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THE HILBERT TRANSFORM DOES NOT MAP L1(Mw)
TO L1,∞(w)

Maria Carmen Reguera and Christoph Thiele

Abstract. We disprove the following a priori estimate for the Hilbert transform H and
the Hardy–Littlewood maximal operator M :

sup
t>0

tw{x ∈ IR : |Hf(x)| > t} ≤ C

∫
|f(x)|Mw(x) dx.

This is a sequel to paper [1] by the first author, which shows the existence of a weight
w and a Haar multiplier operator for which the inequality fails.

1. Introduction and statement of main result

In [2], Fefferman and Stein observed the following a priori estimate for the Hardy–
Littlewood maximal operator M :

sup
t>0

t w{x ∈ IR : |Mf(x)| > t} ≤ C

∫
|f(x)|Mw(x) dx.

Here the weight w is a non-negative, locally integrable function, and w(E) denotes
the integral of the weight over the set E. A natural question is whether such an
inequality holds when the Hardy–Littlewood maximal operator on the left-hand side
is replaced by the Hilbert transform. In [3], this question for general Calderón–
Zygmund operators is attributed to Muckenhoupt and Wheeden.

Conjecture 1.1 (Muckenhoupt–Wheeden). Let w be a weight and let M denote the
Hardy–Littlewood maximal operator. Let T be a Calderón–Zygmund operator. Then
there is a constant C depending only on T such that

(1.1) sup
t>0

tw({x ∈ R | |Tf(x)| > t}) ≤ C

∫
R

|f |Mw(x)dx.

We refer to [4] for the standard definitions concerning Calderón–Zygmund opera-
tors. Early work on this circle of ideas is a paper by Chanillo and Wheeden [5], which
proves the inequality (1.1) when T is a square function. This may have been viewed
as encouragement towards the Muckenhoupt–Wheeden conjecture at the time. Pérez
in [6] proves an analogue of the inequality (1.1) when the Hardy–Littlewood maximal
operator is replaced by a larger maximal operator, namely

sup
t>0

tw({x ∈ R | |Tf(x)| > t}) ≤ C

∫
R

|f |ML(logL)εw(x)dx.

He, however, expresses a negative bias towards validity of the conjecture by Mucken-
houpt and Wheeden. We also mention the earlier work of Buckley [7], who proves the
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inequality (1.1) for the specific weights wδ(x) = |x|−n(1−δ) for 0 < δ < 1. Replacing
the Calderón–Zygmund operator by a fractional integral, Carro et al. in [8] prove
counterexamples to the corresponding analogue of (1.1). In a recent paper [1] by the
first author, a dyadic version of the Muckenhoupt–Wheeden conjecture is proved to
be false. Building up on this work we disprove the Muckenhoupt–Wheeden conjecture.
Our main theorem is:

Theorem 1.1. For each constant C > 0 there is a weight function w on the real line
and an integrable compactly supported function f and a t > 0 such that

t w{x ∈ IR : |Hf(x)| > t} ≥ C

∫
|f(x)|Mw(x) dx.

Following the authors in [9] and [1], we prove Theorem 1.1 as a consequence of
Proposition 1.1 below, which in turn is a consequence of the dual Proposition 1.2
further below. For convenience of the reader we include a proof of the reductions to
these propositions at the end of this paper.

Proposition 1.1. For each constant C > 0 there is an everywhere positive weight
function w on the real line and an integrable compactly supported function f and a
t > 0 such that

(1.2) t2 w{x ∈ IR : |Hf(x)| > t} ≥ C

∫
|f(x)|2

(
Mw(x)
w(x)

)2

w(x) dx.

Proposition 1.2. For each constant C there is a non-trivial weight w on the real
line such that

‖H(w1[0,1))‖L2(w/(Mw)2) ≥ C‖1[0,1)‖L2(w).

Our construction of the weight w is a somewhat simpler variant of the construction
in [1]. Shortly after the completion of a first draft of the present paper, Nazarov
et al. posted a preprint on the internet [10], proving a stronger variant of Theorem
1.1 by disproving the A1 conjecture. In particular, they prove that there is no constant
C such that the following a priori inequality holds:

(1.3) t w{x ∈ IR : |Hf(x)| > t} ≤ C‖w‖A1

∫
|f(x)|w(x) dx.

Here the A1 constant is defined as ‖w‖A1 := ‖Mw/w‖∞. Their proof involves the
Bellmann function technique and is more involved than our argument. We do not
see how to easily modify our argument to address inequality (1.3). We close this
discussion by mentioning that Lerner et al. [3] proves a version of (1.3) with an
additional logarithmic factor in the A1 constant of the weight.

2. Proof of Proposition 1.2

To prove Proposition 1.2, we construct an appropriate weight w on a “smeared out
Cantor set”. Our Cantor set is the intersection of sets Ci, called the ith step of the
Cantor set construction, and each set Ci is the union of 3i(k−1) well separated intervals
of length 3−ik−1. Here k is some appropriate large parameter. For each such interval
J of Ci we choose a satellite interval J̃ , which has length ε|J | for some appropriate
small ε and is adjacent to J , either to the left or to the right. By “smeared out Cantor
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set” we then mean the union of all these satellite intervals over all steps of the Cantor
set construction.

The weight w will be supported on the smeared out Cantor set and constant on each
satellite interval. It will be chosen so that it is comparable to Mw on each satellite
interval (see (2.3) below). The key estimate then is that on a positive fraction of each
satellite interval the function Hw is much larger than w (Lemma 2.1). If we consider
for fixed interval J in the Cantor set construction the splitting

Hw = H(w1J ) + H(w1Jc),

then largeness of Hw on J̃ will be due to the summand H(w1J ). Thanks to the
specific construction of the Cantor set, this summand is well approximated by the
Hilbert transform of the averaged weight on J , and we have that H(1J ) has size
bounded below by | log(ε)| on J̃ . The crux of the matter is to make sure that this large
summand is not cancelled by the summand H(w1(J)c). To avoid such cancellation,
one uses the liberty to choose J̃ to the left or to the right of J , thereby adjusting the
relative sign of the two summands.

We begin with the details of the construction. Recall that a triadic interval I is of
the form [3jn, 3j(n + 1)) with integers j, n. Denote by Im middle third of I, i.e., the
triadic interval of one-third the length of I which contains the center of I. Denote
the center of I by c(I).

Fix an integer k chosen large enough depending on the constant C in Proposition
1.2 in a manner described further below. The intervals J alluded to in the introductory
remarks will be middle thirds of other triadic intervals K, and it is notationally more
convenient to work with the parent intervals K. This is illustrated in the first figure
which also shows a satellite interval J̃ to the left.

︷ ︸︸ ︷
︸ ︷︷ ︸

︷ ︸︸ ︷

K

J = KmJ̃ = I(K)

We proceed to define the collections Ki of intervals of length 3−ik. Define K0 to
be {[0, 1)} and recursively for i ≥ 1:

(2.1) Ki :=

⎧⎨
⎩K ′ : K ′ triadic, |K ′| = 3−ik, K ′ ⊂

⋃
K∈Ki−1

(K)m

⎫⎬
⎭ .

In words, we pass to the middle third of each interval in Ki−1, then we decompose
this middle third into 3k−1 equally spaced subintervals as indicated in the second
figure.

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
︸ ︷︷ ︸

K

K ′ K ′′ K ′′′
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Define K :=
⋃

i≥0 Ki. Proceeding recursively from the larger to the smaller
intervals, we choose for each K ∈ K a sign ε(K) ∈ {−1, 1}, i.e., ε(K) depends on the
values ε(K ′) with |K ′| > |K|. The exact choice will be specified later. Then define
the interval I(K) to be the triadic interval of length 3−k|K| whose right endpoint
equals the left endpoint of Km if ε(K) = 1, and whose left endpoint equals the right
endpoint of Km if ε(K) = −1. Note that if K ∈ Ki, then I(K) has the same length
as the intervals in Ki+1.

Now we define a sequence of absolutely continuous measures on [0, 1), following
the steps of the Cantor set construction. We continue to use the same symbol for a
measure and its Lebesgue density. Let w0 be the uniform measure on [0, 1)m∪I([0, 1))
with total mass 1. Recursively, we define the measure wi by the following properties:
its restriction to the complement of

⋃
K∈Ki

K coincides with the restriction of wi−1

to that set. For each K ∈ Ki we let wi(K) = wi−1(K) and we let the restriction of
wi to K be supported on and uniformly distributed on Km ∪ I(K). In other words,
we concentrate the measure of each K ∈ Ki uniformly onto its middle and satellite
intervals.

Let w be the weak limit of the sequence wi and note that w is supported on⋃
K∈K I(K). For K ∈ Ki, x ∈ I(K), and any triadic interval I with |I| ≥ |K| we

have

(2.2) w(x) =
w(I(K))
|I(K)| =

w(K)
|K| ≥ w(I)

|I| .

We claim that for K ∈ K and x ∈ (I(K))m we have

(2.3) Mw(x) ≤ 6w(x).

To see this, let I be an interval containing x. If I is contained in I(K), then by
the first identity of (2.2) the average of w over I equals w(x). If I is not contained
in I(K), then |I| > |I(K)|/3 because I contains x which lies in the middle third
of I(K). By comparing the average of w over I with the average over two triadic
intervals covering I while being no larger than 3|I|, we obtain from (2.2) that the
average of w over I is no more than 6w(x). This proves (2.3).

Lemma 2.1. For K ∈ Ki, x ∈ (I(K))m, and k > 3000 we have

|Hw(x)| ≥ (k/3)w(x).

This lemma proves Proposition 1.2, because with (2.3) and since w is constant on
every I(K) we have

36‖Hw‖2
L2(w/(Mw)2) ≥ (k2/9)

∑
K∈K

∫
(I(K))m

w(y) dy = (k2/27)‖1[0,1)‖2
L2(w).
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Proof of Lemma 2.1. We split the principal value integral for Hw(x) into six sum-
mands:

p.v.

∫
I(K)

w(y)
y − x

dy(2.4)

+
∫

Km

w(y)
y − x

dy(2.5)

+
∫

Kc

(
w(y)
y − x

− w(y)
y − c(K)

)
dy(2.6)

+
∫

(
⋃

Ki
K′)c

w(y)
y − c(K)

dy(2.7)

+
∑

K′∈Ki\{K}

∫
K′

w(y)
y − c(K)

− w(y)
c(K ′) − c(K)

dy(2.8)

+
∑

K′∈Ki\{K}

∫
K′

w(y)
c(K ′) − c(K)

dy.(2.9)

The terms (2.7) and (2.9) remain unchanged if we replace w by wi−1 and hence
depend only on the choices of ε(K ′) with |K ′| > |K|. The integrand of (2.5) is positive
or negative depending on ε(K). Specify the choice of ε(K) so that the sign of (2.5)
equals the sign of (2.7)+(2.9). If the latter is zero, we may arbitrarily set ε(K) = 1.
We estimate

|(2.5)| ≥
∑

K′∈Ki+1,K′⊂Km

∫
K′

w(y)
|y − x| dy

≥
∑

K′∈Ki+1,K′⊂Km

w(K ′)
supy∈K′ |y − x|

≥
3k∑

n=1

1
n + 1

w(I(K))
|I(K)| ≥ (k/2)w(x).

The remaining terms are small error terms, we estimate with δ = |I(Km)m|:

|(2.4)| =

∣∣∣∣∣
∫

I(K)\[x−δ,x+δ]

w(y)
y − x

dy

∣∣∣∣∣ ≤ 3w(x),

|(2.6)| ≤ 4
∑

|K′|=|K|,K′ �=K

∫
K′

|x − c(K)|
|y − c(K)|2 w(y) dy

≤ 8
∑

|K′|=|K|,K′ �=K

|x − c(K)|
|c(K ′) − c(K)|2 w(K ′)

≤ 16
∞∑

n=1

1
(n − 3/4)2

w(I(K))
|I(K)| ≤ 200w(x),

|(2.8)| ≤ 4
∑

K′∈Ki

∫
K′

|y − c(K ′)|
|c(K ′) − c(K)|2 w(y) dy,
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and the last expression is dominated by the same final bound as (2.6). Putting all
estimates together, we have

|(2.4) + (2.5) + (2.6) + (2.7) + (2.8) + (2.9)|
≥ |(2.5) + (2.7) + (2.9)| − |(2.4)| − |(2.6)| − |(2.8)|
≥ |(2.5)| − |(2.4)| − |(2.6)| − |(2.8)|
≥ (k/2 − 403)w(x).

This completes the proof of Lemma 2.1 and thus Proposition 1.2. �

3. Remarks

3.1. More general kernels. While our argument seems to rely on the odd symme-
try of the Hilbert kernel, the construction can easily be modified to yield the result
for singular integrals with even kernels such as for example Re(|x|−1+αi) with α �= 0.
For K ∈ Ki−1, let I(K) be the interval of length 3−k|K| with the same center as K.
Depending on the positive or negative bias of T (w1(K)c) choose instead of (2.1) an
appropriate collection of 3k−1 intervals of length 3−k|K| inside K, so that the kernel
of the Calderón Zygmund operator for x ∈ (I(K))m and y ∈ K ′, K ′ ∈ Ki, K ′ ⊂ K
has sufficiently large positive or negative bias.

3.2. Weights in Theorem 1.1. We specify weights satisfying Theorem 1.1. Fix a
constant C as in Proposition 1.2 and consider k and the weight w constructed above.
We slightly change w to make it positive by adding ce−x2

for sufficiently small c so
as to not change the conclusion of Proposition 1.2. We may normalize the measure
to be probability measure and call the remaining measure w again. The conclusion
of Proposition 1.2 can be written:

(3.1)
(∫

(Hw(x))2
w(x)

(Mw(x))2
dx

)1/2

≥ C.

Multiplying both sides of (3.1) by the left-hand side of (3.1), setting f = (Hw)w/
(Mw)2 and using essential self-duality of H we obtain

(3.2)
∣∣∣∣
∫

w(x)Hf(x) dx

∣∣∣∣ ≥ C

(∫
f(x)2

(Mw(x))2

(w(x))2
w(x) dx

)1/2

.

Letting f∗ be the non-increasing rearrangement of Hf on [0, 1], we may estimate the
left hand side of (3.2)

∫ 1

0

f∗(y) dy ≤ 2 sup
y∈[0,1]

y1/2f∗(y) = 2 sup
t>0

w({x : |Hf(x)| ≥ t})1/2t.

Hence Proposition 1.1 holds for the constant C/2 with the weight w and some exis-
tentially chosen t. Now let E be the set on the left hand side of Proposition 1.1 for
the given w, f and appropriate t, then we have

M(w1E)(x) = sup
x∈I

∫
I
w∫

I
1

∫
I
1Ew∫
I
w

≤ Mw(x)Mw1E(x),
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where Mw denotes the Hardy–Littlewood maximal function with respect to the
weight w. With Hölder’s inequality we obtain

∫
|f(x)|M(w1E)(x) dx ≤

(∫
|f(x)|2 Mw(x)2

w(x)
dx

)1/2

‖Mw1E‖L2(w).

With the Hardy–Littlewood maximal theorem with respect to the weight w we can
estimate ‖Mw1E‖L2(w) by w(E)1/2. This shows that Theorem 1.1 holds for the
weight w1E .
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