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DISCRETE GROUP ACTIONS AND GENERALIZED REAL
BOTT MANIFOLDS

Li Yu

Abstract. We study a class of discrete group actions on the Euclidean space. In
particular, we will investigate when the orbit spaces of such group actions are closed

manifolds. The answer turns out to be a class of real toric manifolds called generalized
real Bott manifolds which are the total spaces of some kind of iterated real projective
space bundles. This relation provides a new viewpoint on generalized real Bott manifolds

which might be useful for the future study.

1. Introduction

A binary matrix is a matrix with all its entries in Z2 = Z/2Z. For any binary matrix
A, let Ai

j ∈ Z2 denote the (i, j) entry of A and let Ai and Aj be the ith row and
j-column vector of A. Let A(n) be the set of all n×n binary matrices whose diagonal
entries are all zero. For any A ∈ A(n), we can define a set of Euclidean motions
sA
1 , . . . , s

A
n on the n-dimensional Euclidean space R

n by:

sA
i (x1, . . . , xn) := ((−1)Ai

1x1, . . . , (−1)Ai
i−1xi−1, xi +

1
2
, (−1)Ai

i+1xi+1, . . . , (−1)Ai
nxn)

So sA
i is the composition of the reflections about some coordinate hyperplanes in R

n

and a translation in the xi-direction. Let Γ(A) be the discrete subgroup of Isom(Rn)
generated by sA

1 , . . . , s
A
n and let M(A) := R

n/Γ(A) be the quotient space of the Γ(A)
action on R

n.

For example, when A =
(

0 0
0 0

)
,
(

0 1
0 0

)
and

(
0 1
1 0

)
, the space M(A) is homeo-

morphic to the two-dimensional torus, Klein bottle and real projective plane,
respectively. They are the most common examples used to demonstrate discrete
group actions on Euclidean spaces in the textbooks. In this paper, we will study such
M(A)’s in all dimensions and answer the following questions.

Question 1.1. For an arbitrary A ∈ A(n), when M(A) is homeomorphic to a closed
manifold?

Question 1.2. If M(A) is a closed manifold, can we identify it with any known
examples of manifolds studied by other people before?
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To answer these two questions, let us first define some auxiliary notations. For any
A ∈ A(n),

(1.1) let Ã := A+ In, where In is the identity matrix.

For any 1 ≤ j1 < · · · < js ≤ n, let Ãj1···js be the s× n submatrix of Ã formed by the
j1th, . . . , jsth row vectors of Ã, and we define an s× s submatrix of Ã by:

(1.2) Ãj1···js

j1···js
:=

⎛
⎝Ã

j1
j1

· · · Ãj1
js

· · · · · · · · ·
Ãjs

j1
· · · Ãjs

js

⎞
⎠ .

The Ãj1···js

j1···js
is called a principal minor matrix of Ã and its determinant det(Ãj1···js

j1···js
)

is called a principal minor of Ã. Note that Ãj1···js

j1···js
is a submatrix of Ãj1···js , so

rankZ2(Ã
j1···js

j1···js
) ≤ rankZ2(Ã

j1···js).
Then we can answer Question-1 and Question-2 by the following two theorems.

Theorem 1.1. For any A ∈ A(n), the space M(A) is a closed manifold if and only
if the matrix Ã = A+ In satisfies the following two conditions.

(a) for 1 ≤ ∀s ≤ n and 1 ≤ j1 < · · · < js ≤ n, rankZ2(Ã
j1···js

j1···js
) = rankZ2(Ã

j1···js).
(b) any set of distinct row vectors of Ã are linearly independent over Z2.

Theorem 1.2. For any A ∈ A(n), if the space M(A) is a closed manifold, then
M(A) must be homeomorphic to a generalized real Bott manifold. Conversely, any
n-dimensional generalized real Bott manifold is homeomorphic to M(A) for some
A ∈ A(n).

Generalized real Bott manifolds are introduced by Choi-Masuda-Suh in [1] as a
special class of examples of real toric manifolds (i.e. the set of real points of toric
manifolds). An n-dimensional closed smooth manifold Mn is called a generalized real
Bott manifold if there is a finite sequence of fiber bundles

(1.3) Mn = Bm
πm−→ Bm−1

πm−1−→ · · · π2−→ B1
π1−→ B0 = {a point},

where each Bi (1 ≤ i ≤ m) is the projectivization of the Whitney sum of a finite
collection (at least two) of real line bundles over Bi−1. The smooth structure of Mn

is determined by the bundle structures of πi : Bi → Bi−1, i = 1, . . . ,m. Suppose the
fiber of the bundle πi : Bi → Bi−1 in (1.3) is homeomorphic to RPni (ni ≥ 1). Then it
is easy to see thatMn is a small cover (see [2] for definition) over Δn1×· · ·×Δnm where
Δni is the standard ni-dimensional simplex and n1 + · · · + nm = n. In particular,
when n1 = · · · = nm = 1, Mn is called a real Bott manifold. In addition, it was
shown in [1] that any small cover over a product of simplices is homeomorphic to a
generalized real Bott manifold (Remark 6.5 in [1]).

Real Bott manifolds have been systematically studied in [3–5]. It was proved
in [3] that any real Bott manifold admits a flat Riemannian metric and two real Bott
manifolds are homeomorphic or diffeomorphic if and only if their cohomology rings
are isomorphic. This is called cohomological rigidity of real Bott manifolds (see [6]).

In addition, real Bott manifolds are intimately related to the so-called Bott matri-
ces. A binary square matrix A is called a Bott matrix if it is conjugate to a strictly
upper triangular binary matrix via a permutation matrix. We use B(n) to denote
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the set of all n × n Bott matrices. Obviously, A is a Bott matrix will imply that all
the diagonal entries of A are zero. So B(n) ⊂ A(n). It turns out that when A is
a Bott matrix, the action of Γ(A) on R

n is free and M(A) is a real Bott manifold.
Conversely, any real Bott manifold can be obtained in this way. This is the viewpoint
adopted by [3–5] in their study of real Bott manifolds.

But for an arbitrary A ∈ A(n), the action of Γ(A) on R
n is not necessarily free.

So it is not so easy to tell which closed manifolds M(A) could represent in general.
This is the significance of Theorem 1.2 above. By Theorem 1.2, the set of closed
topological manifolds that can be realized by M(A) are exactly all the generalized
real Bott manifolds. This gives us another reason why generalized real Bott manifolds
are naturally the “extension” of real Bott manifolds.

Remark 1.1. Any generalized real Bott manifold has a regular covering space of the
form Sn1 ×· · ·×Snm (a product of spheres). So a generalized real Bott manifold Mn

admits a flat Riemannian metric if and only if Mn is a real Bott manifold.

Unlike real Bott manifolds, the classification of generalized real Bott manifolds up
to homeomorphism is by far less understood, primarily because the cohomological
rigidity does not hold for generalized real Bott manifolds. In fact, it was shown in [7]
that there exist two generalized real Bott manifolds with the same Z2-cohomology
rings and homotopy groups, but they are not homeomorphic. So we need some new
topological invariants to distinguish the homeomorphism types of generalized real
Bott manifolds. Since we can now represent any generalized real Bott manifold by
a binary matrix A ∈ A(n), it is interesting to know if we can classify generalized
real Bott manifolds up to homeomorphism in the same way as [5] did for real Bott
manifolds.

The paper is organized as following. In Section 2, we will construct a canonical
(Z2)n-action on M(A) for any A ∈ A(n). So M(A) can be constructed from an
n-dimensional cube and a (Z2)n-valued function on the facets of the cube, called
glue-back construction. In Section 3, we will study the singularities that might occur
in glue-back constructions, which will help us to determine when M(A) is a closed
manifold directly from the matrix A. In Section 4, we will see how to realize any
generalized real Bott manifold by M(A) and prove Theorems 1.1 and 1.2.

2. Glue-back construction

A manifold with corners W is called nice if any codimension-l face of W meets exactly
l different facets (i.e. codimension-one faces) of W . Let F(W ) denote the set of all
facets of W . The reader is referred to [8] or [9] for a detailed introduction to manifolds
with corners and related concepts.

Suppose Wn is an n-dimensional nice manifold with corners. Let μ be a (Z2)m-
valued function on all the facets of Wn i.e., μ : F(Wn) → (Z2)m (m may be different
from n). We call μ a (Z2)m-coloring on Wn. For any proper face f of Wn, let Gf be
the subgroup of (Z2)m generated by the following set:

{μ(F ) ; F is any facet of Wn with F ⊇ f}.
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For any p ∈ Wn, let f(p) be the unique face of Wn that contains p in its relative
interior. Then we can glue 2m copies of Wn according to the μ by:

(2.1) M(Wn, μ) := Wn × (Z2)m/ ∼,

where (p, g) ∼ (p′, g′) if and only if p = p′ and g − g′ ∈ Gf(p) (see [2, 12]). We
call M(Wn, μ) the glue-back construction from (Wn, μ). Moreover, there is a natural
action of (Z2)m on M(Wn, μ) defined by:

(2.2) g · [(p, g0)] = [(p, g0 + g)], ∀ p ∈Wn, ∀ g, g0 ∈ (Z2)m.

In this paper, we will always assume that M(Wn, μ) is equipped with the
(Z2)m-action defined by (2.2). The reader is referred to [12] for a more general form
of glue-back construction. In addition, the function μ is called non-degenerate at a
face f if μ(Fi1), . . . , μ(Fik

) are linearly independent over Z2 where Fi1 , . . . , Fik
are all

the facets of Wn containing f . Moreover, μ is called non-degenerate on Wn if μ is
non-degenerate at all faces of Wn. Otherwise μ is called degenerate.

The glue-back construction was introduced in [2] with the name small cover where
Wn is a simple polytope Pn and μ is a non-degenerate (Z2)n-coloring on Pn (called
characteristic function). In this case, the natural (Z2)n-action on M(Pn, μ) is locally
standard, meaning that locally the (Z2)n-action is equivariantly homeomorphic to a
faithful linear representation of (Z2)n on R

n.

For a (Z2)m-coloring μ on a simple polytope Pn, the non-degeneracy of μ on Pn is
equivalent to the non-degeneracy of μ at all vertices of Pn. When μ is non-degenerate
on Pn, the space M(Pn, μ) is always a closed manifold. But if μ is degenerate on Pn,
the space M(Pn, μ) may or may not be a closed manifold (see Examples 3.1 and 3.2).

Next, let us study M(A) from the viewpoint of glue-back construction. First of
all, for any A ∈ A(n) it is easy to see that the following cube centered at the origin
is a fundamental domain of the action of Γ(A) on R

n.

Cn := {(x1, . . . , xn) ∈ R
n | − 1

4
≤ xi ≤ 1

4
, i = 1, . . . , n}.

For any 1 ≤ i ≤ n, let F(i) and F(−i) be the facets of Cn which lie in the hyperplane
{xi = 1

4} and {xi = −1
4}, respectively. Then M(A) = R

n/Γ(A) is obtained by gluing
each F(i) to F(−i) by a map τA

i : F(i) → F(−i) where

τA
i (x1, . . . , xn) = ((−1)Ai

1x1, . . . , (−1)Ai
i−1xi−1,−xi, (−1)Ai

i+1xi+1, . . . , (−1)Ai
nxn)

= ((−1)Ãi
1x1, . . . , (−1)Ãi

nxn), for ∀ (x1, . . . , xn) ∈ F(i).(2.3)

So we can write M(A) = Cn/〈x ∼ τA
i (x), ∀x ∈ F(i), 1 ≤ i ≤ n〉.
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For any 1 ≤ i ≤ n, let hi : Cn → Cn be a homeomorphism defined by

hi(x1, . . . , xn) = (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

Let H = 〈h1, . . . , hn〉 ∼= (Z2)n. Then H is a subgroup of the symmetry group of Cn.
If we consider H acting on Cn, it is easy to see that the quotient space Cn/H can be
identified with a smaller n-dimensional cube Cn

0 ⊂ Cn where

(2.4) Cn
0 = {(x1, . . . , xn) ∈ R

n | 0 ≤ xi ≤ 1
4
, 1 ≤ ∀ i ≤ n}.

For each 1 ≤ j ≤ n, let F̄j be the facet of Cn
0 which lies in the hyperplane {xj = 0}.

And let F̄ ∗
j be the opposite facet of F̄j in Cn

0 . In addition, let {e1, . . . , en} be a linear
basis of (Z2)n and we can define a (Z2)n-coloring λA on Cn

0 by:

λA(F̄j) = ej , 1 ≤ ∀ j ≤ n,(2.5)

λA(F̄ ∗
j ) =

n∑
j=1

Ãj
k · ek, 1 ≤ ∀ j ≤ n.(2.6)

It is clear that each λA(F̄ ∗
j ) is non-zero because all the diagonal elements of Ã are 1.

So the value of λA at any facet of Cn
0 is non-zero. Note that λA(F̄ ∗

j ) can be identified
with the jth row vector of Ã. So for an arbitrary A ∈ A(n), λA may not be non-
degenerate on Cn

0 . In addition, we observe that the action of each hj on Cn commutes
with any τA

i (1 ≤ i ≤ n), so we get a well-defined action of H on M(A).

Lemma 2.1. For any A ∈ A(n), M(A) is homeomorphic to M(Cn
0 , λA) and the

action of H on M(A) can be identified with the natural (Z2)n-action on M(Cn
0 , λA).

Proof. In the definition of M(Cn
0 , λA), if we only glue the facets F̄1, . . . , F̄n in each

Cn
0 ×{g}, g ∈ (Z2)n first according to the rule in (2.1), we will get a big cube which can

be identified with the Cn. Then we can think of the boundary of Cn being tessellated by
those facets {F̄ ∗

i } of the 2n copies of Cn
0 which have not been glued. More specifically,

for each 1 ≤ i ≤ n, the facet F(i) of Cn is tessellated by the F̄ ∗
i in all copies of Cn

0

in Cn
0 ×Gi, where Gi is the subgroup of (Z2)n generated by {e1, . . . , êi, . . . , en}, and

F(−i) of Cn is tessellated by the F̄ ∗
i in all copies of Cn

0 in Cn
0 × (ei +Gi) (see Figure 1

for a two-dimensional example).
To further obtain M(Cn

0 , λA), we should glue each F̄ ∗
i × {g} ⊂ F(i), g ∈ Gi to

F̄ ∗
i × {g + λA(F̄ ∗

i )} ⊂ F(−i) by the map (x1, . . . , xn) → ((−1)Ãi
1x1, . . . , (−1)Ãi

nxn)

Figure 1. Seeing M(A) as a glue-back construction.
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which is exactly τA
i : F(i) → F(−i) (see (2.3)). So M(Cn

0 , λA) and M(A) are the
quotient space of Cn by the same gluing map, hence they are homeomorphic. It is
easy to see that the action of H on M(A) can be identified with the natural (Z2)n-
action on M(Cn

0 , λA) defined in (2.2). �

When A ∈ B(n), we can show that λA is a non-degenerate (Z2)n-coloring on Cn
0 as

following. For each 1 ≤ j ≤ n, let uj be the vertex of Cn
0 on the xj-axis other than

the origin. For any subset {j1, . . . , js} ⊂ {1, . . . , n}, let uj1···js be the vertex of Cn
0 so

that all the facets of Cn
0 containing uj1···js are

{F̄ ∗
j1 , . . . , F̄

∗
js
, F̄l1 , . . . , F̄ln−s}, where {l1, . . . , ln−s} = {1, . . . , n}\{j1, . . . , js}.

By the definition of λA, the non-degeneracy of λA at a vertex uj1···js corresponds
exactly to the non-degeneracy of the matrix Ãj1···js

j1···js
(see (1.2)). But since A is a Bott

matrix, any principal minor of Ã is 1 (see [10]), so Ãj1···js

j1···js
is non-degenerate.

3. Singularities in glue-back construction

By Lemma 2.1, we can identify the space M(A) with the glue-back construction
M(Cn

0 , λA) for any A ∈ A(n). So to judge when M(A) is a closed manifold, we need
to understand when singular points might occur in a glue-back construction. Notice
that when a (Z2)n-coloring λA is degenerate on Cn

0 , M(Cn
0 , λA) may not be a manifold.

Let us see such an example first.

Example 3.1. Suppose A =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ ∈ A(3), the (Z2)3-coloring λA on C3

0 is:

λA(F̄1) = e1, λA(F̄2) = e2, λA(F̄3) = e3;

λA(F̄ ∗
1 ) = e1 + e3, λA(F̄ ∗

2 ) = e1 + e2, λA(F̄ ∗
3 ) = e2 + e3.

So the λA is degenerate at the vertex u123 of C3
0 (see Figure 2). In this case,

M(C3
0 , λA) is not a manifold. In fact, the neighborhood of u123 in M(C3

0 , λA) is
homeomorphic to a cone of RP 2. This is because for any triangular section � of the
cube near u123, λA induces a (Z2)3-coloring λ�A on the three edges of � (see the right
picture of Figure 2). Obviously, M(�, λ�A ) ∼= RP 2. So M(C3

0 , λA) is not a manifold.

Figure 2. A singular point in M(C3
0 , λA).
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Figure 3. Singularities that might occur in M(Pn, μ).

The cause of the singularity in the above example can be formulated into a general
condition on a (Z2)m-coloring μ on a simple polytope Pn so that M(Pn, μ) has some
singular points.

Lemma 3.1. Suppose μ is a (Z2)m-coloring on a simple polytope Pn. If there exists
a vertex v0 of Pn and a set of facets Fi1 , . . . , Fir (3 ≤ r ≤ n) meeting v0 such
that μ(Fi1), . . . , μ(Fir−1) ∈ (Z2)m are linearly independent over Z2 and μ(Fir ) =
μ(Fi1) + · · · + μ(Fir−1), then the space M(Pn, μ) is not a manifold.

Proof. In the relative interior of the codimension-r face f = Fi1 ∩ · · · ∩ Fir , choose a
point q and a (r − 1)-dimensional simplex Δr−1 ⊂ Pn near q so that

• Δr−1 intersects ∂Pn transversely;
• all the facets of Δr−1 are {Fil

∩ Δr−1, 1 ≤ l ≤ r};
• all the line segments between q and the points of Δr−1 form an r-dimensional

simplex Δr with q as a vertex (see Figure 3).
Then we get a natural coloring ν of the facets of Δr−1 induced from μ by

ν(Fil
∩ Δr−1) = μ(Fil

), 1 ≤ l ≤ r.

By our assumption on μ(Fi1), . . . , μ(Fir ), it is clear that M(Δr−1, ν) is homeomorphic
to RP r−1. Similarly, any (r − 1)-dimensional section of Δr that is parallel to Δr−1

gives a RP r−1. So an open neighborhood of q in M(Pn, μ) is homeomorphic to
(−ε, ε)n−r × Cone(RP r−1). Since r ≥ 3, the cone on RP r−1 is not homeomorphic to
a ball. So the space M(Pn, μ) is not a manifold at q. �

Notice that if there exists a facet F of Pn with μ(F ) = 0, the F in each copy of
Pn in Pn× (Z2)m will not be glued together in M(Pn, μ) (see (2.1)). Then M(Pn, μ)
will have boundary. So if M(Pn, μ) is a closed manifold, μ must be non-zero on any
facet of Pn. Combining this with Lemma 3.1, we get the following.

Lemma 3.2. If μ is a (Z2)m-coloring on a simple polytope Pn so that the space
M(Pn, μ) is a closed manifold, then μ must satisfy the following conditions.

(i) For any facet F of Pn, μ(F ) �= 0 ∈ (Z2)m.
(ii) For any vertex v = F1 ∩ · · · ∩ Fn of Pn, if μ(Fi1), . . . , μ(Fis) are maximally

linearly independent among μ(F1), . . . , μ(Fn) over Z2, then any μ(Fi) (1 ≤
i ≤ n) must coincide with one of the μ(Fi1), . . . , μ(Fis).

From the above lemma, we can easily derive the following.
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Figure 4. Two ways to see M(C2
0 , λA).

Corollary 3.1. Suppose μ is a (Z2)m-coloring on a simple polytope Pn so that the
space M(Pn, μ) is a closed manifold. Then at a vertex v = F1 ∩ · · · ∩ Fn of Pn, if
μ(F1), . . . , μ(Fn) ∈ (Z2)m are all distinct, μ must be non-degenerate at v.

However, it is possible that a (Z2)m-coloring μ on a simple polytope Pn, even
degenerate at some vertices, can still make M(Pn, μ) a closed manifold. Let us see
such an example below.

Example 3.2. For the binary matrix A =
(

0 1
1 0

)
, the (Z2)2-coloring λA on C2

0

defined by (2.5) and (2.6) is:

λA(F̄1) = e1, λA(F̄2) = e2; λA(F̄ ∗
1 ) = λA(F̄ ∗

2 ) = e1 + e2.

So λA is degenerate at the vertex u12 = F̄ ∗
1 ∩ F̄ ∗

2 . But it is easy to check that
M(C2

0 , λA) is homeomorphic to RP 2.
Another way to explain this example is: since λA(F̄ ∗

1 ) = λA(F̄ ∗
2 ), we let the edge

F̄ ∗
1 merge with F̄ ∗

2 to form a long edge. And then we get a non-degenerated (Z2)2-
coloring λred

A on a two-simple Δ2 (see the right picture in Figure 4). The corresponding
small cover M(Δ2, λred

A ) is homeomorphic to RP 2. Moreover, we have an equivariant
homeomorphism from M(C2

0 , λA) to M(Δ2, λred
A ) which is induced by the merging of

F̄ ∗
1 with F̄ ∗

2 on C2
0 .

The idea of merging two neighboring edges into one edge in Example 3.2 can be
generalized to the following setting.

Definition 3.1 (Smoothing a nice manifold with corners along codimension-two
faces). Suppose Wn is a nice manifold with corners and f = {f1, . . . , fk} is a set
of codimension-two faces of Wn. When we say smoothing Wn along f , we mean that
we forget f1, . . . , fk as well as all their faces from the manifold with corners structure
of Wn. The stratified space we get is denoted by Wn[f ]. In other words, we think of
f1, . . . , fk as well as all their faces as empty faces in Wn[f ].

Geometrically, we can think of the smoothing of Wn along f = {f1, . . . , fk} as
a local deformation of Wn around f1, . . . , fk to make Wn “smooth” at those places,
then removing f1, . . . , fk as well as all their faces from the stratification of ∂Wn. This
process is similar to the straightening of angles introduced in the first chapter of [11].

Example 3.3. In Figure 5, we can see the local picture of smoothing a three-
dimensional nice manifold with corners along a codimension-two face.
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Figure 5. Smoothing a three-dimensional nice manifold with
corners along a codimension-two face f .

Remark 3.1. Generally speaking, Wn[f ] may not be a nice manifold with corners
any more, although Wn is.

Suppose fi = F
(1)
i ∩ F (2)

i where F (1)
i , F

(2)
i are facets of Wn. Then F

(1)
i and F

(2)
i

will merge into a big facet or part of a big facet in Wn[f ]. More generally, two facets
F, F ′ of Wn will become part of a big facet in Wn[f ] if and only if there exists a
sequence F = F1, F2, . . . , Fr = F ′ so that for each 1 ≤ j ≤ r − 1, Fj ∩ Fj+1 ∈ f . Let
F(Wn) and F(Wn[f ]) denote the set of facets of Wn and Wn[f ], respectively, then
we have a natural map

ψ[f ] : F(Wn) −→ F(Wn[f ]),

where for any facet F of Wn, ψ[f ](F ) is the facet of Wn[f ] which contains F as a set.
Obviously, ψ[f ] is surjective.

If μ is a (Z2)m-coloring on Wn which satisfies:

μ(F ) = μ(F ′) whenever ψ[f ](F ) = ψ[f ](F ′) for any facets F, F ′ of Wn,

we say that μ is compatible with ψ[f ]. In this case, μ induces a (Z2)m-coloring μ[f ] on
the facets of Wn[f ] by:

(3.1) μ[f ](ψ[f ](F )) := μ(F ) for any facet F of Wn.

We call μ[f ] the induced (Z2)m-coloring from μ with respect to the smoothing. If
we assume that Wn[f ] is still a nice manifold with corners, then the glue-back con-
struction M(Wn[f ], μ[f ]) can be defined. Notice that the natural (Z2)m-action on
M(Wn, μ) and M(Wn[f ], μ[f ]) can be identified through the smoothing of Wn. So
we have the following.

Lemma 3.3. Suppose μ is a (Z2)m-coloring on Wn which is compatible with ψ[f ]. If
Wn[f ] is still a nice manifold with corners, then there is an equivariant homeomor-
phism from M(Wn, μ) to M(Wn[f ], μ[f ]).

Next, let us investigate a special class of smoothings of an n-dimensional cube.
Suppose {I1, . . . , Im} is a partition of the set [n] := {1, . . . , n}, i.e., I1, . . . , Im are
pairwise disjoint non-empty subsets of [n] with I1 ∪ · · · ∪ Im = [n]. Let fI1···Im be a
set of codimension-two faces of Cn

0 defined by:

(3.2) fI1···Im := {F̄ ∗
l ∩ F̄ ∗

l′ ; l and l′ belong to the same Ij for some 1 ≤ j ≤ m}
Notice that if Ii has only one element, it has no contribution to fI1···Im . Let Cn

I1···Im
:=

Cn
0 [fI1···Im ] be the smoothing of Cn

0 along fI1···Im . So we have a map

ψ[fI1···Im ] : F(Cn
0 ) → F(Cn

I1···Im
).
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Figure 6. Two different smoothings of a cube

It is easy to see that for any 1 ≤ j ≤ n, F̄j does not merge with any other facets
in Cn

0 , while all the facets in {F̄ ∗
l ; l ∈ Ii} will merge into one big facet in Cn

I1···Im
. We

denote all the facets of Cn
I1···Im

by {F̃1, . . . , F̃n, F̃
∗
I1
, . . . , F̃ ∗

Im
} where:

• F̃j = ψ[fI1···Im ](F̄j), 1 ≤ j ≤ n.
• F̃ ∗

Ii
= ψ[fI1···Im ](F̄ ∗

l ) for any l ∈ Ii, 1 ≤ i ≤ m. In other words, F̃ ∗
Ii

is the
merging of all the facets {F̄ ∗

l ; l ∈ Ii}.
It is easy to see that any face of Cn

I1···Im
is homeomorphic to a ball.

Example 3.4. In Figure 6, we have two different smoothings of C3
0 . By our notation,

the upper one is C3
{1}{2,3} ∼= Δ1 × Δ2, and the lower one is C3

{1,2,3} ∼= Δ3 where Δi

denotes the standard i-dimensional simplex in R
i.

Theorem 3.1. For any partition {I1, . . . , Im} of the set [n] := {1, . . . , n}, the Cn
I1···Im

is homeomorphic to Δn1 × · · · × Δnm as a manifold with corners, where ni = |Ii|,
1 ≤ i ≤ m and n1 + · · · + nm = n.

Proof. We will borrow some notations in [1]. Let {vi
0, . . . , v

i
ni
} be the set of all vertices

of Δni . Then each vertex of Δn1 × · · · × Δnm can be uniquely written as a product
of vertices from Δni ’s. Hence all the vertices of Δn1 × · · · × Δnm are:

{ṽj1...jm = v1
j1 × · · · × vm

jm
| 0 ≤ ji ≤ ni, i = 1, . . . ,m}.

Any facet of Δn1 × · · · × Δnm is the product of a codimension-one face of some Δni

and the remaining simplices. So all the facets of Δn1 × · · · × Δnm are:

F(Δn1 × · · · × Δnm) = {F i
ki
| 0 ≤ ki ≤ ni, i = 1, . . . ,m},

where F i
ki

= Δn1 × · · ·×Δni−1 × f i
ki
×Δni+1 × · · ·×Δnm and f i

ki
is the codimension-

one face of the simplex Δni which is opposite to the vertex vi
ki

. So there are total of
m+ n facets in Δn1 × · · · × Δnm . The n facets meeting the vertex ṽj1...jm are:

F(Δn1 × · · · × Δnm) − {F i
ji
| i = 1, . . . ,m}.

In particular, the n facets meeting the vertex ṽ0...0 are:

F(Δn1 × · · · × Δnm) − {F i
0 | i = 1, . . . ,m} = {F 1

1 , . . . , F
1
n1
, . . . , Fm

1 , . . . , Fm
nm

}.
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Next, we define a map Θ from the set of all facets of Cn
I1···Im

to the set of all facets
of Δn1 × · · · × Δnm . Without loss of generality, we can assume that:

I1 = {1, . . . , n1}, I2 = {n1 + 1, . . . , n1 + n2}, . . .
. . . , Im = {n1 + · · · + nm−1 + 1, . . . , n}.(3.3)

First, we define Θ maps the facets of Cn
I1···Im

meeting at the origin to the facets of
Δn1 × · · · × Δnm meeting at ṽ0···0 by:

Θ(F̃1) = F 1
1 , . . . ,Θ(F̃n1) = F 1

n1
,

Θ(F̃n1+1) = F 2
1 , . . . ,Θ(F̃n1+n2) = F 2

n2
,

· · · · · · · · ·
Θ(F̃n1+···+nm−1+1) = Fm

1 , . . . , Θ(F̃n1+···+nm−1+nm) = Fm
nm
,

where n1 + · · · + nm−1 + nm = n. For the remaining facets of Cn
I1···Im

, we define:

Θ(F̃ ∗
Ii

) = F i
0, 1 ≤ i ≤ m.

By the definition of Cn
I1···Im

, it is easy to check that Θ induces an isomorphism between
the face lattices of Cn

I1···Im
and Δn1 ×· · ·×Δnm . In addition, since any face of Cn

I1···Im

is homeomorphic to a ball, so Cn
I1···Im

is homeomorphic to Δn1 × · · · × Δnm as a
manifold with corners. �

By Lemma 3.3, if a (Z2)m-coloring μ on Cn
0 is compatible with ψ[fI1···Im ], then

M(Cn
0 , μ) is homeomorphic to M(Cn

I1···Im
, μ[fI1···Im ]). This result will be used in the

next section.

4. Representing generalized real Bott manifolds by M(A)

Suppose Mn is an n-dimensional generalized real Bott manifold. In the rest of this
paper, we will ignore the smooth structure on Mn and only treat it as a closed
topological manifold. We can think of Mn as a small cover over Δn1 × · · · × Δnm

where n1 + · · · + nm = n. Let λMn be the (Z2)n-coloring on Δn1 × · · · × Δnm

determined by Mn. By Theorem 3.1, we can identify Δn1 × · · · × Δnm with Cn
I1···Im

,
where I1, . . . , Im are defined by (3.3). Then we think of λMn as a (Z2)n-coloring on
Cn

I1···Im
, and we have a homeomorphism

Mn ∼= M(Cn
I1···Im

, λMn).

By our discussion in Section 3, the facets of Cn
I1···Im

are {F̃1, . . . , F̃n, F̃
∗
I1
, . . . , F̃ ∗

Im
}.

Since λMn is non-degenerate, we can assume λMn(F̃j) = ej for each 1 ≤ j ≤ n, where
{e1, . . . , en} is a linear basis of (Z2)n. And we assume

λMn(F̃ ∗
Ii

) = ai ∈ (Z2)n, 1 ≤ i ≤ m.

If we consider each ai as a row vector, we have an m× n binary matrix Λ.

Λ =

⎛
⎜⎝

a1

...
am

⎞
⎟⎠ , where each ai ∈ (Z2)n.
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We write ai = (a1
i , . . . ,a

j
i , . . . ,a

m
i )

= ([a1
i1, . . . , a

1
in1

], . . . , [aj
i1, . . . , a

j
inj

], . . . , [am
i1, . . . , a

m
inm

]),

where aj
i = [aj

i1, . . . , a
j
inj

] ∈ (Z2)nj for each j = 1, . . . ,m. Then we have:

Λ =

⎛
⎜⎝

a1

...
am

⎞
⎟⎠ =

⎛
⎜⎝

a1
1 · · · am

1
... · · · ...

a1
m · · · am

m

⎞
⎟⎠(4.1)

=

⎛
⎜⎝
a1
11 · · · a1

1n1
· · · am

11 · · · am
1nm

... · · · ... · · · ... · · · ...
a1

m1 · · · a1
mn1

· · · am
m1 · · · am

mnm

⎞
⎟⎠ .

So the matrix Λ can be viewed as an m×m matrix whose entries in the jth column
are vectors in (Z2)nj . Such a matrix Λ is called a vector matrix (see [1]). In addition,
for given 1 ≤ k1 ≤ n1, . . . , 1 ≤ km ≤ nm, let Λk1···km be the m ×m submatrix of Λ
whose jth column is the kjth column of the following m× nj matrix.

⎛
⎜⎝

aj
1
...

aj
m

⎞
⎟⎠ =

⎛
⎜⎜⎝
aj
11 · · · aj

1kj
· · · aj

1nj

...
...

...
aj

m1 · · · aj
mkj

· · · aj
mnj

⎞
⎟⎟⎠(4.2)

So we have: Λk1···km =

⎛
⎜⎝
a1
1k1

· · · am
1km

...
...

a1
mk1

· · · am
mkm

⎞
⎟⎠ .

A principal minor of the m × n matrix Λ in (4.1) means a principal minor of an
m×m matrix Λk1···km for some 1 ≤ k1 ≤ n1, . . . , 1 ≤ km ≤ nm. And the determinant
of Λk1···km itself is also considered as a principal minor of Λ. This generalizes the
usual definition of principal minors of a square matrix.

The lemma 3.2 in [1] says that the (Z2)n-coloring λMn is non-degenerate at all
vertices of Δn1 × · · · ×Δnm is exactly equivalent to all principal minors of Λ being 1.
This implies:

(c1) a1, . . . ,am are distinct.
(c2) in the vector ai = (a1

i , . . . ,a
m
i ), we must have ai

i = (1, 1, . . . , 1) for any
1 ≤ i ≤ m.

Now, from the Λ in (4.1), we define an n× n binary matrix Ã by: the first row to
n1-th row vectors of Ã are all a1, the (n1 + 1)th row to (n1 + n2)th row vectors of Ã
are all a2, . . ., the (n1 + · · ·+nm−1 +1)th row to the nth row vectors of Ã are all am.
Using the transpose of a matrix, we can write Ã as:

(4.3) Ã = (

n1︷ ︸︸ ︷
at

1, . . . ,a
t
1,

n2︷ ︸︸ ︷
at

2, . . . ,a
t
2, . . . ,

nm︷ ︸︸ ︷
at

m, . . . ,a
t
m)t

Then the condition (c2) above implies that all the diagonal entries of Ã are 1. For
this matrix Ã, define

(4.4) A = Ã− In.
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So A is an n× n binary matrix with zero diagonal.

Theorem 4.1. For any generalized real Bott manifold Mn, the matrix A defined
by (4.4) satisfies that M(A) is homeomorphic to Mn.

Proof. By the definition of A in (4.4), the (Z2)n-coloring λA on Cn
0 satisfies:

λA(F̄ ∗
l ) = ai = λMn(F̃ ∗

Ii
), ∀ l ∈ Ii.

So λA is compatible with the map ψ[fI1···Im ] : F(Cn
0 ) → F(Cn

I1···Im
) where fI1···Im is

defined by (3.2). Obviously, the induced (Z2)n-coloring λA[fI1···Im ] on Cn
I1···Im

from
λA coincides with λMn . So we have

M(A)
Lem 2.1∼= M(Cn

0 , λA)
Lem3.3∼= M(Cn

I1···Im
, λA[fI1···Im ]) = M(Cn

I1···Im
, λMn) ∼= Mn.

Moreover, notice that the above homeomorphisms are all equivariant, so M(A) with
the action of H is equivariantly homeomorphic to Mn. �
Proof of Theorem 1.2. Since Theorem 4.1 has shown that any generalized real
Bott manifold can be realized as M(A) for some A ∈ A(n) up to homeomorphism, it
remains to prove that if M(A) is a closed manifold, it must be homeomorphic to a
generalized real Bott manifold. By Lemma 2.1, we can identifyM(A) withM(Cn

0 , λA).
Now consider the (Z2)n-coloring λA around the vertex u12···n on Cn

0 . Since all the
facets of Cn

0 meeting u12···n are F̄ ∗
1 , . . . , F̄

∗
n , so by re-indexing the coordinates of R

n,
we can assume that:

λA(F̄ ∗
1 ) = · · · = λA(F̄ ∗

n1
) = a1,

λA(F̄ ∗
n1+1) = · · · = λA(F̄ ∗

n1+n2
) = a2,

· · · · · · · · ·
λA(F̄ ∗

n1+···+nm−1
) = · · · = λA(F̄ ∗

n1+···+nm−1+nm
) = am,

where n1 + · · ·+nm = n and a1, . . . ,am are distinct non-zero elements of (Z2)n. Then
Ã = A + In is in the form (4.3). Now, let I1, . . . , Im be the partition of {1, . . . , n}
defined by (3.3) and fI1···Im be the set of codimension-two faces of Cn defined by (3.2).
Obviously, the (Z2)n-coloring λA is compatible with the smoothing of Cn

0 along fI1···Im .
So by Lemma 3.3, M(Cn

0 , λA) ∼= M(Cn
I1···Im

, λA[fI1···Im ]), where λA[fI1···Im ] is the
induced (Z2)n-coloring on the facets of Cn

I1···Im
from λA. By definition,

λA[fI1···Im ](F̃ ∗
Ii

) = ai, 1 ≤ i ≤ m (see (3.1)).

Let ΛA =

⎛
⎜⎝

a1

...
am

⎞
⎟⎠ , where each ai ∈ (Z2)n.(4.5)

By Theorem 3.1, Cn
I1···Im

∼= Δn1×· · ·×Δnm . So to prove M(A) is homeomorphic to
a generalized real Bott manifolds, it suffices to show that the (Z2)n-coloring λA[fI1···Im ]
is non-degenerate at all vertices of Cn

I1···Im
. Recall that for any vertex uj1···js of Cn

0 ,
all the facets of Cn

0 meeting at uj1···js are:

F̄ ∗
j1 , . . . , F̄

∗
js
, F̄l1 , . . . , F̄ln−s , where {l1, . . . , ln−s} = {1, . . . , n}\{j1, . . . , js}

A critical observation here is that: λA(F̄ ∗
j ) �= λA(F̄l) for ∀ j ∈ {j1, . . . , js} and ∀ l ∈

{l1, . . . , ln−s} (see the definition of λA in (2.5) and (2.6)). So when we smooth Cn
0
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into Cn
I1···Im

, for any vertex ṽ of Cn
I1···Im

, the value of λA[fI1···Im ] on all the facets
meeting at ṽ are distinct. Then by our assumption that M(Cn

I1···Im
, λA[fI1···Im ]) ∼=

M(Cn
0 , λA) ∼= M(A) is a closed manifold, Corollary 3.1 asserts that λA[fI1···Im ] must

be non-degenerate at each ṽ. So M(A) is homeomorphic to a generalized real Bott
manifold. �

Proof of Theorem 1.1. By the argument in Theorem 1.2, any A ∈ A(n) determines
a partition I1, . . . , Im of {1, . . . , n} and a (Z2)n-coloring λA[fI1···Im ] on Cn

I1···Im

∼=
Δn1 × · · · × Δnm . Moreover at any vertex ṽ of Cn

I1···Im
, the value of λA[fI1···Im ]

on all the facets meeting at ṽ are distinct. So Corollary 3.1 implies that M(A) ∼=
M(Cn

I1···Im
, λA[fI1···Im ]) is a closed manifold if and only if λA[fI1···Im ] is non-degenerate

at all vertices of Cn
I1···Im

, which is also equivalent to saying that all the principal minors
of the m× n matrix ΛA (see (4.5)) being 1.

Now, let us compare the n × n matrix Ã in the form (4.3) and the matrix ΛA.
Observe that for any given 1 ≤ k1 ≤ n1, . . . , 1 ≤ km ≤ nm, the m × m submatrix
ΛA

k1···km
of ΛA (see (4.2)) is exactly the submatrix Ãjk1 ···jkm

jk1 ···jkm
of Ã where

(4.6) jk1 = k1, jk2 = n1 + k1, . . . , jkm = n1 + · · · + nm−1 + km.

Next, we assume any principal minor of ΛA is 1 and see whether it implies Ã
should satisfy (a) and (b). Indeed, under this assumption it is clear that a1, . . . ,am

are linearly independent over Z2, so Ã must satisfy (b). Moreover, for any 1 ≤
j1 < · · · < js ≤ n, if the row vectors Ãj1 , . . . , Ãjs are pairwise distinct, then by
the above observation, the matrix Ãj1···js

j1···js
can be realized as a submatrix of a sub-

matrix ΛA
k1···ks

of ΛA for some 1 ≤ k1 ≤ n1,. . . , 1 ≤ km ≤ nm. Then by our
assumption det(Ãj1···js

j1···js
) = 1, rankZ2(Ã

j1···js) = rankZ2(Ã
j1···js

j1···js
) = s. Otherwise, let

Ãji1 , . . . , Ãjir be all the different vectors among Ãj1 , . . . , Ãjs , 1 ≤ r ≤ s. Then we
have: rankZ2(Ã

j1···js) = rankZ2(Ã
ji1 ···jir ) = rankZ2(Ã

ji1 ···jir

ji1 ···jir
) = r. On the other

hand, since Ãji1 ···jir

ji1 ···jir
is submatrix of Ãj1···js

j1···js
and Ãj1···js

j1···js
is submatrix of Ãj1···js , so

rankZ2(Ã
ji1 ···jir

ji1 ···jir
) ≤ rankZ2(Ã

j1···js

j1···js
) ≤ rankZ2(Ã

j1···js). Hence rankZ2(Ã
j1···js

j1···js
) = r

too. So Ã satisfies (a).
Finally, let us assume that Ã satisfies (a) and (b) and see whether it will force

any principal minor of ΛA to be 1. By the above observation, we can identify any
submatrix ΛA

k1···km
of ΛA with the submatrix Ãjk1 ···jkm

jk1 ···jkm
of Ã defined by (4.6). Notice

that the row vectors Ãjk1 , . . . , Ãjkm of Ã in this case are all distinct. So by the
property (b), Ãjk1 , . . . , Ãjkm are linearly independent over Z2. Then property (a) of
Ã implies that rankZ2(Ã

jk1 ···jkm

jk1 ···jkm
) = rankZ2(Ã

jk1 ···jkm ) = m, so det(Ãjk1 ···jkm

jk1 ···jkm
) = 1.

Similarly, we can show that any principal minor of ΛA
k1···km

must be 1. So we are
done. �
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