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STRONG RATIONAL CONNECTEDNESS OF TORIC VARIETIES

Yifei Chen and Vyacheslav Shokurov

Abstract. In this paper, we establish that, for any given finitely many distinct points
P1, . . . , Pr and a closed subvariety S of codimension ≥2 in a complete toric variety X over
an algebraically closed field of characteristic 0, there exists a rational curve f : P

1 → X
passing through P1, . . . , Pr, disjoint from S \ {P1, . . . , Pr} (see Main Theorem). As a

corollary we obtain that the smooth loci of complete toric varieties are strongly rationally
connected.
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1. Introduction

The concept of rationally connected varieties was independently invented by Kollár–
Miyaoka–Mori [1] and Campana [2]. This class of variety has interesting arithmetic
and geometric properties.

A class of proper rationally connected varieties comes from the smooth Fano va-
rieties [2], [3] or [4]. Shokurov [5], Zhang [6], Hacon and McKernan [7] proved that
Fano type (FT) varieties are rationally connected.

An interesting question is whether the smooth locus of a rationally connected
variety is rationally connected. In general the answer of the question is NO (For
example, see [8], Example 19). However, for the FT (or log del Pezzo) surface case,
Keel and McKernan gave an affirmative answer, that is, if (S, Δ) is a log del Pezzo
surface, then its smooth locus Ssm is rationally connected [9], but this does not imply
the strong rational connectedness.

The concept of strongly rationally connected varieties (see Definition 2.2) was first
introduced by Hassett and Tschinkel [8]. A proper and smooth separably rationally
connected variety X over an algebraically closed field is strongly rationally connected
(see [1] 2.1 or [4] IV.3.9). Xu [10] proved that the smooth loci of log del Pezzo sur-
faces are not only rationally connected but also strongly rationally connected, which
confirms a conjecture of Hassett and Tschinkel [8], Conjecture 20). It is expected that
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the smooth locus of an FT variety is strongly rationally connected (cf. Example 2.1
and Main Theorem).

Throughout the paper, we work over an algebraically closed field of characteristic 0.
It is interesting whether the Main Theorem holds for any algebraically closed field.

Main Theorem. Let X be a complete toric variety over an algebraically closed field
of characteristic 0. Let p1, . . . , pr ∈ P

1 be r distinct points. Then, for any given
distinct points P1, . . . , Pr ∈ X (Pi possibly singular), there is a geometrically free
rational curve f : P

1 → X over {Pi}, 1 ≤ i ≤ r(see Definition 2.4 and Remark 2.2)
with f(pi) = Pi, 1 ≤ i ≤ r. Moreover, f can be chosen to be free over {Pi} if all
points Pi are smooth.

Main Theorem implies the following:
Let X be a complete toric variety over an algebraically closed field of characteristic

0. Let p1, . . . , pr ∈ P
1 be r distinct points. Then, for any given distinct points

P1, . . . , Pr ∈ X (possibly singular) and any given codimension ≥2 subvariety S ⊆ X,
there is a rational curve f : P

1 → X passing through P1, . . . , Pr with f(pi) = Pi,
1 ≤ i ≤ r, disjoint from S \ {P1, . . . , Pr}.

If all points Pi ∈ X are smooth, then we get the following corollary.

Corollary 1.1. The smooth locus of a complete toric variety is strongly rationally
connected.

Note that in the Main Theorem, if dimX ≥ 2 the curve f can be chosen to be
birational (see the proof of Main Theorem). For dimX = 1 and any r, the curve f
can be chosen to be a finite morphism. For dimX = 0, r ≤ 1 and the curve f is a
constant morphism.

In the paper, we suppose that dimX ≥ 1 and a rational curve is always a noncon-
stant morphism f : P

1 → X.

2. Preliminaries

When we say that x is a point of a variety X, we mean that x is a closed point in X.
A normal projective variety X is called FT (Fano Type) if there exists an effective

Q-divisor D, such that (X, D) is klt and −(KX + D) is ample. See [11] Lemma–
Definition 2.6 for other equivalent definitions.

Let N ∼= Z
n be a lattice of rank n. A toric variety X(Δ) is associated to a fan Δ,

a finite collection of rational convex cones σ ⊂ NR := N ⊗Z R (see [12] or [13].

Example 2.1. Projective toric varieties are FT. Let K be the canonical divisor of
the projective toric variety X(Δ), T be the torus of X, and Σ = X \T =

∑
Di be the

complement of T in X. Then K is linearly equivalent to −Σ. Since X is projective,
there is an ample invariant divisor L. Suppose that L =

∑
diDi. Let the polytope

�L = {m ∈ M |〈m, ei〉 + di ≥ 0, ∀ei ∈ Δ(1)}, where M is the dual lattice of N , and
Δ(1) is the set consisting of one-dimensional cones in Δ. Let u be an element in the
interior of �L. Let χu be the corresponding rational function of u ∈ M (see [12]
Section 1.3), and div χu be the divisor of χu. Then D = div χu + L is effective and
ample and has support Σ. That is, D =

∑
d′iDi and all d′i > 0.

Let ε be a positive rational number, such that all coefficients of prime divisors in
εD are strictly less than 1. Then Σ−εD is effective. It is well known that (X, Σ−εD)
is klt (see, e.g. [14] Lemma 5.2), and −(K +Σ− εD) ∼ εD is ample. Hence, X is FT.
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Definition 2.1. An isogeny of toric varieties is a finite surjective toric morphism.
Toric varieties X and Y are said to be isogenous if there exists an isogeny X → Y .
The isogeny class of a toric variety X is a set consisting of all toric varieties Y such
that X and Y are isogenous.

Theorem 2.1. Let f : X → Y be a finite surjective toric morphism. Then there
exists a finite surjective toric morphism g : Y → X.

Proof. Let f : X → Y be a finite surjective toric morphism of toric varieties and
ϕ : (N ′, Δ′) → (N, Δ) be the corresponding map of lattices and fans. Then we can
identify N ′ as a sublattice of N and Δ′ = Δ.

There is an positive integer r such that rN is a sublattice of N ′. Let g be the
corresponding toric morphism of (rN, Δ) → (N ′, Δ). Since (rN, Δ) and (N, Δ) induce
an isomorphic toric variety, we get g : Y → X is a finite surjective toric morphism. �

The properties of isogeny:
(1) Isogeny is an equivalence relation.
(2) If a toric variety Y is in the isogeny class of X and μ : X → Y is the isogeny,

then there is a one-to-one correspondence between the set of orbits {OX
i } of

X and the set of orbits {OY
i = μ(OX

i )} of Y . Hence dim OX
i = dimOY

i for
all i, and the number of orbits is independent of the choice of toric varieties
in an isogeny class of X.

A variety X over a characteristic 0 field is rationally connected, if there is a bounded
family of rational curves in X, such that any two general points x1, x2 ∈ X can be
connected by rational curves in this given family.

Definition 2.2. ([8] Definition 14.) A smooth rationally connected variety Y is
strongly rationally connected if any of the following conditions hold:

(1) for each point y ∈ Y , there exists a rational curve f : P
1 → Y joining y and

a generic point in Y ;
(2) for each point y ∈ Y , there exists a very free rational curve containing y;
(3) for any finite collection of points y1, . . . , ym ∈ Y , there exists a very free

rational curve containing the yj as smooth points;
(4) for any finite collection of jets

Spec k[ε]/〈εN+1〉 ⊂ Y, i = 1, . . . , m

supported at distinct points y1, . . . , ym, there exists a very free rational curve
smooth at y1, . . . , ym and containing the prescribed jets.

Definition 2.3. Let X be a complete normal variety, B be a set of finitely many
closed points in P

1, and g : B → X be a morphism. A rational curve f : P
1 → X is

called weakly free over g if there exists an irreducible family of rational curves T and
an evaluation morphism ev: P

1 × T → X such that
(1) f = ft0 = ev|P1×t0 for some t0 ∈ T ,
(2) for any t ∈ T , ft = ev|P1×t is a rational curve and ft|B = g,
(3) the evaluation morphism ev: P

1 × T → X by ev(x, t) = ft(x) is dominant.
We say that a rational curve f ′ : P

1 → X is a general deformation of f , or f ′ is a
sufficiently general weakly free rational curve, if f ′ = ft is a general member of the
family.
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We say that a weakly free rational curve h : P
1 → X is a general deformation of f ,

if there is a weakly free rational curve f ′ : P
1 → X, with family T ′ and the evaluation

morphism ev′ : P
1 × T ′ → X, such that T ′ contains the generic point η of T (that is,

a scheme point of T ′ isomorphic to the generic point of T ) with f ′
η = ev′|P1×η = fη,

and h = f ′
η′ = ev′|P1×η′ , where η′ is the general point of T ′.

Definition 2.4. Let X be a complete normal variety, B be a set of finitely many
closed points in P

1, and g : B → X be a morphism. A rational curve f : P
1 → X is

called geometrically free over g if there exists an irreducible family of rational curves
T and an evaluation morphism ev: P

1 × T → X such that

(1) f = ft0 = ev|P1×t0 for some t0 ∈ T ;
(2) for any t ∈ T , ft = ev|P1×t is a rational curve and ft|B = g;
(3) for any codimension 2 subvariety Z in X, ft(P1)∩Z ⊆ g(B) for general t ∈ T

(general meaning t belongs to a dense open subset in T , depending on Z).

Remark 2.1. If X is smooth projective over an algebraically closed field of charac-
teristic 0, then weak freeness over g is equivalent to usual freeness over g if |B| ≤ 2.
Indeed, let ft be such a curve that for some point p ∈ P

1 \ B, the tangent map
d(p,t) : T(p,t)P

1 × T → Tft(p)X is surjective. Then the sheaf f∗
t TX ⊗ IB is free at p,

that is, generated by global sections near p, where IB is the ideal sheaf of B. On the
other hand, f∗

t TX ⊗ IB =
∑OP1(ai). Thus by the local generatedness all ai ≥ 0,

H1(P 1, f∗
t TX ⊗ IB) = 0 and f∗

t TX ⊗ IB is generated by global sections. So ft is free
over g.

Remark 2.2. In our application, we usually assume that g is one-to-one, and B =
{pi} a fixed subset of P

1. Let Pi = g(pi). Without confusion, we say that f is
geometrically free over {Pi} (resp. weakly free over {Pi}) instead of saying that f is
geometrically free over g (resp. weakly free over g).

Weak freeness and geometric freeness are generalizations of usual freeness (see [4]
II.3.1 Definition) if the curve passes through singularities. To consider weakly free
rational curves or geometrically free rational curves, we think of them as general
members in a certain family. In particular, we can suppose that the morphism ev is
flat.

Example 2.2. Let X be a projective cone over a conic. Let T be the family of all
lines through the vertex O. Then l ∈ T is weakly free and geometrically free over O
by the construction.

For a complete normal algebraic variety, geometrical freeness implies weakly free-
ness (see [15] Proposition 3.3.3). But there exists weakly free rational curves that
are not geometrically free. For example, a general rational curve on the projective
rational surface in Example 19 [8] is weakly free but not geometrically free.

Let X be a variety and π : X̃ → X be a resolution, C ⊂ X̃ be a curve, and D ⊂ X̃
be a proper subvariety. Let P1, . . . , Pr ∈ X be r distinct points. We say that the
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curve C intersects D over {Pi} only in divisorial points of D, if

(1) π−1(Pi) ⊂ D is a divisor for each i;
(2) the curve C intersects D properly, and each point of C ∩ π−1(Pi) lies in a

unique irreducible component of π−1(Pi) for each i. Note that C is possibly
singular.

We need the following resolution in the proof of the Main Lemma and the Main
Theorem.

Theorem 2.2. Let X be a toric variety. Let Σ be the invariant locus of X. Let
P1, . . . , Pr ∈ X be r distinct points. Let f : P

1 → X be a sufficiently general weakly
free rational curve over P1, . . . , Pr. Then there exists a resolution π : X̃ → X, such
that

(1) π−1(Σ ∪ {Pi}) is a divisor with simple normal crossing;
(2) π−1(Pj) ⊆ π−1(Σ ∪ {Pi}) is a divisor for each point Pj;
(3) π : X̃ → X is an isomorphism over X \ (Sing X ∪ {Pi});
(4) sufficiently general f̃(P1) intersects π−1(Σ ∪ {Pi}) over each Pi only in divi-

sorial points of π−1(Σ ∪ {Pi}).
More generally, let fj : P

1 → X, 1 ≤ j ≤ m be finitely many sufficiently general
weakly free rational curve over a subset of {Pi}, where {Pi} is a set of finitely many
distinct points in X. Then there exists a resolution π : X̃ → X such that

(1′) π−1(Σ ∪ {Pi}) is a divisor with simple normal crossing;
(2′) π−1(Pi) ⊆ π−1(Σ ∪ {Pi}) is a divisor for each point Pi;
(3′) π : X̃ → X is an isomorphism over X \ (Sing X ∪ {Pi});
(4′) For each j, sufficiently general f̃j(P1) intersects π−1(Σ ∪ {Pi}) over each Pi

only in divisorial points of π−1(Σ ∪ {Pi}), where f̃j : P
1 → X̃ is the proper

birational transformation of a general deformation of fj and is a (weakly) free
rational curve.

Proof. When the ground field is of characteristic 0, (1)–(3) follow from usual facts in
the resolution theory, e.g., see [16] Main Theorems I and II. However, in the toric or
toroidal case, the same result holds for any field. More precisely, if all Pi are invariant,
we can use a toric resolution. If some Pi are not invariant, they can be converted into
toroidal invariant points Pi after a toroidalization (for a reference, see Propositoin 3.2
in [17]).

To fulfill (4), we need extra resolution over intersections of the divisorial compo-
nents of π−1(Σ ∪ {Pi}) through which general f̃ is passing over Pi. Termination of
such resolution follows from an estimate by the multiplicities of intersection for f(P1)
with Σ. The last resolution is independent of the choice of a general rational curve
by Lemma 3.1 below. However it depends on the choice of intersections of divisorial
components. For more details, see the proof of Lemma 4.3.4 in [15].

For the general statement, we can get (1′)–(3′) in a similar manner as above. To
fulfil (4′), we just need extra resolutions over each point Pi. �

We discuss some examples of rational curves on projective spaces and the quotients
of projective spaces.
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Example 2.3. For any given subvariety S of codimension ≥ 2 in P
n, any points

P1, . . . , Pr ∈ P
n, and any integer d ≥ r, there exists a rational curve C of degree d,

such that each Pi ∈ C and C ∩ S = ∅.
Indeed, we can construct a tree T with r branches, such that each Pi is a smooth

points on a unique branch and disjoint from S. The tree can be smoothed into a
rational curve C passing through P1, . . . , Pr, disjoint from S. The rational curve C
has degree r. For d ≥ r, we can attach d − r rational curves to the tree T , and
smooth it.

Applying Example 2.3, we get

Example 2.4. Let π :Pn → X be a finite morphism, S be a codimension ≥2 subva-
riety in X, and {Pi}m

i=1 be a set of m points outside S. Then there exists a rational
curve C, such that each Pi ∈ C and C ∩ S = ∅.

In particular, the same result holds if X is a quotient space P
n/G, where G is a

finite group, for example, if X is a weighted projective space. It is well known that if
X is a complete Q-factorial toric variety with Picard number one, then there exists
a weighted projective space Y and a finite toric morphism π : Y → X. So the same
result holds for rational curves on a complete Q-factorial toric variety with Picard
number one. It is a very special case of our Main Theorem.

3. Proof of main theorem

In this section we prove Main Theorem. Let us first prove Main Lemma, which is a
special case of Main Theorem.

Main Lemma. Let X be a complete toric variety. Let P, Q ∈ X be two distinct
points (P, Q possibly singular). Let S ⊆ X be a closed subvariety of codimension ≥2.
Then there exists a weakly free rational curve on X over P, Q, disjoint from S\{P, Q}.

To prove Main Lemma, we need some preliminaries.

Lemma 3.1. Let f be a weakly free rational curve on X, and F1, . . . , Fs ⊆ X be
s proper irreducible subvarieties in X. Then there exist s′, 0 ≤ s′ ≤ s, subvarieties
among {Fj} (after renumbering we assume that they are F1, . . . , Fs′) such that a
general deformation of f intersects F1, . . . , Fs′ , and is disjoint from Fs′+1, . . . , Fs.

The proof of this Lemma is a standard exercise in incidence relations. See [15]
Lemma 4.3.2 for a detailed proof.

Lemma 3.2. Let X be a complete toric variety. Let P, Q ∈ X be two points (possibly
singular), and S be a closed subvariety of codimension ≥2. Let F1, . . . , Fs be all the
irreducible components of Sing X. Let f : P

1 → X be a sufficiently general weakly free
rational curve over P, Q. Suppose f(P1) intersects F1\{P, Q}, . . . , Fs′ \{P, Q}, and is
disjoint from Fs′+1 \ {P, Q}, . . . , Fs \ {P, Q}. Then there exists a weakly free rational
curve f ′ over {P, Q}, such that f ′(P1) is disjoint from ((S\Sing X)∪Fs′+1∪· · ·∪Fs)\
{P, Q}. Moreover, for any fixed closed subvariety Z of X, if f(P1)∩ (Z \{P, Q}) = ∅,
then f ′(P1) ∩ (Z \ {P, Q}) = ∅.
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Proof. Applying Theorem 2.2 to the toric variety X and two points {P, Q}, we get a
resolution π : X̃ → X satisfying 1)-3) in the theorem and a weakly free rational curve
f̃ : P

1 → X̃ satisfying 4) in the theorem. A general deformation f̃ ′ of f̃ is weakly
free, so f̃ ′ is free by Remark 2.1 above. Moreover, we can assume that f̃ ′ is disjoint
from (S \ Sing X) \ π−1{P, Q} by [4] II.3.7.

On the other hand, let Σ be the invariant locus of X. Notice that Sing X ⊆ Σ.
Then by Theorem 2.2, f̃(P1) intersects π−1(Σ ∪ {P, Q}) divisorially over P, Q, and
f̃(P1) is disjoint from the closure of π−1(Fs′+1 \{P, Q}), . . . , π−1(Fs \{P, Q}). So the
general deformation f̃ ′ of f̃ intersects open subsets of divisors π−1(P ) and π−1(Q),
disjoint from the closure of ((S \ Sing X) \ π−1{P, Q}) ∪ π−1(Fs′+1 \ {P, Q}) ∪ · · · ∪
π−1(Fs \ {P, Q}). We apply Lemma 3.3 by replacing f ′ by f̃ ′, dominant morphism μ

by π : X̃ → X, {Pi} by {P, Q}, and S by (S\ Sing X)∪Fs′+1 ∪ · · · ∪Fs. Then we get
the weakly free rational curve f ′ = πf̃ ′ : P

1 → X as a general deformation of f (see
Definition 2.3), passing through points P, Q and disjoint from ((S\Sing X)∪Fs′+1∪· · ·
∪ Fs) \ {P, Q}.

Moreover, we can assume that f ′ is a weakly free rational curve over P, Q, by a
base change of the family to which f ′ belongs (For details, see the proof of Lemma
4.3.1 in [15]).

The last statement can be proved similarly. �

Lemma 3.3. Let X, X ′ be two complete varieties with dimX > 0. Let μ : X ′ → X
be a dominant morphism. Then the image of a weakly free rational curve on X ′ is
weakly free on X in the following sense:

Let P1, P2, . . . , Pr ∈ μ(X) be r distinct points, and S ⊆ X be a closed subvariety.
Let S′ = μ−1S, and P ′

1, P
′
2, . . . , P

′
r ∈ X ′ be points such that μ(P ′

i ) = Pi for i =
1, . . . , r. If f ′ : P

1 → X ′ is a weakly free rational curve over P ′
1, P

′
2, . . . , P

′
r, disjoint

from S′ \ {P ′
1, P

′
2, . . . , P

′
r}, then f = μ ◦ f ′′ is a weakly free rational curve on X over

P1, P2, . . . , Pr, disjoint from S \ {P1, P2, . . . , Pr}, where f ′′ is a general deformation
of f ′.

Proof. Since f ′ is weakly free, ev: P
1 × T ′ → X ′ is dominant, where T ′ is the family

associated to f ′. Since μ : X ′ → X is dominant, ev: P
1 ×T ′ → X ′ → X is dominant.

Hence for general deformation f ′′ ∈ T ′ of f ′, f = μ◦f ′′ is a weakly free rational curve
on X. �

Lemma 3.4. Let X be a Q-factorial toric variety, and O be a singular orbit of X.
Then there exists an isogeny μ : Y → X, such that Y is smooth along μ−1(O).

Proof. Let (N, Δ) be the lattice and fan associated to X. Let U ⊂ X be the affine
open subvariety containing the orbit O. Then the orbit O corresponds to a simplicial
cone σ in Δ. Let N ′ be the sublattice generated by the primitive elements of σ. Let
Y be the toric variety corresponding to (N ′, Δ) and μ be the natural finite dominant
morphism corresponding to (N ′, Δ) → (N, Δ). By the construction of μ, μ−1(O) is
smooth. �

Proof of Main Lemma. Step 1. After Q-factorization q : X ′ →X, we can assume that
X is a complete Q-factorial toric variety [14] Corollary 3.6). Indeed, take points
P ′, Q′ ∈ X ′ such that q(P ′) = P and q(Q′) = Q. The inverse image S′ = q−1S is a
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closed subvariety of codimension ≥2, because q is small. By Lemma 3.3, a weakly free
rational curve f ′ : P

1 → X ′ over {P ′, Q′}, disjoint from S′ \ {P ′, Q′} gives a weakly
free rational curve f = q ◦ f ′ : P

1 → X over {P, Q}, disjoint from S \ {P, Q}.
Step 2. A weakly free rational curve can be moved from any smooth variety of

codimension ≥2 in the sense of Lemma 3.2. So we can reduce the proof of Main
Lemma to the case S = I(X), where I(X) denotes the union of orbits of X of
codimension ≥2. Since X is a toric variety, Sing X ⊆ I(X).

Indeed, for any subvariety S ⊆ X of codimension ≥2, suppose there is a sufficiently
general weakly free rational curve f : P

1 → X over P, Q ∈ X, disjoint from I(X) \
{P, Q}. Apply Lemma 3.2 to the subvariety S, and the weakly free rational curve
f . Since Sing X ⊆ I(X), s′ = 0 in Lemma 3.2, that is, f(P1) is disjoint from
F1 \ {P, Q}, . . . , Fs \ {P, Q}. Then there exists a weakly free rational curve f ′, such
that f ′(P1) is disjoint from ((S \ Sing X) ∪ F1 ∪ · · · ∪ Fs) \ {P, Q} = ((S \ Sing X) ∪
Sing X) \ {P, Q} = S \ {P, Q}.

Step 3. Suppose that I(X) consists of s̃ distinct orbits O1, . . . , Os̃. Let f : P
1 → X

be a sufficiently general weakly free rational curve over P, Q. By Lemma 3.1, we can
assume that f(P1) intersects with O1 \ {P, Q}, . . . , Os′ \ {P, Q}, and is disjoint from
Os′+1 \ {P, Q}, . . . , Os̃ \ {P, Q} for some s′.

Notice that s′ depends on the points P, Q and the variety X. However, since s′

is bounded by s̃, and s̃ is independent of the choice of X in an isogeny class, there
exists an s̄ such that for any toric variety Y in the isogeny class of X, and two distinct
points P ′, Q′ ∈ Y , there exists a weakly free rational curve f ′

s̄ : P
1 → Y over P ′, Q′,

such that for any 1 ≤ i ≤ s̃, if f ′
s̄(P

1) intersects OY
i \ {P ′, Q′}, then 1 ≤ i ≤ s̄,

where OY
i are orbits of Y of codimension ≥2. Furthermore, we can assume that

dimOY
1 ≥ dimOY

2 ≥ · · · ≥ dimOY
s′ ≥ dimOY

s′+1 ≥ · · · ≥ dimOY
s̃ . This order is good

for us, because ∪j≥sO
Y
j is closed for any s.

We fix a complete toric variety X, two points P, Q and a weakly free rational curve
fs̄ over P, Q. By Lemmas 3.3 and 3.4, we can suppose that the orbit Os̄ is smooth.
Indeed, by Lemma 3.4, there is an isogeny μ : Y → X such that OY

s̄ = μ−1(Os̄) is
smooth. Let P ′, Q′ ∈ Y such that μ(P ′) = P, μ(Q′) = Q. Then the existence of a
weakly free rational curve f ′ : P

1 → Y over P ′, Q′, disjoint from OY
s̄ ∪· · ·∪OY

s̃ , implies
the existence of a weakly free rational curve f : P

1 → X over P, Q, disjoint from
Os̄∪· · ·∪Os̃, by Lemma 3.3 with X ′ = Y, {Pi} = {P, Q} and S = OY

s̄ ∪OY
s̄+1∪· · ·∪OY

s̃ .
Step 4. Now, we prove that there is a weakly free rational curve fs̄−1 over P, Q,

such that for any 1 ≤ i ≤ s̃, if fs̄−1(P1) intersects Oi \ {P, Q}, then 1 ≤ i ≤ s̄ − 1.
Indeed, we have the following two cases:

(1) If fs̄(P1) is disjoint from Os̄ \ {P, Q}, then let fs̄−1 = fs̄.
(2) If fs̄(P1) intersects Os̄ \ {P, Q}, we apply Lemma 3.2 with Z = Os̄+1 ∪ · · · ∪

Os̃ and S = Os̄ ∪ Z. Notice that S and Z are closed subvarieties of X of
codimension ≥2, and Os̄ is smooth. In particular, S\ Sing X ⊇ Os̄. By
assumption, fs̄(P1)∩ (Z \{P, Q}) = ∅. Therefore, by the Lemma, there exists
a weakly free rational curve fs̄−1 on X, such that for any 1 ≤ i ≤ s̃, if
fs̄−1(P1) intersects Oi \ {P, Q}, then 1 ≤ i ≤ s̄ − 1, and fs̄−1(P1) is disjoint
from (Os̄ ∪Z) \ {P, Q} = (Os̄ \ {P, Q})∪ (Os̄+1 \ {P, Q})∪ · · · ∪ (Os̃ \ {P, Q}).

Step 5. By induction on s̄, there is a weakly free rational curve f0 over P, Q, disjoint
from I(X) \ {P, Q}. �
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Proof of Main Theorem. Step 1. First, let us consider S = Sing X.
There is a free rational curve f0 : C0

∼= P
1 → X over {P, Q}, and it is disjoint from

{Pi}∪S for dimX ≥ 2, where P, Q �∈ {Pi}∪S are any two distinct smooth points on
X. Indeed, we can apply Main Lemma to the subvariety {Pi} ∪ S and two smooth
points P, Q. Since f0(P1) is in the smooth locus of X, f0 is free over {P, Q}, and it
is disjoint from {Pi} ∪ S for dimX ≥ 2. We can also suppose that the curve f0 is
birational onto its image (see [4] Theorem II.3.14).

I. Assume that P1, . . . , Pr′ are all the smooth points among {Pi} of X, for some
r′, 1 ≤ r′ ≤ r. Since f0 is birational onto its image, we can choose an isomorphism
φ : P

1 → C0, such that P ′
i = f0(φ(pi)) and Pi ∈ X are all distinct. Thus, we identify

pi ∈ P
1 with φ(pi) ∈ C0 and C0 = P

1 under the isomorphism. For each j, applying the
Main Lemma to S = Sing X ∪{Pi} and points P = Pj , Q = P ′

j , there is a weakly free
rational curve fj : Cj

∼= P
1 → X over {Pj , P

′
j} with fj(0j) = Pj and fj(∞j) = P ′

j ,
where 0j ,∞j ∈ Cj for each 1 ≤ j ≤ r, disjoint from S \ {Pj , P

′
j}.

Applying the general statement of Theorem 2.2 to weakly free rational curves
f0, f1, . . . , fr, and the set {Pi} in Theorem 2.2 to the set {Pr′+1, . . . , Pr} here, we get
a resolution π : X ′ → X.

We construct a comb of smooth rational curves C and a morphism f : C → X ′ as
follows.

For each 1 ≤ i ≤ r′, since Pi and P ′
i are smooth points, fi(P1) is contained in the

smooth locus of X. Therefore fi is free for each 1 ≤ i ≤ r′ by [4] II.3.11. We identify
the curve fi : Ci

∼= P
1 → X birationally with a free rational curve fi : Ci

∼= P
1 → X ′.

We also identify Pi ∈ X with Pi ∈ X ′ for 1 ≤ i ≤ r′, and P ′
i ∈ X with P ′

i ∈ X ′ for
1 ≤ i ≤ r. More precisely, fi(0i) = Pi, where 0i ∈ Ci, 1 ≤ i ≤ r′, and fi(∞i) = P ′

i

where ∞i ∈ Ci, 1 ≤ i ≤ r.
For each r′ + 1 ≤ j ≤ r, Pj is singular. Let f ′

j : Cj
∼= P

1 → X ′ be the proper
birational transformation of a sufficiently general deformation of fj . Since π : X ′ → X
is a resolution in Theorem 2.2, f ′

j(Cj) intersects π−1Pj over Pj only in divisorial points
for r′ + 1 ≤ j ≤ r, and is disjoint from the closure of π−1(S \ {Pi}). Let Qj be the
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point in f ′
j(Cj) ∩ π−1Pj over Pj for r′ + 1 ≤ j ≤ r. We can suppose that fi is very

free for 1 ≤ i ≤ r′ and f ′
j is very free for r′ + 1 ≤ j ≤ r by [3] 1.1. or [4] II.3.11.

By the construction of fi, 1 ≤ i ≤ r′ and f ′
j , r

′ + 1 ≤ j ≤ r, fi(Ci) and f ′
j(Cj) are

disjoint from the closure of π−1(S \ {P1, . . . , Pr}) = π−1(S \ {Pr′+1, . . . , Pr}).

II. Gluing ∪r
i=0Ci, we get a comb of smooth rational curves C =

∑r
i=0 Ci and a

morphism f : C → X ′. Indeed, we identify points ∞i ∈ Ci with pi ∈ C0 for each
1 ≤ i ≤ r. Then we have a comb of smooth rational curves C =

∑r
i=0 Ci and a

morphism f : C → X ′ because f0(pi) = fi(∞i) = P ′
i . Notice that f(C) is disjoint

from the closure of π−1(S \ {P1, . . . , Pr}).
In the end, f : C → X ′ can be smoothed into a rational curve f ′ : P

1 → X ′ such
that f ′ is free over {Pi}, 1 ≤ i ≤ r′ and {Qj}, r′+1 ≤ j ≤ r with f ′(pi) = Pi, 1 ≤ i ≤ r′

and f ′(pj) = Qj , r
′+1 ≤ j ≤ r, and is disjoint from the closure of π−1(S\{P1, . . . , Pr})

(See [4] II.7.61). By construction, for dimX ≥ 2 the smoothing f ′ is birational onto
its image, and for dimX = 1, f ′ is finite onto its image.

Step 2. Now we consider any closed subvariety S of codimension ≥2.
By Step 1, there is a free rational curve f ′ : P

1 → X ′ over {P1, . . . , Pr′ , Qr′+1, . . . ,
Qr}, disjoint from the closure of π−1(Sing X \ {P1, . . . , Pr}), where π : X ′ → X
is the resolution in Step 1. On the other hand, π−1((S \ Sing X) \ {P1, . . . , Pr}) is
a codimension ≥2 subvariety on X ′ by Theorem 2.2 3’). So a general deformation
f ′′ of f ′ is free over {P1, . . . , Pr′ , Qr′+1, . . . , Qr} with f ′′(pi) = Pi, 1 ≤ i ≤ r′ and
f ′′(pj) = Qj , r

′ + 1 ≤ j ≤ r, disjoint from π−1((S \ Sing X) \ {P1, . . . , Pr}) by [4]
II.3.7. Since f ′ is disjoint from the closure of π−1(Sing X \ {P1, . . . , Pr}), f ′′ is

1Theorem II.7.6 proves the existence of smoothing keeping points fixed. For combs, the same
arguments of the proof gives more: a general smoothing of a comb is free over B, where B is the set

of intersection points of the handle and each teeth of the comb.
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disjoint from π−1(Sing X \ {P1, . . . , Pr}). Hence f ′′ is disjoint from π−1(Sing X \
{P1, . . . , Pr})∪ π−1((S \ Sing X) \ {P1, . . . , Pr}) = π−1(S \ {P1, . . . , Pr}). Therefore,
πf ′′ is a general deformation of πf ′ over {P1, . . . , Pr} with πf ′′(pi) = Pi, 1 ≤ i ≤ r,
disjoint from S \{P1, . . . , Pr}, and thus πf ′ is a geometrically free rational curve over
{P1, . . . , Pr} on X with πf ′(pi) = Pi, 1 ≤ i ≤ r. �
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