EQUIVARIANT CHERN NUMBERS AND THE NUMBER OF FIXED POINTS FOR UNITARY TORUS MANIFOLDS

ZHI LÜ AND QIANGBO TAN

ABSTRACT. Let M^{2n} be a unitary torus $(2n)$ -manifold, i.e., a $(2n)$ -dimensional oriented stable complex connected closed $Tⁿ$ -manifold having a nonempty fixed point set. In this paper, we show that *M* bounds equivariantly if and only if the equivariant Chern numbers $\langle (c_1^{T^n})^i (c_2^{T^n})^j, [M] \rangle = 0$ for all $i, j \in \mathbb{N}$, where $c_l^{T^n}$ denotes the *l*th equivariant Chern class of M . As a consequence, we also show that if \tilde{M} does not bound equivariantly then the number of fixed points is at least $\lceil \frac{n}{2} \rceil + 1$.

1. Introduction

Let T^n denote the torus of rank n. An *oriented stable complex closed* T^n -manifold is an oriented closed smooth manifold M with an effective $Tⁿ$ -action such that its tangent bundle admits a $Tⁿ$ -equivariant stable complex structure. It is well known from [2] that the equivariant cobordism class of an oriented stable complex closed $Tⁿ$ -manifold with isolated fixed points is completely determined by its equivariant Chern numbers. In this paper, we shall pay more attention on the oriented stable complex (connected) closed $Tⁿ$ -manifolds of dimension 2n with nonempty fixed point set, which are also called the *unitary torus manifolds* or *unitary toric manifolds* (see [3] and [6]). These geometrical objects are the topological analogues of compact nonsingular toric varieties, and constitute a much wider class than that of quasi-toric manifolds introduced by Davis and Januszkiewicz in [1]. Also, the nonempty fixed point set of a unitary torus manifold must be isolated since the action is assumed to be effective. In this case, we shall show that the equivariant cobordism class of a unitary torus manifold is determined by only those equivariant Chern numbers produced by the first and the second equivariant Chern classes. Our result is stated as follows.

Theorem 1.1. *Let* M *be a unitary torus manifold. Then* M *bounds equivariantly if* and only if the equivariant Chern numbers $\langle (c_1^T)^i (c_2^T)^j, [M] \rangle = 0$ for all $i, j \in \mathbb{N}$, *where* [M] *is the fundamental class of* M *with respect to the given orientation.*

In [4], Kosniowski studied unitary S^1 -manifolds and got some interesting results on the fixed points of the action, where "unitary" means that the tangent bundle of M admits an S^1 -equivariant stable complex structure. In particular, when the fixed points are isolated, he proposed the following conjecture.

Conjecture 1.1 (Kosniowski). Suppose that M^{2n} is a unitary S^1 -manifold with isolated fixed points. If M does not bound equivariantly then the number of fixed points is greater than $f(n)$, where $f(n)$ is some linear function.

Received by the editors March 30, 2011.

Key words and phrases. Unitary torus manifold, equivariant Chern number, cobordism.

Remark 1.1. As was noted by Kosniowski in [4], the most likely function is $f(n) = \frac{n}{2}$, so the number of fixed points of M^{2n} is at least $\left[\frac{n}{2}\right] + 1$.

With respect to this conjecture, recently some related works have been done. For example, Pelayo and Tolman in [8] studied compact symplectic manifolds with symplectic circle actions, and proved that if the weights induced from the isotropy representations on the fixed points of such an S^1 -manifold satisfy some subtle condition, then the action has at least $n + 1$ isolated fixed points. In [5], Ping Li and Kefeng Liu showed that if M^{2mn} is an almost complex manifold and there exists a partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ of weight m such that the corresponding Chern number $\langle (c_{\lambda_1} \cdots c_{\lambda_r})^n, [M] \rangle$ is nonzero, then for any S^1 -action on M, it must have at least $n + 1$ fixed points.

In the case of the unitary torus manifolds, comparing with Kosniowski's Conjecture 1.1, we can apply Theorem 1.1 to obtain the following result:

Theorem 1.2. *Suppose that* M^{2n} *is a* (2n)*-dimensional unitary torus manifold. If* M *does not bound equivariantly, then the number of fixed points is at least* $\lceil \frac{n}{2} \rceil + 1$ *, where* $\lceil \frac{n}{2} \rceil$ denotes the minimal integer no less than $\frac{n}{2}$.

Remark 1.2. It should be interesting to discuss whether there exists an example of $(2n)$ -dimensional unitary torus manifolds, which does not bound equivariantly but has exactly $\lceil \frac{n}{2} \rceil + 1$ isolated fixed points for every *n*.

2. Preliminaries

2.1. Equivariant Chern characteristic numbers. The *equivariant Chern characteristic numbers* $c_{\omega}^{T^n}(M)$ of an oriented stable complex closed T^n -manifold M are defined as

$$
c_{\omega}^{T^{n}}(M) = \langle (c_{1}^{T^{n}})^{i_{1}} \dots (c_{k}^{T^{n}})^{i_{k}}, [M] \rangle \in H^{*}(BT^{n}; \mathbb{Z}),
$$

where $\omega = (i_1, \ldots, i_k)$ is a multi-index and $c_l^{T^n}$ is the *l*th equivariant Chern class of M. Unlike the ordinary Chern characteristic numbers, these equivariant Chern characteristic numbers can be nonzero polynomials in $H^*(BT^n;\mathbb{Z})$ even if the degree of the product $(c_1^{T^n})^{i_1} \cdots (c_k^{T^n})^{i_k}$ is greater than dim $M/2$.

If the oriented stable complex closed T^n -manifold M has only isolated fixed points, then it is known from [2] that at each fixed point $p \in M^{T^n}$ the tangent space T_pM is equipped with the induced T^n -action, orientation and complex structure, and the T^n equivariant cobordism class of M is determined by the complex $Tⁿ$ -representations T_pM at all $p \in M^{T^n}$ and their orientations. Then Guillemin et al. in [2] applied Atiyah–Bott–Berline–Vergne localization theorem to give the following theorem.

Theorem 2.1 (Guillemin–Ginzburg–Karshon)**.** *Let* M *be an oriented stable complex closed* $Tⁿ$ *-manifold with isolated fixed points. Then* M *bounds equivariantly if and only if all equivariant Chern characteristic numbers of* M *are equal to zero.*

2.2. Unitary torus manifolds and Atiyah–Bott–Berline–Vergne localization theorem. Let M^{2n} be a $(2n)$ -dimensional unitary torus manifold. Following [6], we say that a closed, connected, real codimension-2 submanifold of M^{2n} is called *characteristic* if it is a connected component of a fixed point set by some circle subgroup of T^n and contains at least one fixed point of the whole T^n -action. Then M^{2n}

has finitely many such characteristic submanifolds. By $M_i, i \in [m] = \{1, \ldots, m\}$ we denote all characteristic submanifolds of M^{2n} , and by ζ_i denote the corresponding normal bundle over M_i , and by T_i denote the circle subgroup fixing M_i pointwise. Then, for each $p \in M^{T^n}$, we can write the tangent T^n -representation at p as

$$
T_p M = \bigoplus_{i \in I(p)} \zeta_i|_p,
$$

where $I(p) = \{i | p \in M_i\} \subset [m]$ and $\zeta_i|_p$ is the restriction of ζ_i to p. So $|I(p)| =$ *n*. Each M_i may define an element λ_i in the equivariant cohomology $H_{T^n}^2(M; \mathbb{Z})$. Actually, the inclusion $M_i \hookrightarrow M$ may induce an equivariant Gysin homomorphism: $H_{T^n}^*(M_i;\mathbb{Z}) \longrightarrow H_{T^n}^{*+2}(M;\mathbb{Z})$, so that $\lambda_i \in H_{T^n}^2(M;\mathbb{Z})$ can be chosen as the image of the identity in $\hat{H}_{T^n}^0(M_i;\mathbb{Z})$. It was shown in [6, Theorem 3.1] that the total equivariant Chern characteristic class $c^{T^n}(TM)$ of the tangent bundle TM of M can be expressed as

$$
c^{T^n}(TM) = \prod_{i \in [m]} (1 + \lambda_i)
$$

 $\widehat{H}_{T^n}^*(M;\mathbb{Z}) = H_{T^n}^*(M;\mathbb{Z})/S$ -torsion where S is the subset of $H^*(BT^n;\mathbb{Z})$ generated multiplicatively by nonzero elements of $H^2(BT^n;\mathbb{Z})$. It is well known that the restriction $\lambda_i|_p$ can be regarded as the top equivariant Chern class of $\zeta_i|_p$. Hence, the total equivariant Chern characteristic class of the vector bundle $T_pM \longrightarrow \{p\}$ is

$$
c^{T^{n}}(T_{p}M) = c^{T^{n}}(TM)|_{p} = \prod_{i \in I(p)} (1 + \lambda_{i}|_{p}).
$$

In particular, Masuda in [6] also showed the following result, which will be very useful in our discussion later.

Lemma 2.1 ([6, Lemma 1.3(1)])**.** $\{\lambda_i|_p \mid i \in I(p)\}$ forms a basis of $H^2_{T^n}(\{p\}; \mathbb{Z}) \cong H^2_{T^n}(\{p\}; \mathbb{Z})$ $H^2(BT^n;\mathbb{Z})$.

On the other hand, the normal bundle to p in M^{2n} is T_pM with the orientation inherited from M^{2n} . Thus, the equivariant Euler class $e^{T^n}(T_pM)$ of this bundle is $\pm c_n^{T^n}(T_pM) = \pm \prod_{i \in I(p)} \lambda_i|_p$, where the sign is positive if the orientation of T_pM agrees with the complex orientation and negative otherwise.

Each $c^{T^n}(T_pM) = \prod_{i \in I(p)} (1 + \lambda_i|_p) = 1 + \sigma_1(p) + \cdots + \sigma_n(p)$ determines a collection $\sigma(p)=(\sigma_1(p),\ldots,\sigma_n(p)),$ where $\sigma_j(p)$ denotes the jth elementary symmetric function over n variables $\lambda_i|_p, i \in I(p)$. Clearly, $\sigma(p)$ determines the representation T_pM , but not the orientation of T_pM inherited from M.

Now let $\{\sigma(p)|p \in M^{T^n}\} = \{\sigma^{(1)}, \ldots, \sigma^{(t)}\}$ and for each $1 \leq \ell \leq t$, set,

$$
m_{\ell} = \sharp \{ p \in M^{T^n} \big| \sigma(p) = \sigma^{(\ell)}, e^{T^n} (T_p M) = \sigma_n^{(\ell)} \} - \sharp \{ p \in M^{T^n} \big| \sigma(p) = \sigma^{(\ell)}, e^{T^n} (T_p M) = -\sigma_n^{(\ell)} \}.
$$

Then we can state the Atiyah–Bott–Berline–Vergne localization theorem in our case as follows:

Theorem 2.2 (A–B–B–V localization theorem). Let M^{2n} be a (2n)-dimensional *unitary torus manifold. Then*

$$
c_{\omega}^{T^n}(M) = \sum_{p \in M^{T^n}} \frac{\sigma_1(p)^{i_1} \cdots \sigma_n(p)^{i_n}}{\pm \sigma_n(p)} = \sum_{\ell=1}^t m_\ell(\sigma_1^{(\ell)})^{i_1} \cdots (\sigma_n^{(\ell)})^{i_n-1},
$$

where $\omega = (i_1, \ldots, i_n)$ *is a multi-index.*

3. Proofs of main results

First we prove two lemmas that will be used in the proof of Theorem 1.1. Let M^{2n} be a $(2n)$ -dimensional unitary torus manifold and let $p, q \in M^{T^n}$ be two fixed points.

Lemma 3.1. *If* $\sigma_1(p) = \sigma_1(q)$ *and* $\sigma_n(p) = \pm \sigma_n(q)$ *then* $\sigma(p) = \sigma(q)$ *.*

Proof. If $\sigma_n(p) = \pm \sigma_n(q)$, then $\prod_{i \in I(p)} \lambda_i|_p = \pm \prod_{i \in I(q)} \lambda_i|_q$. So, by Lemma 2.1 we have that $\{\lambda_i|_p|i \in I(p)\} = \{\varepsilon_i\lambda_i|_q|i \in I(q)\}$ where $\varepsilon_i = \pm 1$. Furthermore, if $\sigma_1(p) = \sigma_1(q)$, then

$$
\sigma_1(p) = \sum_{i \in I(p)} \lambda_i|_p = \sum_{i \in I(q)} \varepsilon_i \lambda_i|_q = \sum_{i \in I(q)} \lambda_i|_q = \sigma_1(q)
$$

so $\sum_{i\in I(q)} (1-\varepsilon_i)\lambda_i|_q = 0$. This implies that $\varepsilon_i = 1$ for all $i \in I(q)$ since $\lambda_i|_q, i \in I(q)$ are linearly independent, and the lemma then follows. \Box

Lemma 3.2. $\sigma(p) = \sigma(q)$ *if and only if* $\sigma_1(p) = \sigma_1(q)$ *and* $\sigma_2(p) = \sigma_2(q)$ *.*

Proof. It suffices to show that $\sigma(p) = \sigma(q)$ if $\sigma_1(p) = \sigma_1(q)$ and $\sigma_2(p) = \sigma_2(q)$. Consider $s_2(p) = \sum_{i \in I(p)} (\lambda_i|_p)^2$ and $s_2(q) = \sum_{i \in I(q)} (\lambda_i|_q)^2$. If $\sigma_1(p) = \sigma_1(q)$ and $\sigma_2(p) = \sigma_2(q)$, then $s_2(p) = s_2(q)$ since $s_2 = \sigma_1^2 - 2\sigma_2$ by [7]. Since both $\{\lambda_i|_p | i \in I(p)\}\$ and $\{\lambda_i|_q | i \in I(q)\}\$ are two bases of $H^2(BT^n;\mathbb{Z})$ by Lemma 2.1, there is an $n \times n$ nondegenerate Z-matrix A such that

$$
(\lambda_i|_p|i \in I(p)) = (\lambda_i|_q|i \in I(q)).
$$

Moreover, we have that

$$
s_2(p) - s_2(q) = (\lambda_i|_q | i \in I(q)) (AA^{\top} - E_n)(\lambda_i|_q | i \in I(q))^{\top} = 0,
$$

so we conclude that $AA^{\top} = E_n$, where E_n is the identity matrix. This implies that each row of A contains only one ± 1 and the other elements in this row are all 0. Hence

$$
\sigma_n(p) = \pm \prod_{i \in I(q)} \lambda_i|_q = \pm \sigma_n(q)
$$

and then the proof is completed by Lemma 3.1. \Box

Let $\{\sigma_1(p)|p \in M^{T^n}\} = \{\tau_1, \ldots, \tau_s\}$ and $\{\sigma_2(p)|p \in M^{T^n}\} = \{\eta_1, \ldots, \eta_u\}$. Then $s, u \leq t$. Set

$$
\mathcal{A}_k = \{ p \in M^{T^n} \big| \sigma_1(p) = \tau_k \}
$$

for $1 \leq k \leq s$ and

 $B_l = \{ p \in M^{T^n} | \sigma_2(p) = \eta_l \}$ for $1 \leq l \leq u$. Then $|M^{T^n}| = \sum_{k=1}^s |\mathcal{A}_k| = \sum_{l=1}^u |\mathcal{B}_l|$.

Proof of Theorem 1.1. By Theorem 2.1 it suffices to prove that if the equivariant Chern numbers $\langle (c_1^{T^n})^i (c_2^{T^n})^j, [M] \rangle = 0$ for all $i, j \in \mathbb{N}$, then M^{2n} bounds equivariantly. Now suppose $\langle (c_1^{T^n})^i (c_2^{T^n})^j, [M] \rangle = 0$ for all $i, j \in \mathbb{N}$. By Theorem 2.2, we can write these equivariant Chern numbers in the following way:

$$
(3.1) \qquad \langle (c_1^{T^n})^i (c_2^{T^n})^j, [M] \rangle = \sum_{\ell=1}^t \frac{m_\ell (\sigma_1^{(\ell)})^i (\sigma_2^{(\ell)})^j}{\sigma_n^{(\ell)}} = \sum_{k=1}^s \tau_k^i \sum_{l \in \mathcal{L}_k} \eta_l^j \sum_{\ell \in \mathcal{C}_{k,l}} \frac{m_\ell}{\sigma_n^{(\ell)}}
$$

where $\mathcal{L}_k = \{l | \mathcal{A}_k \cap \mathcal{B}_l \neq \emptyset, 1 \leq l \leq u\}$, and $\mathcal{C}_{k,l} = \{\ell | \sigma_1^{(\ell)} = \tau_k, \sigma_2^{(\ell)} = \eta_l, 1 \leq \ell \leq t\}$. Obviously, $|\mathcal{L}_k| \leq |\mathcal{A}_k|$ for every k. Let i vary in the range $0, 1, \ldots, s-1$. Then (τ_k^i) is an $s \times s$ van der Monde matrix, so for each k,

$$
\sum_{l \in \mathcal{L}_k} \eta_l^j \sum_{\ell \in \mathcal{C}_{k,l}} \frac{m_{\ell}}{\sigma_n^{(\ell)}} = 0.
$$

Next, let j vary in the range $0, 1, \ldots, |\mathcal{L}_k| - 1$. Then (η_l^j) is a $|\mathcal{L}_k| \times |\mathcal{L}_k|$ van der Monde matrix, hence for each k and each $l \in \mathcal{L}_k$,

$$
\sum_{\ell \in \mathcal{C}_{k,l}} \frac{m_{\ell}}{\sigma_n^{(\ell)}} = 0.
$$

Furthermore, by Lemma 3.2 we have that $\mathcal{C}_{k,l}$ contains only an element, so $m_{\ell} = 0$ for all ℓ . Thus, by Theorem 2.2, all equivariant Chern characteristic numbers of M are equal to zero, as desired. \Box

Now we focus on the proof of Theorem 1.2. First we give a general result.

Proposition 3.1. Let M^{2n} be a $(2n)$ -dimensional unitary torus manifold. If $s +$ 2 max $\max_{1 \le k \le s} {\vert \vert A_k \vert \} - 3 < n$ or $2u + \max_{1 \le l \le u} {\vert \vert B_l \vert \} - 3 < n$, then M^{2n} bounds equivariantly.

Proof. In a similar way to the proof of Theorem 1.1, we can write the equivariant Chern numbers $\langle (c_1^{T^n})^i (c_2^{T^n})^j, [\overline{M}] \rangle$ in the following two ways:

(3.2)
$$
\langle (c_1^{T^n})^i (c_2^{T^n})^j, [M] \rangle = \sum_{k=1}^s \tau_k^i \sum_{l \in \mathcal{L}_k} \eta_l^j \sum_{\ell \in \mathcal{C}_{k,l}} \frac{m_{\ell}}{\sigma_n^{(\ell)}},
$$

where $\mathcal{L}_k = \{l | \mathcal{A}_k \cap \mathcal{B}_l \neq \emptyset, 1 \leq l \leq u\}$ with $|\mathcal{L}_k| \leq |\mathcal{A}_k|$ for every k and $\mathcal{C}_{k,l} =$ $\{\ell | \sigma_1^{(\ell)} = \tau_k, \sigma_2^{(\ell)} = \eta_l, 1 \leq \ell \leq t\}$ as before, and

(3.3)
$$
\langle (c_1^{T^n})^i (c_2^{T^n})^j, [M] \rangle = \sum_{l=1}^u \eta_l^j \sum_{k \in \mathcal{K}_l} \tau_k^i \sum_{\ell \in \mathcal{C}_{k,l}} \frac{m_\ell}{\sigma_n^{(\ell)}}
$$

where $\mathcal{K}_l = \{k | \mathcal{A}_k \cap \mathcal{B}_l \neq \emptyset, 1 \leq k \leq s\}$, satisfying that and $|\mathcal{K}_l| \leq |\mathcal{B}_l|$ for every l. We note that if $i + 2j < n$, then $\langle (c_1^T)^i (c_2^T)^j, [M] \rangle = 0$.

If $s+2$ max $\{|\mathcal{A}_k|\}-3 < n$, then we can let i vary in the range $0, 1, \ldots, s-1$ and for $1\leq k\leq s$ every k, let j vary in the range $0, 1, \ldots, |\mathcal{L}_k| - 1 \le \max_{1 \le k \le s} {|\mathcal{A}_k|} - 1$ in Equation (3.2). Similarly, if $2u + \max$ $\max_{1 \leq l \leq u} \{ |\mathcal{B}_l| \} - 3 < n$, then we can let j vary in the range $0, 1, \ldots, u-1$ and for every l, let i vary in the range $0, 1, ..., |\mathcal{K}_l| - 1 \le \max_{1 \le l \le u} {|\mathcal{B}_l|} - 1$ in Equation (3.3). Using the proof method of Theorem 1.1 as above, we can obtain van der

Monde matrices, which imply that $m_{\ell} = 0$ for all ℓ , and hence $\langle (c_1^{T^n})^i (c_2^{T^n})^j, [M] \rangle = 0$ for all $i, j \in \mathbb{N}$. Therefore, M bounds equivariantly by Theorem 1.1.

Lemma 3.3. Let a_1, \ldots, a_r be positive integers. If $a_1 + \cdots + a_r = \wp$, then $r +$ $2 \max\{a_i | 1 \le i \le r\} \le 2\wp + 1.$

Proof. Obviously, $\max\{a_i | 1 \leq i \leq r\} \leq \varphi - r + 1$, and the equation holds if and only if there is only some one $a_i = \wp - r + 1$ and all others are equal to 1. Then we have the required inequality $r + 2 \max\{a_i | 1 \le i \le r\} \le 2\wp + 1$, where the last equation holds if and only if $r = 1$.

Proof of Theorem 1.2. If $|M^{T^n}| = |A_1| + \cdots + |A_s| < \frac{n}{2} + 1$, then by Lemma 3.3, we have $s + 2$ max $\max_{1 \leq k \leq s} \{|\mathcal{A}_k|\} \leq 2|M^{T^n}| + 1 < n+3$, so M bounds equivariantly by Proposition 3.1. \Box

Remark 3.1. Let us look at the case in which M does not bound equivariantly and $|M^{T^n}| = \lceil \frac{n}{2} \rceil + 1$. When *n* is even, we have $s + 2 \max_{1 \le k \le s} \{|A_k|\} = 2|M^{T^n}| + 1$ by Proposition 3.1 and Lemma 3.3. This implies that $s = 1$ by the proof of Lemma 3.3, which means that all σ_1 are the same. When n is odd, we see that $n + 3 \leq s + 1$ 2 max $\max_{1 \le k \le s} {\vert \mathcal{A}_k \vert } \le 2 \vert M^{T^n} \vert + 1 = n + 4.$ An easy argument shows that $n + 3 = s + 1$ 2 max $\max_{1 \leq k \leq s} {\vert \mathcal{A}_k \vert}$ is impossible, so we must have $s + 2 \max_{1 \leq k \leq s} {\vert \mathcal{A}_k \vert} = 2 \vert M^{T^n} \vert + 1$. Thus, in this case s must be 1 and then all σ_1 are the same, too. Moreover, in a similar way to the proof of Theorem 1.1, we can show easily that $|M^{T^n}| = u$ so all σ_2 are distinct. These observations seemingly imply the existence of a nonbounding unitary torus manifold M^{2n} with $|M^{T^n}| = \lceil \frac{n}{2} \rceil + 1$. Indeed, we can see an example in the case $n = 1$, as shown in [4, Theorem 5].

Finally we conclude this paper with the following conjecture:

Conjecture 3.1. $\lceil \frac{n}{2} \rceil + 1$ is the best possible lower bound of the number of fixed points for (2n)-dimensional nonbounding unitary torus manifolds.

Acknowledgments

Supported in part by grants from NSFC (no. 10931005) and Shanghai NSF (no. 10ZR1403600), RFDP (no. 20100071110001).

References

- [1] M. W. Davis and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions*, Duke Math. J., **62** (1991), 417–451.
- [2] V. Guillemin, V. Ginzburg and Y. Karshon, *Moment maps, cobordisms, and Hamiltonian group actions*, in 'Mathematical Surveys and Monographs', **98**, American Mathematical Society, Providence, RI, 2002.
- [3] A. Hattori and M. Masuda, *Theory of multi-fans*, Osaka J. Math. **40** (2003), 1–68.
- [4] Czes Kosniowski, *Some formulae and conjectures associated with circle actions*, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), in 'Lecture Notes in Maths.', **788**, Springer, Berlin, 1980, 331–339.
- [5] Ping Li and Kefeng Liu, *Some remarks on circle action on manifolds*, Math. Res. Lett. **18** (2011), 437–446.
- [6] M. Masuda, *Unitary toric manifolds, multi-fans and equivariant index*, Tohoku Math. J. **51** (1999), 237–265.
- [7] J. W. Milnor and J. D. Stasheff, *Characteristic classes*, Ann. Math. Stud. **76**, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1974.
- [8] A. Pelayo and S. Tolman, *Fixed points of symplectic periodic flows*, Ergodic Theory and Dynamical Systems **31** (2011), 1237–1247.

School of Mathematical Sciences and The Key Laboratory of Mathematics for Nonlinear Sciences of Ministry of Education, Fudan University, Shanghai 200433, People's Republic of China.

E-mail address: zlu@fudan.edu.cn

School of Mathematical Sciences, Fudan University, Shanghai 200433, People's Republic of China.

E-mail address: 081018011@fudan.edu.cn