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SPLITTING FIELDS OF ELEMENTS IN ARITHMETIC GROUPS

Alexander Gorodnik and Amos Nevo

Abstract. We prove that the number of unimodular integral n×n matrices in a norm

ball whose characteristic polynomial has Galois group different than the full symmetric
group Sn is of strictly lower order of magnitude than the number of all such matrices in
the ball, as the radius increases. More generally, we prove a similar result for the Galois

groups associated with elements in any connected semisimple linear algebraic group de-
fined and simple over a number field F . Our method is based on the abstract large sieve
method developed by Kowalski, and the study of Galois groups via reductions modulo

primes developed by Jouve, Kowalski and Zywina. The two key ingredients are a uni-
form quantitative lattice point counting result, and a non-concentration phenomenon for
lattice points in algebraic subvarieties of the group variety, both established previously

by the authors. The results answer a question posed by Rivin and by Jouve, Kowal-
ski and Zywina, who have considered Galois groups of random products of elements in
algebraic groups.

1. Introduction

Let P (x) = xd + a1x
d−1 + · · · + ad−1x + ad be an irreducible polynomial with inte-

gral coefficients. We denote by QP the splitting field of P . Since the Galois group
Gal(QP /Q) acts on the roots of P (x), it can be realized as a subgroup of the sym-
metric group Sd. P. Gallagher has shown in [1] that typically the Galois group is, in
fact, isomorphic to symmetric group Sd. Namely,

∣
∣
∣
∣

{

P (x) :
max{|a1|, . . . , |ad|} ≤ T

Gal(QP /Q) � Sd

}∣
∣
∣
∣
= (2T + 1)d +Od

(

T d−1/2 log T
)

.

The goal of this paper is to establish an analogous result for Galois groups of splitting
fields of elements in arithmetic groups. Let us consider, for instance, Γ = SLd(Z).
We denote by Qγ the field generated by the eigenvalues of γ (or, equivalently, the
splitting field of the characteristic polynomial det(x · Id− γ)). Let ‖ · ‖ be a norm on
Matd(R), and NT (Γ) := |{γ ∈ Γ : ‖γ‖ ≤ T}|. Then our main result below implies
that

|{γ ∈ Γ : ‖γ‖ ≤ T, Gal(Qγ/Q) � Sd}| = NT (Γ) +Od,ε
(

NT (Γ)1−δd+ε
)

for all ε > 0, where δ2 = 1/56, δd = d−3(4d2 − 2)−1 for even d, and δd = d−2(d −
1)−1(4d2 − 2)−1 for odd d.

More generally, our standing assumptions will be that G ⊂ GLm is a connected
semisimple algebraic group defined over a number field F , and that G is simply con-
nected and F -simple. Let S be a finite set of places of F that contains all Archimedean
places such that G is isotropic over S. We denote by OS the ring of S-integers in F ,
and consider the arithmetic group Γ := G(OS). For γ ∈ Γ, we denote by Fγ the field
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generated by the eigenvalues of γ. We shall analyse the Galois groups Gal(Fγ/F ) for
γ ∈ Γ with γ’s indexed by the height function H, which is defined by

H(γ) :=
∏

v∈S
Hv(γ),

where the local heights Hv are

Hv(γ) :=

{ (
∑

i,j |γij |2v
)1/2

, for Archimedean places v ∈ S,
maxij |γij |v, for non-Archimedean places v ∈ S.

We set
NT (Γ) := |{γ ∈ Γ : H(γ) ≤ T}|.

Let FG := ∩TFT where the intersection is taken over all maximal tori T of G
defined over F , and FT denotes the splitting field of the torus T. We also denote by
W (G) � NG(T)/CG(T) the Weyl group of G. Our first result shows that typically the
Galois groups Gal(Fγ/(Fγ ∩ FG)) are isomorphic to the Weyl groups W (G).

Theorem 1.1. For the group Γ as above, there exists δ > 0 such that
∣
∣
∣
∣

{

γ ∈ Γ :
H(γ) ≤ T , Fγ ⊃ FG

Gal(Fγ/FG) �W (G)

}∣
∣
∣
∣
= NT (Γ) +O

(

NT (Γ)1−δ
)

.

The implied constant here and in Theorem 1.2 depends only on G, S, and choice
of the embedding of G in GLm (i.e., the choice of an integral model of G over OS).

In general, the Galois groups Gal(Fγ/F ) are typically isomorphic to a larger group
Π(G) which we now define. Let T be a maximal torus of G defined over F , and let
X(T) be the character group of T which is a free abelian group of rank dim(T). We
denote by Π(G) the subgroup of Aut(X(T)) generated by the action of the Weyl group
W (G) and the action of the Galois group Gal(FT/F ). We note that the definition of
the group Π(G) does not depend on the choice of the torus T.

Theorem 1.2. For the group Γ as above, there exists δ > 0 such that
∣
∣
∣
∣

{

γ ∈ Γ :
H(γ) ≤ T

Gal(Fγ/F ) � Π(G)

}∣
∣
∣
∣
= NT (Γ) +O

(

NT (Γ)1−δ
)

.

Remark 1.1. The exponent δ can given explicitly, and Theorems 1.1 and 1.2 hold
with

(1.1) δ < a(a+ [F : Q] dim(G))−1(2ne(pS))−1(2 dim(G) + 1)−1,

where a is the Hölder exponent of the height balls, pS is the integrability exponent of
the relevant automorphic representations, and ne(p) is the least even integer ≥ p/2
if p > 2 and 1 if p = 2. We refer to [3, Sec. 4] for this notation. We note that in
many cases we have a = 1 (see [3, Rem. 4.2] and [2, Th. 3.15]); for instance, this is
so when S contains only Archimedean places. Also, when the local height functions
Hv, v ∈ S, are bi-invariant under a good special subgroup of G(Fv), one can replace
2ne(pS) by pS (see [3, Rem. 4.2]).

We note that Rivin [12] has raised a number of important questions on genericity
properties in arithmetic lattices and mapping class groups. The present paper is
motivated also by the works of Jouve [5] and Kowalski et al. [6,7] who studied Galois
groups of elements generated by random walks and have established definitive results
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in this setting. We are not aware of previous results about Galois groups of elements
indexed by the height function, a question that was raised explicitly in [12] and [6, Sec.
7]. The method of constructing elements with prescribed properties using reduction
modulo primes has been also developed in the works of Prasad and Rapinchuk [9–11].

The proofs of the theorems utilize the abstract large sieve method developed in
Kowalski’s book [7], and rely also on the technique of studying Galois groups via
reductions modulo primes that has been developed in great generality in [6]. Our
arguments are based on the general counting results for congruence subgroups proved
in [3], which provide the crucial spectral estimate necessary for the large sieve method
to proceed (see equation (2.5) below). In addition, the non-concentration phenomenon
established for subvarieties of semisimple group varieties in [4] is used to immediately
reduce the computation of splitting fields to regular semisimple elements only, as
non-regular elements have a-priori lower rate of growth.

2. The large sieve for arithmetic groups

For a prime ideal p of the ring of integers of F , we denote by G(p) the reduction of G
modulo p. For almost all p, G(p) is a smooth connected algebraic group defined over
the residue field Fp. We set Yp := G(p)(Fp), and more generally, for a square-free ideal
a, we set Ya :=

∏

p|a Yp. When the ideal a is coprime to S, we have a well-defined
reduction map

πp : Γ = G(OS) → Yp.

Given a family of subsets Ωp ⊂ Yp with p ∈ L∗, we define the sifted set by

ST (Γ, {Ωp}p∈L∗ ;L∗) := |{γ ∈ Γ : H(γ) ≤ T, πp(γ) /∈ Ωp for p ∈ L∗}|.
A fundamental problem in sieve theory is to produce an upper estimate on the cardi-
nality of this set.

Proposition 2.1. There exist a finite set R of prime ideals containing S and con-
stants C, T0, ρ > 0, depending only on Γ, such that for any choice of

• a set L∗ of prime ideals coprime to R,
• a set L of square-free ideals divisible by only prime ideals in L∗,
• a family of subsets Ωp ⊂ Yp with p ∈ L∗,

the following estimate holds:

|ST (Γ, {Ωp}p∈L∗ ;L∗)| ≤ NT (Γ) + C NT (Γ)1−ρM(L)
V ({Ωp}p∈L∗)

,

for all T ≥ T0, where

M(L) := maxa∈L
∑

b∈L |Y[a,b]|,(2.1)

V ({Ωp}p∈L∗) :=
∑

a∈L
∏

p|a
|Ωp|

|Yp|−|Ωp| .(2.2)

Remark 2.1. The exponent ρ in Proposition 2.1 can be estimated by

(2.3) ρ < a(a+ [F : Q] dim(G))−1(2ne(pS))−1,

with notation as in [3, Sec. 4]. This exponent comes from [3, Th. 5.1] (see (2.6) below).
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Proof. We use the general version of the large sieve developed in [7, Ch. 2]. We equip
the spaces Ya with the uniform probability measure and choose an orthonormal basis
of Ba of L2(Ya) that contains the constant function 1. We follow the convention of [7]
and construct the basis elements of L2(Ya) as products of basis elements of L2(Yp)
with prime ideals p dividing a.

It will be convenient to introduce a measure μT =
∑

γ∈Γ: H(γ)≤T δγ on Γ, where
δγ denotes the Dirac measure at γ. According to the general large sieve inequality
(see [7, Prop. 2.3]), we have the estimate

(2.4) |ST (Γ, {Ωp}p∈L∗ ;L∗)| ≤ Δ · V ({Ωp}p∈L∗)−1
,

where Δ = Δ(T,L) is the large sieve constant, namely, the smallest number such
that

(2.5)
∑

a∈L

∑

φ∈Ba\{1}

∣
∣
∣
∣

∫

Γ

α(γ)φ(πp(γ)) dμT (γ)
∣
∣
∣
∣

2

≤ Δ
∫

Γ

|α(γ)|2 dμT (γ),

for all α ∈ L2(Γ, μT ). As observed in [7, Rem. 2.5], the estimate (2.5) is independent of
the choices of orthonormal bases of L2(Ya). We pick our bases, so that ‖φ‖2 = ‖φ‖∞
for φ ∈ Ba. This can be done using finite Fourier analysis (see, for instance, [8,
Prop. 2]).

For an ideal a coprime with S, we set

Γ(a) = {γ ∈ Γ : γ = Id mod a}.
Then by [3, Th. 5.1], there exist T0, ρ > 0 such that for all ideals a of OS , γ0 ∈ Γ and
T ≥ T0, we have

(2.6) |{γ ∈ γ0Γ(a) : H(γ) ≤ T}| =
NT (Γ)

|Γ : Γ(a)| +O
(

NT (Γ)1−ρ
)

,

where ρ is as in (2.3). It follows from the strong approximation property of G that
excluding a finite set of primes R, we may assume that the reduction map πa is
surjective for all a ∈ L. In particular, this implies that Ya � Γ/Γ(a), and we deduce
that for all a ∈ L, y ∈ Ya and T ≥ T0, we have

(2.7) μT ({πa(γ) = y}) =
NT (Γ)
|Ya| +O

(

NT (Γ)1−ρ
)

.

The implied constant depends only on Γ.
Given ideals a, b ∈ L, we denote by d their greatest common divisor and by [a, b]

their least common multiple. Then

Ya � Ya′ × Yd, Yb � Yd × Yb′ , Y[a,b] � Ya′ × Yd × Yb′ ,

where we write a = a′d and b = db′. Then every φ ∈ Ba and ψ ∈ Bb can be written
as

φ = φ1 ⊗ φ0 and ψ = ψ0 ⊗ ψ1

for some elements φ1 ∈ Ba′ , φ0, φ1 ∈ Bd, ψ1 ∈ Bb′ . Given φ ∈ Ba and ψ ∈ Bb, we
define a function on Y[a,b] by

[φ, ψ̄] = φ1 ⊗ (φ0ψ̄0) ⊗ ψ̄1.
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Now to estimate the large sieve constant Δ, we apply [7, Cor. 2.13]. Using (2.7), we
obtain for some C > 0 and all T ≥ T0,

Δ ≤ NT (Γ) + C NT (Γ)1−ρ max
a∈L,φ∈Ba

∑

b∈L
|Y[a,b]|

⎛

⎝
∑

ψ∈Bb

‖[φ, ψ̄]‖∞
⎞

⎠ .

Since ‖φ‖∞ = ‖ψ‖∞ = 1, we obtain

‖[φ, ψ̄]‖∞ ≤ ‖φ1‖∞ · ‖φ0ψ̄0‖∞ · ‖ψ1‖∞ ≤ ‖φ1‖∞ · ‖φ0‖∞ · ‖ψ̄0‖∞ · ‖ψ1‖∞
≤ ‖φ‖∞ · ‖ψ‖∞ = 1,

and it follows that

Δ ≤ NT (Γ) + C NT (Γ)1−ρ
(

max
a∈L

∑

b∈L
|Y[a,b]|

)

,

which completes the proof. �

3. Proof of the main theorems

For γ ∈ Γ, we denote by Dγ the algebraic group generated by γ. Let Γ∗ ⊂ Γ be the
subsets of γ’s such that Dγ is a maximal torus in G. In particular, every element in
Γ∗ is semisimple and regular. By [6, Lem. 2.5], there exists a regular function h on
G defined over F such that for γ ∈ Γ, the condition h(γ) �= 0 implies that γ ∈ Γ∗.
Therefore, applying [4, Th. 1.8] to the variety {h = 0}, we deduce that for some
σ > 0,

(3.1) |{γ ∈ Γ∗ : H(γ) ≤ T}| = NT (Γ) +O
(

NT (Γ)1−σ
)

.

In fact, [4, Th. 1.8] gives σ < ρ/ dim(G) with ρ as in (2.3). This shows that it will be
sufficient to produce a favourable estimate for the set Γ∗. We note that for γ ∈ Γ∗,
the maximal torus Dγ is split over Fγ , and hence Fγ ⊃ FG.

Let T be a maximal torus of G defined over F . The Galois group Gal(FT/F ) acts
faithfully on the character group X(T), and we denote by

φT : Gal(FT/F ) → Aut(X(T))

the corresponding injective homomorphism. For γ ∈ Γ∗, we also use notation

φγ : Gal(Fγ/F ) → Aut(X(Dγ)).

The Weyl group W (G,T) := NG(T)/CG(T) also acts on X(T). Let Π(G,T) be the
subgroup of Aut(X(T)) generated by φT(Gal(FT/F )) and W (G,T). Using that all
maximal tori are conjugate, one can check (see [6, Prop. 2.1]) that all groups Π(G,T)
and all groups W (G,T) are isomorphic, and moreover that the corresponding iso-
morphisms are defined uniquely up to inner automorphisms, so that the bijections
between the conjugacy classes are canonically defined. Because of this, we use the
simple notation Π(G) and W (G).

By [6, Lem. 2.2], for γ ∈ Γ∗, we have

φγ(Gal(Fγ/FG)) ⊂W (G).

Therefore, Gal(Fγ/FG) is isomorphic to a subgroup of W (G), and to prove Theorem
1.1, it remains to show that “typically” the map φγ is onto.
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Let E be a finite extension of F such that G is split over E. To show that “typically”
φγ(Gal(Eγ/E)) = W (G), we verify that the subgroup φγ(Gal(Eγ/E)) intersects each
conjugacy class of W (G). Then the claim would follow from a classical lemma in
group theory: no proper subgroup of a finite group intersects all conjugacy classes.
Moreover, since E ⊃ FG, this also implies that φγ(Gal(Fγ/FG)) = W (G).

For a prime ideal p of the ring of integers of E, we denote by G(p) the reduction of
G modulo p. For all but finitely many p, the group G(p) is geometrically irreducible
and split. Let Yp = G(p)(Fp) and Y ∗

p be the subset of regular semisimple elements in
Yp. Every g ∈ Y ∗

p is contained in a unique maximal torus of G(p), which we denote
by Dg. As above, for g ∈ Y ∗

p , we have a homomorphism

φg : Gal(Fp/Fp) → Aut(X(Dg)),

and

φg
(

Gal(Fp/Fp)
) ⊂W

(

G(p)
)

for all but finitely many p. We denote by Frobp the conjugacy class in Gal(Fp/Fp)
generated by the Frobenius automorphism x 
→ xNp. For a prime ideal p of E
which is unramified over Eγ we denote by FrobEγ/E

p the Frobenius conjugacy class
in Gal(Eγ/E). By [6, Prop. 3.1], there exists a finite set R of prime ideals p and a
non-zero regular function h on G defined over E such that for all p /∈ R and every
γ ∈ Γ∗ satisfying h(γ) �= 0 mod p, we have

• πp(γ) ∈ Y ∗
p ,

• p is unramified in Fγ ,
• W (G) � W (G(p)), and there is a canonical bijection between the sets of

conjugacy classes in W (G) and W (G(p)) such that the conjugacy classes
φγ

(

FrobEγ/E
p

)

and φπp(γ) (Frobp) correspond to each other.

Moreover, enlarging R if necessary, we may assume that for p /∈ R, h �= 0 mod p,
and for prime ideals q of F dividing p, G(p) � G(q), and Proposition 2.1 applies.

Let L = L∗ be the set of prime ideals p which are not in R, split completely in
the extension E/F , and satisfy Np ≤ L for a parameter L ≥ 2 that will be chosen
later. We note that by Chebotarev density theorem and Landau prime ideal theorem
in E, L

logL � |L| � L
logL . The assumption that a prime ideal p ∈ L splits completely

guarantees that for every prime ideal q of F that divides p, we have Yp � Yq, and
hence Proposition 2.1 applies to the maps πp : Γ → Yp. We fix a conjugacy class
C ⊂W (G) �W (G(p)) and for p ∈ L consider a set

ΩC
p = Yp\

{

g ∈ Y ∗
p : h(g) �= 0, φg(Frobp) = C} .

In order to estimate ST
(

Γ,
{

ΩC
p

}

p∈L ;L
)

, we need to establish a lower bound for

V
({

ΩC
p

}

p∈L

)

and an upper bound for M(L).

Since {h = 0} is a subvariety of G(p) with smaller dimension, it follows that:
∣
∣
∣

{

g ∈ G(p)(Fp) : h(g) = 0
}∣
∣
∣� |Fp|dim(G)−1 � |Yp|/|Fp|.
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Also, by [6, Prop. 4.1],

|{g ∈ Y ∗
p : φg(Frobp) = C}| =

|C|
|W (G)| |Yp|

(

1 +O
(|Fp|−1

))

.

This estimate is crucial for our argument, and it allows to detect that most splitting
fields have Galois groups that intersect each conjugacy class in the Weyl group. We
note that in the case of SLd, the Weyl group is the symmetric group Sd whose conju-
gacy classes are indexed by partitions of d. This exactly corresponds to factorization
patterns of polynomials over Fp.

Now we deduce from the above estimates that
|ΩC

p |
|Yp| =

|W (G) − C|
|W (G)| +O

(|Fp|−1
)

,

and hence,

(3.2) V
({

ΩC
p

}

p∈L

)

≥
∑

p∈L

|ΩC
p |

|Yp| � |L| � L

logL
.

Next we estimate M(L). For p, q ∈ L, we have

|Yp| � |Fp|dim(G) ≤ Ldim(G),
∣
∣Y[p,q]

∣
∣ ≤ |Yp| · |Yq| � L2 dim(G),

and it follows that

(3.3) M(L) ≤ L2 dim(G)|L| � L2 dim(G)+1

logL
.

Now Proposition 2.1, together with (3.2) and (3.3), implies that

ST

(

Γ,
{

ΩC
p

}

p∈L ;L
)

�
(

NT (Γ) +NT (Γ)1−ρ
L2 dim(G)+1

logL

)
logL
L

.

Taking L = NT (Γ)ρ/(2 dim(G)+1), we deduce that for δ < ρ/(2 dim(G) + 1), we have

ST

(

Γ,
{

ΩC
p

}

p∈L ;L
)

� NT (Γ)1−δ.

Combining this estimate with (3.1), we deduce that
∣
∣
∣
∣
∣

{

γ ∈ Γ∗ :
H(γ) ≤ T

∃ p : φγ
(

FrobEγ/E
p

)

= C

}∣
∣
∣
∣
∣
= NT (Γ) +O(NT (Γ)1−δ),

since δ < σ. This estimate holds for all conjugacy classes C of the Weyl group W (G).
Therefore,

∣
∣
∣
∣

{

γ ∈ Γ∗ :
H(γ) ≤ T

∀ C : φγ(Gal(Eγ/E)) ∩ C �= ∅
}∣
∣
∣
∣
= NT (Γ) +O(NT (Γ)1−δ).

As it was remarked above, this implies that
∣
∣
∣
∣

{

γ ∈ Γ∗ :
H(γ) ≤ T

Gal(Eγ/E) �W (G)

}∣
∣
∣
∣
= NT (Γ) +O(NT (Γ)1−δ),

and ∣
∣
∣
∣

{

γ ∈ Γ∗ :
H(γ) ≤ T

Gal(Fγ/FG) �W (G)

}∣
∣
∣
∣
= NT (Γ) +O(NT (Γ)1−δ).
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Now Theorem 1.1 follows from (3.1).
To prove Theorem 1.2, we observe that if for γ ∈ Γ∗, we have

φγ(Gal(Fγ/FG)) = W (G),

then
φγ(Gal(Fγ/F )) = Π(G),

and φγ defines an isomorphism Gal(Fγ/F ) � Π(G). Therefore, it follows from the
above argument that:

∣
∣
∣
∣

{

γ ∈ Γ∗ :
H(γ) ≤ T

Gal(Fγ/F ) � Π(G)

}∣
∣
∣
∣
= NT (Γ) +O(NT (Γ)1−δ),

and finally Theorem 1.2 follows from (3.1). The estimate (1.1) on δ follows from (2.3).
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