 3], we may perturb S so that it is convex with dividing set Γ
disjoint from ∂S [9]. This convex S has an I-invariant neighborhood N = S × [−1, 1]
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whose convex boundary, after rounding corners, is Σ = DS, the double of S. In [9,
Section 3], the authors show that the dividing set on Σ is given by

Γ = Γ ∪ Γ̄ ∪ C,

where Γ is the dividing set of S as it sits on S × {1}, Γ̄ is the dividing set of S as it
sits on S × {−1}, and C = ∂S × {1/2} is a curve isotopic to K.

As before, let b1, . . . , bn be disjoint, properly embedded arcs in S for which S−∪ibi

is a disk, and define curves βi = ∂(bi × [−1, 1]) on Σ. Now, it is not necessarily
true that each βi intersects Γ twice. To remedy this, we let p1, . . . , pk denote the
points of intersection between the bi and Γ, and consider instead the complementary
handlebody

N ′ = N − ∪j (ν(pj) × [−1, 1]),
where each ν(pj)×[−1, 1] is a standard neighborhood of the Legendrian arc pj×[−1, 1]
in N . The boundary Σ′ = ∂N ′ is obtained from Σ by attaching k tubes from S ×{1}
to S × {−1} corresponding to the pj . Removing the ν(pj) from S cuts each bi into
properly embedded arcs bi,1, . . . , bi,ni in S − ∪j ν(pj). Then the βi,l = ∂bi,l × [−1, 1]
are attaching curves for the handlebody N ′ and can each be made to intersect the
new dividing curves Γ′ ⊂ Σ′ twice (see Figure 5).

Note that the contact manifold (Σ2(M, K), ξ2(M, K)) obtained by taking the dou-
ble cover of (M, ξ) branched along K is formed by gluing together two copies of
M − int(N) along their boundaries (which are copies of Σ) so that the dividing curves
match up. Therefore, by gluing together two copies of M− int(N ′) along their bound-
aries (which are copies of Σ′), one obtains a contact connected sum

(3.1) (Σ2(M, K), ξ2(M, K)) # (#k(S1 × S2, ξ′)),

for some contact structure ξ′ on #k(S1 × S2). Let β′
i,l denote the copy of βi,l in this

glued manifold, and let
L = ∪n

i=1 ∪ni

l=1 β′
i,l.

Then contact (+1)-surgery on L produces the contact connected sum (M, ξ) # (M,
ξ), as before. In other words, the manifold in (3.1) is obtained from (M, ξ) # (M, ξ)

Figure 5. A portion of the handlebody N ′, obtained by boring tun-
nels out of N . The new dividing curve Γ′ is obtained after rounding
corners in the usual way.
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via l Stein 2-handle additions. So, if (M, ξ) is at least weakly fillable, then the same is
true of the manifold in (3.1); in this case, ξ′ must be the unique Stein fillable contact
structure on #k(S1 × S2). Moreover, (Σ2(M, K), ξ2(M, K)) is obtained from the
manifold in (3.1) by k Stein 2-handle additions. So, in the end, (Σ2(M, K), ξ2(M, K))
is obtained from (M, ξ) # (M, ξ) via (k + l) Stein 2-handle additions. As a result, we
find that as long as (M, ξ) is Stein (resp. strongly/weakly symplectically) fillable,
then so is (Σ2(M, K), ξ2(M, K)).

Note that if ˜K and ˜S are the lifts of K and S in Σ2(M, K), then

slξ2(M,K)( ˜K) = −χ(˜S).

We may therefore apply a similar construction to conclude that there is a Stein two-
handle cobordism from (Σ2(M, K), ξ2(M, K))#(M, ξ) to (Σ3(M, K), ξ3(M, K)), the
three-fold cyclic cover of (M, ξ) branched along K. In general, if (M, ξ) is at least
weakly fillable, then there is Stein cobordism from (Σn(M, K), ξn(M, K))#(M, ξ) to
(Σn+1(M, K), ξn+1(M, K)). This completes the proof of Theorem 1.4. �

Theorem 1.4 ultimately rests on the fact that K may be “protected” from the
dividing curves on S whenever sl(K) = −χ(S) [1]. That is, S is isotopic to a convex
surface with for which there is a component C of the dividing set such that C and
K cobound an annulus with characteristic foliation consisting of arcs from C to K.
This is what allows us to conclude that the dividing set on Σ = DS is of the form
Γ ∪ Γ̄ ∪ C.

It is an interesting problem to find a more general criterion which ensures that a
transverse knot K ⊂ (S3, ξstd) is the protected boundary of some Seifert surface. Van
Horn-Morris and I hope to return to this problem in a future paper. For now, note that
the proof of Theorem 1.4 provides an obstruction: if the n-fold cyclic branched cover
of K is not Stein-fillable, then K does not have protected boundary. The proposition
below is an application of this obstruction.

Proposition 3.1. Let B be the transverse three-braid in (S3, ξstd) with braid word
given by (σ1σ2)3σ1σ

−a1
2 · · ·σ1σ

−am
2 , where the ai ≥ 0 and some aj �= 0. Then B is

not the protected boundary of any Seifert surface when 4 + m − ∑

ai < 0.

Proof. From the proof of Theorem 1.4, it is enough to observe that the branched
double cover (Σ2(S3, B), ξ2(S3, B)) is not Stein fillable when 4 + m−∑

ai < 0. This
fact appears in [3]. �

Remark 3.1. One should contrast Proposition 3.1 with the fact that (Σn(S3, B),
ξn(S3, B)) is tight for all n [2].
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