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EQUIVARIANT CHERN NUMBERS AND THE NUMBER OF
FIXED POINTS FOR UNITARY TORUS MANIFOLDS

Zhi Lü and Qiangbo Tan

Abstract. Let M2n be a unitary torus (2n)-manifold, i.e., a (2n)-dimensional oriented

stable complex connected closed T n-manifold having a nonempty fixed point set. In
this paper, we show that M bounds equivariantly if and only if the equivariant Chern

numbers 〈(cT n

1 )i(cT n

2 )j , [M ]〉 = 0 for all i, j ∈ N, where cT n

l denotes the lth equivariant
Chern class of M . As a consequence, we also show that if M does not bound equivariantly

then the number of fixed points is at least �n
2
� + 1.

1. Introduction

Let Tn denote the torus of rank n. An oriented stable complex closed Tn-manifold
is an oriented closed smooth manifold M with an effective Tn-action such that its
tangent bundle admits a Tn-equivariant stable complex structure. It is well known
from [2] that the equivariant cobordism class of an oriented stable complex closed
Tn-manifold with isolated fixed points is completely determined by its equivariant
Chern numbers. In this paper, we shall pay more attention on the oriented stable
complex (connected) closed Tn-manifolds of dimension 2n with nonempty fixed point
set, which are also called the unitary torus manifolds or unitary toric manifolds (see
[3] and [6]). These geometrical objects are the topological analogues of compact non-
singular toric varieties, and constitute a much wider class than that of quasi-toric
manifolds introduced by Davis and Januszkiewicz in [1]. Also, the nonempty fixed
point set of a unitary torus manifold must be isolated since the action is assumed to be
effective. In this case, we shall show that the equivariant cobordism class of a unitary
torus manifold is determined by only those equivariant Chern numbers produced by
the first and the second equivariant Chern classes. Our result is stated as follows.

Theorem 1.1. Let M be a unitary torus manifold. Then M bounds equivariantly if
and only if the equivariant Chern numbers 〈(cT n

1 )i(cT n

2 )j , [M ]〉 = 0 for all i, j ∈ N,
where [M ] is the fundamental class of M with respect to the given orientation.

In [4], Kosniowski studied unitary S1-manifolds and got some interesting results
on the fixed points of the action, where “unitary” means that the tangent bundle
of M admits an S1-equivariant stable complex structure. In particular, when the
fixed points are isolated, he proposed the following conjecture.

Conjecture 1.1 (Kosniowski). Suppose that M2n is a unitary S1-manifold with
isolated fixed points. If M does not bound equivariantly then the number of fixed
points is greater than f(n), where f(n) is some linear function.
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Remark 1.1. As was noted by Kosniowski in [4], the most likely function is f(n) = n
2 ,

so the number of fixed points of M2n is at least [n
2 ] + 1.

With respect to this conjecture, recently some related works have been done. For
example, Pelayo and Tolman in [8] studied compact symplectic manifolds with sym-
plectic circle actions, and proved that if the weights induced from the isotropy rep-
resentations on the fixed points of such an S1-manifold satisfy some subtle condi-
tion, then the action has at least n + 1 isolated fixed points. In [5], Ping Li and
Kefeng Liu showed that if M2mn is an almost complex manifold and there exists
a partition λ = (λ1, . . . , λr) of weight m such that the corresponding Chern num-
ber 〈(cλ1 · · · cλr )

n, [M ]〉 is nonzero, then for any S1-action on M , it must have at
least n + 1 fixed points.

In the case of the unitary torus manifolds, comparing with Kosniowski’s Conjec-
ture 1.1, we can apply Theorem 1.1 to obtain the following result:

Theorem 1.2. Suppose that M2n is a (2n)-dimensional unitary torus manifold. If M
does not bound equivariantly, then the number of fixed points is at least �n

2 �+1, where
�n

2 � denotes the minimal integer no less than n
2 .

Remark 1.2. It should be interesting to discuss whether there exists an example
of (2n)-dimensional unitary torus manifolds, which does not bound equivariantly but
has exactly �n

2 � + 1 isolated fixed points for every n.

2. Preliminaries

2.1. Equivariant Chern characteristic numbers. The equivariant Chern char-
acteristic numbers cT n

ω (M) of an oriented stable complex closed Tn-manifold M are
defined as

cT n

ω (M) = 〈(cT n

1 )i1 . . . (cT n

k )ik , [M ]〉 ∈ H∗(BTn; Z),
where ω = (i1, . . . , ik) is a multi-index and cT n

l is the lth equivariant Chern class
of M . Unlike the ordinary Chern characteristic numbers, these equivariant Chern
characteristic numbers can be nonzero polynomials in H∗(BTn; Z) even if the degree
of the product (cT n

1 )i1 · · · (cT n

k )ik is greater than dimM/2.
If the oriented stable complex closed Tn-manifold M has only isolated fixed points,

then it is known from [2] that at each fixed point p ∈ MT n

the tangent space TpM is
equipped with the induced Tn-action, orientation and complex structure, and the Tn-
equivariant cobordism class of M is determined by the complex Tn-representations
TpM at all p ∈ MT n

and their orientations. Then Guillemin et al. in [2] applied
Atiyah–Bott–Berline–Vergne localization theorem to give the following theorem.

Theorem 2.1 (Guillemin–Ginzburg–Karshon). Let M be an oriented stable complex
closed Tn-manifold with isolated fixed points. Then M bounds equivariantly if and
only if all equivariant Chern characteristic numbers of M are equal to zero.

2.2. Unitary torus manifolds and Atiyah–Bott–Berline–Vergne localiza-
tion theorem. Let M2n be a (2n)-dimensional unitary torus manifold. Following
[6], we say that a closed, connected, real codimension-2 submanifold of M2n is called
characteristic if it is a connected component of a fixed point set by some circle sub-
group of Tn and contains at least one fixed point of the whole Tn-action. Then M2n
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has finitely many such characteristic submanifolds. By Mi, i ∈ [m] = {1, . . . , m} we
denote all characteristic submanifolds of M2n, and by ζi denote the corresponding
normal bundle over Mi, and by Ti denote the circle subgroup fixing Mi pointwise.
Then, for each p ∈ MT n

, we can write the tangent Tn-representation at p as

TpM =
⊕

i∈I(p)

ζi|p,

where I(p) = {i|p ∈ Mi} ⊂ [m] and ζi|p is the restriction of ζi to p. So |I(p)| =
n. Each Mi may define an element λi in the equivariant cohomology H2

T n(M ; Z).
Actually, the inclusion Mi ↪→ M may induce an equivariant Gysin homomorphism:
H∗

T n(Mi; Z) −→ H∗+2
T n (M ; Z), so that λi ∈ H2

T n(M ; Z) can be chosen as the image
of the identity in H0

T n(Mi; Z). It was shown in [6, Theorem 3.1] that the total equi-
variant Chern characteristic class cT n

(TM) of the tangent bundle TM of M can be
expressed as

cT n

(TM) =
∏

i∈[m]

(1 + λi)

in Ĥ∗
T n(M ; Z) = H∗

T n(M ; Z)/S-torsion where S is the subset of H∗(BTn; Z) gener-
ated multiplicatively by nonzero elements of H2(BTn; Z). It is well known that the
restriction λi|p can be regarded as the top equivariant Chern class of ζi|p. Hence, the
total equivariant Chern characteristic class of the vector bundle TpM −→ {p} is

cT n

(TpM) = cT n

(TM)|p =
∏

i∈I(p)

(1 + λi|p).

In particular, Masuda in [6] also showed the following result, which will be very useful
in our discussion later.

Lemma 2.1 ([6, Lemma 1.3(1)]). {λi|p
∣∣i ∈ I(p)} forms a basis of H2

T n({p}; Z) ∼=
H2(BTn; Z).

On the other hand, the normal bundle to p in M2n is TpM with the orientation
inherited from M2n. Thus, the equivariant Euler class eT n

(TpM) of this bundle is
±cT n

n (TpM) = ±∏
i∈I(p) λi|p, where the sign is positive if the orientation of TpM

agrees with the complex orientation and negative otherwise.
Each cT n

(TpM) =
∏

i∈I(p)(1+λi|p) = 1+σ1(p)+· · ·+σn(p) determines a collection
σ(p) = (σ1(p), . . . , σn(p)), where σj(p) denotes the jth elementary symmetric function
over n variables λi|p, i ∈ I(p). Clearly, σ(p) determines the representation TpM , but
not the orientation of TpM inherited from M .

Now let {σ(p)
∣∣p ∈ MT n} = {σ(1), . . . , σ(t)} and for each 1 ≤ � ≤ t, set,

m� = �{p ∈ MT n∣∣σ(p) = σ(�), eT n

(TpM) = σ(�)
n }

− �{p ∈ MT n∣∣σ(p) = σ(�), eT n

(TpM) = −σ(�)
n }.

Then we can state the Atiyah–Bott–Berline–Vergne localization theorem in our case
as follows:
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Theorem 2.2 (A–B–B–V localization theorem). Let M2n be a (2n)-dimensional
unitary torus manifold. Then

cT n

ω (M) =
∑

p∈MT n

σ1(p)i1 · · ·σn(p)in

±σn(p)
=

t∑

�=1

m�(σ
(�)
1 )i1 · · · (σ(�)

n )in−1,

where ω = (i1, . . . , in) is a multi-index.

3. Proofs of main results

First we prove two lemmas that will be used in the proof of Theorem 1.1. Let M2n

be a (2n)-dimensional unitary torus manifold and let p, q ∈ MT n

be two fixed points.

Lemma 3.1. If σ1(p) = σ1(q) and σn(p) = ±σn(q) then σ(p) = σ(q).

Proof. If σn(p) = ±σn(q), then
∏

i∈I(p) λi|p = ±∏
i∈I(q) λi|q. So, by Lemma 2.1

we have that {λi|p
∣∣i ∈ I(p)} = {εiλi|q

∣∣i ∈ I(q)} where εi = ±1. Furthermore, if
σ1(p) = σ1(q), then

σ1(p) =
∑

i∈I(p)

λi|p =
∑

i∈I(q)

εiλi|q =
∑

i∈I(q)

λi|q = σ1(q)

so
∑

i∈I(q)(1− εi)λi|q = 0. This implies that εi = 1 for all i ∈ I(q) since λi|q, i ∈ I(q)
are linearly independent, and the lemma then follows. �

Lemma 3.2. σ(p) = σ(q) if and only if σ1(p) = σ1(q) and σ2(p) = σ2(q).

Proof. It suffices to show that σ(p) = σ(q) if σ1(p) = σ1(q) and σ2(p) = σ2(q).
Consider s2(p) =

∑
i∈I(p)(λi|p)2 and s2(q) =

∑
i∈I(q)(λi|q)2. If σ1(p) = σ1(q)

and σ2(p) = σ2(q), then s2(p) = s2(q) since s2 = σ2
1 − 2σ2 by [7]. Since both

{λi|p
∣∣i ∈ I(p)} and {λi|q

∣∣i ∈ I(q)} are two bases of H2(BTn; Z) by Lemma 2.1, there
is an n × n nondegenerate Z-matrix A such that

(λi|p
∣∣i ∈ I(p)) = (λi|q

∣∣i ∈ I(q))A.

Moreover, we have that

s2(p) − s2(q) = (λi|q
∣∣i ∈ I(q))(AA� − En)(λi|q

∣∣i ∈ I(q))� = 0,

so we conclude that AA� = En, where En is the identity matrix. This implies that
each row of A contains only one ±1 and the other elements in this row are all 0.
Hence

σn(p) = ±
∏

i∈I(q)

λi|q = ±σn(q)

and then the proof is completed by Lemma 3.1. �

Let {σ1(p)
∣∣p ∈ MT n} = {τ1, . . . , τs} and {σ2(p)

∣∣p ∈ MT n} = {η1, . . . , ηu}. Then
s, u ≤ t. Set

Ak = {p ∈ MT n∣∣σ1(p) = τk}
for 1 ≤ k ≤ s and

Bl = {p ∈ MT n∣∣σ2(p) = ηl}
for 1 ≤ l ≤ u. Then |MT n | =

∑s
k=1 |Ak| =

∑u
l=1 |Bl|.
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Proof of Theorem 1.1. By Theorem 2.1 it suffices to prove that if the equivariant
Chern numbers 〈(cT n

1 )i(cT n

2 )j , [M ]〉 = 0 for all i, j ∈ N, then M2n bounds equivari-
antly. Now suppose 〈(cT n

1 )i(cT n

2 )j , [M ]〉 = 0 for all i, j ∈ N. By Theorem 2.2, we can
write these equivariant Chern numbers in the following way:

(3.1) 〈(cT n

1 )i(cT n

2 )j , [M ]〉 =
t∑

�=1

m�(σ
(�)
1 )i(σ(�)

2 )j

σ
(�)
n

=
s∑

k=1

τ i
k

∑

l∈Lk

ηj
l

∑

�∈Ck,l

m�

σ
(�)
n

where Lk = {l∣∣Ak ∩ Bl �= ∅, 1 ≤ l ≤ u}, and Ck,l = {�∣∣σ(�)
1 = τk, σ

(�)
2 = ηl, 1 ≤ � ≤ t}.

Obviously, |Lk| ≤ |Ak| for every k. Let i vary in the range 0, 1, . . . , s − 1. Then (τ i
k)

is an s × s van der Monde matrix, so for each k,
∑

l∈Lk

ηj
l

∑

�∈Ck,l

m�

σ
(�)
n

= 0.

Next, let j vary in the range 0, 1, . . . , |Lk| − 1. Then (ηj
l ) is a |Lk| × |Lk| van der

Monde matrix, hence for each k and each l ∈ Lk,
∑

�∈Ck,l

m�

σ
(�)
n

= 0.

Furthermore, by Lemma 3.2 we have that Ck,l contains only an element, so m� = 0
for all �. Thus, by Theorem 2.2, all equivariant Chern characteristic numbers of M
are equal to zero, as desired. �

Now we focus on the proof of Theorem 1.2. First we give a general result.

Proposition 3.1. Let M2n be a (2n)-dimensional unitary torus manifold. If s +
2 max

1≤k≤s
{|Ak|} − 3 < n or 2u + max

1≤l≤u
{|Bl|} − 3 < n, then M2n bounds equivariantly.

Proof. In a similar way to the proof of Theorem 1.1, we can write the equivariant
Chern numbers 〈(cT n

1 )i(cT n

2 )j , [M ]〉 in the following two ways:

(3.2) 〈(cT n

1 )i(cT n

2 )j , [M ]〉 =
s∑

k=1

τ i
k

∑

l∈Lk

ηj
l

∑

�∈Ck,l

m�

σ
(�)
n

,

where Lk = {l∣∣Ak ∩ Bl �= ∅, 1 ≤ l ≤ u} with |Lk| ≤ |Ak| for every k and Ck,l =
{�∣∣σ(�)

1 = τk, σ
(�)
2 = ηl, 1 ≤ � ≤ t} as before, and

(3.3) 〈(cT n

1 )i(cT n

2 )j , [M ]〉 =
u∑

l=1

ηj
l

∑

k∈Kl

τ i
k

∑

�∈Ck,l

m�

σ
(�)
n

where Kl = {k∣∣Ak ∩ Bl �= ∅, 1 ≤ k ≤ s}, satisfying that and |Kl| ≤ |Bl| for every l.
We note that if i + 2j < n, then 〈(cT n

1 )i(cT n

2 )j , [M ]〉 = 0.
If s+2 max

1≤k≤s
{|Ak|}−3 < n, then we can let i vary in the range 0, 1, . . . , s−1 and for

every k, let j vary in the range 0, 1, . . . , |Lk| − 1 ≤ max
1≤k≤s

{|Ak|}− 1 in Equation (3.2).

Similarly, if 2u+ max
1≤l≤u

{|Bl|}−3 < n, then we can let j vary in the range 0, 1, . . . , u−1

and for every l, let i vary in the range 0, 1, . . . , |Kl| − 1 ≤ max
1≤l≤u

{|Bl|} − 1 in Equa-

tion (3.3). Using the proof method of Theorem 1.1 as above, we can obtain van der
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Monde matrices, which imply that m� = 0 for all �, and hence 〈(cT n

1 )i(cT n

2 )j , [M ]〉 = 0
for all i, j ∈ N. Therefore, M bounds equivariantly by Theorem 1.1. �

Lemma 3.3. Let a1, . . . , ar be positive integers. If a1 + · · · + ar = ℘, then r +
2 max{ai|1 ≤ i ≤ r} ≤ 2℘ + 1.

Proof. Obviously, max{ai|1 ≤ i ≤ r} ≤ ℘− r + 1, and the equation holds if and only
if there is only some one ai = ℘ − r + 1 and all others are equal to 1. Then we have
the required inequality r + 2 max{ai|1 ≤ i ≤ r} ≤ 2℘ + 1, where the last equation
holds if and only if r = 1. �

Proof of Theorem 1.2. If |MT n | = |A1| + · · · + |As| < n
2 + 1, then by Lemma 3.3,

we have s + 2 max
1≤k≤s

{|Ak|} ≤ 2|MT n | + 1 < n + 3, so M bounds equivariantly by

Proposition 3.1. �

Remark 3.1. Let us look at the case in which M does not bound equivariantly and
|MT n | = �n

2 � + 1. When n is even, we have s + 2 max
1≤k≤s

{|Ak|} = 2|MT n | + 1 by

Proposition 3.1 and Lemma 3.3. This implies that s = 1 by the proof of Lemma 3.3,
which means that all σ1 are the same. When n is odd, we see that n + 3 ≤ s +
2 max

1≤k≤s
{|Ak|} ≤ 2|MT n | + 1 = n + 4. An easy argument shows that n + 3 = s +

2 max
1≤k≤s

{|Ak|} is impossible, so we must have s + 2 max
1≤k≤s

{|Ak|} = 2|MT n |+ 1. Thus,

in this case s must be 1 and then all σ1 are the same, too. Moreover, in a similar
way to the proof of Theorem 1.1, we can show easily that |MT n | = u so all σ2 are
distinct. These observations seemingly imply the existence of a nonbounding unitary
torus manifold M2n with |MT n | = �n

2 � + 1. Indeed, we can see an example in the
case n = 1, as shown in [4, Theorem 5].

Finally we conclude this paper with the following conjecture:

Conjecture 3.1. �n
2 � + 1 is the best possible lower bound of the number of fixed

points for (2n)-dimensional nonbounding unitary torus manifolds.
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