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SINGULAR RIEMANNIAN METRICS, SUB-RIGIDITY
VERSUS RIGIDITY

Samir Bekkara and Abdelghani Zeghib

Abstract. We analyze sub-Riemannian and lightlike metrics from the point of view of
their rigidity as geometric structures. Following Cartan’s and Gromov’s formal defini-
tions, they are never rigid, yet, in generic cases, they naturally give rise to rigid geometric
structures!
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1. On sub-Riemannian metrics

The following are variations on the concept of rigidity of geometric structures in a
somehow “paradoxical” situation:

Sub-Riemannian metrics. A sub-Riemannian structure (M,D, h) consists in giving
on a manifold M a hyperplane field D ⊂ TM together with a metric h defined on
D (and thought of as infinite on TM − D). An isometry of h is a diffeomorphism
preserving the structure.

The hyperplane field may be defined locally as the kernel of a 1-form ω0. There is
however no canonical choice, any form ω = fω0 defines the same hyperplane.

Integrable case. If D is integrable, say it defines a foliation F , then h is nothing but a
leafwise Riemannian metric. We have for instance the particular global product case:
M = N × S, where the leaves N × {∗} are endowed with a same metric h0. Any
family (fs)s∈S in Iso(N,h0) determines an isometry of (M,D, h).
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1.0.1. A correspondence: contact sub-Riemannian → Riemannian. We will hence-
forth assume that D is a contact hyperplane, i.e., ω0 ∧ (dω0)d is a volume form where
dimM = n = 2d+1. Let us recall the (classical) construction of a natural Riemannian
metric h̄ associated to (D,h). Observe that dω0 is a symplectic form on D and that
for a function f , we have the equality d(fω0) = fdω0 (on D). Assume D orientable,
and let α be the Riemannian volume form derived from h on it. Writing that dωd = α
on D determines uniquely f , in other words the Riemannian metric (together with an
orientation) allows one to choose a canonical contact form ω. Recall that the Reeb
field of ω is (uniquely) defined by iRdω = 0, and ω(R) = 1. Now, we extend the
metric h to a metric h̄ on TM by declaring that R is unit and orthogonal to D. The
orientation is actually irrelevant since the inverse orientation gives the same metric.

Isometry groups of Lie type. Summarizing up, a contact sub-Riemannian metric gen-
erates a Riemannian metric. In particular the isometry group Iso(M,h) is a (closed)
sub-group of Iso(M, h̄). Similarly for pseudo-groups of local isometries (i.e., isometries
defined between open sets of M , and composed when this is possible). It then follows
that the isometry group of (M,h) as well as its local isometry pseudo-group are of
Lie type (of finite dimension).

Cartan’s finite-type condition. (see [18]) Let H be a subgroup of GL n(R). An H
structure on a manifold Mn is a reduction of the structural group of its frame bundle
GL (1)(M) = P (M) to H. Equivalently, this is a section of P (M)/H (assume here
to simplify that H is closed). A Riemannian metric corresponds to a O(n)-structure.
A sub-Riemannian metric corresponds to an H structure where H is the subgroup
of GL n(R) preserving R

n−1 and the standard Euclidean product on it. Its elements
have the form: (

A −→u
0 b

)

where A ∈ O(n− 1),−→u ∈ R
n−1 and b ∈ R.

Following Cartan, one associates to H its k-prolongation Hk, a space of symmetric
(k+1)-multi-linear forms on R

n with values in R
n. If A ∈ Hk, and v1, . . . , vk ∈ R

n are
fixed, then v → A(v, v1, . . . , vk) belongs to End(Rn). By definition of a prolongation,
the last element is assumed to be in the Lie algebra of H.

An H-structure has a finite type k ∈ N, if Hk = 0. The principal result of the
Cartan’s theory is that the isometry group of an H-structure of finite type is a Lie
group. The remarkable fact here is that being of finite type depends only on H
(as a subgroup of GL n(R)) and not on the structure itself. As an example, a sub-
Riemannian metric has infinite type, no matter it is integrable or contact! If fact, the
test of finiteness of type concerns the case of the flat translation-invariant H-structure
on R

n. The flow of a vector field V preserves this structure iff, for any x ∈ R
n, the

derivative DxV belongs to the Lie algebra H. The (k + 1)-coefficient in the Taylor
development in a linear coordinates of V belongs to Hk. Hence, finite type means V
is polynomial.

Gromov’s rigidity. (see [2, 3, 8, 11, 16]) Gromov’s definition of geometric struc-
tures consists essentially in giving up the “infinitesimal homogeneity” in the case of
Cartan’s H-structures. As examples, functions and vector fields are geometric struc-
tures, and also is any “finite union” of geometric structures. Isometries are defined
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naturally. Gromov introduces a rigidity condition, which coincides with finiteness of
type in the case of H-structures.

Rough-definition. If σ is such a structure on a manifold M , and x ∈M , let IsoLoc
x (σ)

be the group of (germs) of isometries defined in a neighborhood of x and fixing x.
For an integer k, denote by Diffk

x(M) the group of k-jets of diffeomorphisms of M
fixing x. We have a map jetk

x : IsoLoc
x (σ) → Diffk

x(M). The intuitive idea of rigidity
(of order k) is that jetk

x is injective: an isometry is fully determined by its k-jet. We
say in this case that σ is Iso-rigid at order k. For example, a Riemannian metric is
Iso-rigid at order 1: an isometry is determined by giving its derivative at some point.
In the case of sub-Riemannian metrics, jet1x is injective in the contact case (since it
generates a Riemannian metric), but for no k, jetk

x is injective in the integrable one.

Definition. We then conclude a divergence between this intuitive formalization of
rigidity and Cartan’s finiteness of type. The true Gromov’s definition is actually
of infinitesimal nature. For an H-structure σ, one defines the group Isok+1

x (σ) ⊂
Diffk+1

x (M) as the group of (k + 1)-jets of diffeomorphisms preserving σ up to order
k at x. For example, if σ is a Riemannian metric, then a (local) diffeomorphism f

gives rise to a (k+1)-infinitesimal isometry belonging to Isok+1
x (σ) if f∗σ−σ vanishes

up to order k at x. (In the general case of a geometric structure σ of order r, f is
a (k + r)-isometry if f∗σ and σ have the same k-jet at x). The true definition of
k-rigidity is that jetk : Isok+1

x (σ) → Isok
x(σ) is injective for any x.

Example. Let us see how this injectivity default happens in the example of the contact
form ω = dz + xdy − ydx on R

3, endowed with the restriction of dx2 + dy2. It
corresponds to a left invariant contact sub-Riemannian structure on the Heisenberg
group, and hence it is homogeneous. Consider f : (x, y, z) → (x + δ(z), y + δ(z), z).
Assume δ(0) = 0, then, f(0) = 0. Thus, jetk+1

0 f determines a (k + 1)-isometry at 0,
iff, ∂kδ

∂zk (0) = 0 or equivalently jetk
0(f) = 1 (that is f has the same jet as the identity).

So any such δ with ∂k+1δ
∂zk+1 (0) �= 0 determines an isometry violating the injectivity of

Isok+1
0 → Isok

0 .

Some remarks. (1) Gromov’s definition strictly coincides with finiteness of type in
the case of H-structures (see [2], Example 3.17), and thus sub-Riemannian metrics
are k-rigid for no k.

(2) Between Cartan and Gromov, there have been many substantial contributions
on this subject e.g., by S. Kobayaschi, V. Guillemin, S. Sternberg, I. Singer...

(3) Let us end this criticism on the rough definition of Iso-rigidity by noting that
a generic geometric structure (e.g., a Riemannian metric) has no non-trivial local
isometries, in which case the local rigidity condition is empty. In contrast, it is
the infinitesimal rigidity condition (even empty) that allows one to associate “rigid”
(solid!) objects to σ, independently of the fact that it has or not local isometries.
Indeed, it is proved in both Cartan and Gromov situations, that k-rigidity (or k-
finiteness of type) allows one to construct a parallelism canonically associated to σ
defined on the k-frame bundle GL (k)(M) → M (this is the usual frame bundle for
k = 1) (see for instance [2] and Theorem 2 in [8]). This produces in particular the
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Levi–Civita connection and hence geodesics for Riemannian metrics. Also, the Lie
group property is proved by means of this framing.1

2. Lightlike metrics

Duality. Our original motivation was to study rigidity of lightlike metrics. They are
simply H-structures where H consists of matrices:(

b −→u
0 A

)

where A ∈ O(n−1),−→u ∈ R
n−1 and b ∈ R. Observe that this is exactly the dual of the

group defining sub-Riemannian metrics, that is, the automorphism A ∈ GL n(R) →
A∗−1 ∈ GL n(R) sends one group onto the other.

More geometrically, one defines a lightlike scalar product on a vector space as a
positive symmetric bilinear form having a kernel of dimension one. A lightlike metric
on a manifold M is a tensor, which is a lighlike scalar product on each tangent space.
More generaly, a lighlike metric on a vector bundle E →M consists in giving a one-
dimensionnal sub-bundle N ⊂ E together with a Riemannian metric on E/N . If one
defines a sub-Riemannian metric on E → M as a codimension 1 sub-bundle D ⊂ E
endowed with a Riemannian metric, then one gets a duality:

lightlike metric on E ↔ sub-Riemannian metric on (the dual) E∗.
In other words, a lightlike metric g on a manifold M consists in giving a line sub-
bundle (direction field) N ⊂ TM , and a Riemannian metric on TM/N . The direction
field N and the one-dimensional foliation N that it generates are called characteristic.

Natural situations. Lightlike metrics appear naturally as induced metrics on sub-
manifolds of Lorentz manifolds. Indeed let (L, h) be a Lorentz manifold, and M ⊂ L
a submanifold such that for any x ∈ M , the restriction hx on TxM is degenerate.
Then, this is a lightlike metric on M , i.e., hx has a kernel of dimension 1 and is
positive on TxM . As an example, by definition, characteristic hypersurfaces of the
D’Alembertian operator on L are lightlike hypersurfaces. Also, horizons (in particular
of black holes if any) of subsets of L are topological hypersurfaces and are lightlike
when they are smooth.

Now we give two opposite classes of examples of lightlike metrics which corre-
spond, by duality to the integrable and contact cases of the sub-Riemannian situation,
respectively:

Transversally Riemmannian lightlike metrics. A lightlike metric on a manifold I of
dimension 1 is just 0. Consider now a direct product of (I, 0) with a Riemannian
metric (Q, h). This gives a lightlike metric h ⊕ 0 on Q × I. A lightlike metric g
on a manifold M is called transversally Riemannian if it is locally isometric to such
a (direct) product. This is equivalent to the fact that the flow of any vector field
tangent to the characteristic direction N preserves g (it suffices that this happens for
one non-singular such vector field).

1At a more concrete level, one observes that for a Riemannian metric, if ∇1 and ∇2 are two
connections satisfying the Levi–Civita requirements, then S = ∇1 −∇2 : TM × TM → TM defines
at any x ∈ M a 2-prolongation of the orthogonal group O(n), and hence vanishes. Thus 1-rigidity

and existence of the Levi–Civita connection have the same essence.
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Generic lightlike metrics. Let X be a vector field tangent to N . One sees that N
annihilates the Lie derivative LXg (i.e., LXg(u, v) = 0, if u ∈ N). Furthermore,
LXg is conformally well defined: if X ′ is another vector field tangent to N , then
LX′g = fLXg, for some function f on M . We say that g is generic if LXg has
maximal rank, i.e., its kernel is exactly N . This therefore defines a conformal pseudo-
Riemannian structure on TM/N .

Rigidity flavors. Exactly as in the sub-Riemannian case, lightlike metrics have
infinite type and thus are not rigid. Indeed, the local isometry group has infinite
dimension for any transversally Riemannian metric. For example, if M = R

n−1 × R,
with the metric dx2

1 + . . .+ dx2
n−1, then any map f(x, t) = (x, l(x, t)) is isometric.

The key observation of [5] was a kind of Liouville theorem for the lightcone Con,
n ≥ 4. This is R

+ × Sn−1 endowed with the lightlike metric g(t,x) = e2tCanx,
where Can is the usual metric on Sn−1. This is in fact the lightcone at 0 in the
Minkowski space Minn+1. The Lorentz group O+(1, n) acts isometrically on Minn+1

and hence on Con. The observation is that any local isometry of Con coincides with
the restriction of an element of O+(1, n).

A correspondence: “generic transversally conformal Lightlike geometry” ↔ Confor-
mal Riemannian geometry. The cone situation generalizes to that of transversally
conformal lightlike structure. This means that the flow of any X tangent to N is
conformal, equivalently LXg = fg for some function f . Locally, M = Q× I where I
is an interval, and g(q,r) = c(q, r)hq, where h is a Riemannian metric on Q.

Assume φ is an isometry of (M, g), then it acts on Q, the quotient space of its
characteristic foliation and induces a diffeomorphism ψ, which is obviously conformal
for (Q, h).

Conversely, let ψ a conformal transformation of (N,h), and let us look for an isom-
etry of (M, g) of the form φ : (q, r) → (φ(q), δ(q, r)). We assume here g generic, which
means that ∂c(q,r)

∂r �= 0. Let us assume that I = R, and for any q, the map r → c(q, r)
is a global diffeomorphism of R. If f is the conformal distortion of ψ, that is ψ∗h = fh,
then φ is isometric iff c(φ(q), δ(q, r))f(q) = c(q, r). Our hypotheses imply that for
any fixed q, δ(q, r) can be uniquely chosen, and hence a conformal transformation
of (N,h) admits a unique isometric lifting on (M, g). (One may compare with a
somehow similar construction in [13]).

3. Sub-rigidity of geometric structures, results

We have the following infinitesimal result for lightlike metrics (where jetk
x(φ) = 1,

means that φ has the same k-jet as the identity at x):

Theorem 3.1. Let g be a generic lightlike metric on a manifold M of dimension
n ≥ 4. Then, a 3-infinitesimal isometry with a trivial 1-jet, has a trivial 2-jet:

φ ∈ Iso3
x, jet1x(φ) = 1 =⇒ jet2x(φ) = 1

This notion was actually brought out by Benveniste–Fisher in [4] under the name
of almost-rigidity. We believe here that the word “sub-rigid” is more telling (see also
[12]).

In order to keep an elementary level of exposition, we restrict ourselves to geometric
structures of order 1, that is, GL n(R)-equivariant maps P (M)(= GL (1)(M)) → Z,
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where P (M) is the frame bundle of M and Z is a manifold with a GL n(R)-action.
The classical case of an H structure corresponds to the homogeneous space Z =
GL n(R)/H.

Definition 3.1. A geometric structure σ is (k+s, k)-sub-rigid, if any (k+s)-isometry
whose k-jet is trivial has a trivial (k+1)-jet; formally, if Imk+s,k+1

x denotes the image
of Isok+s

x → Isok+1
x , then, for any x, Imk+s,k+1

x → Isok
x is injective.

Remarks 3.1.
(1) (k + 1, k)-sub-rigidity means k-rigidity.
(2) In particular, a (k + s, k)-sub-rigid structure is Iso-rigid at order k.
(3) The theorem above states that generic lightlike metrics are (3, 1)-sub-rigid.

In the sub-Riemannian case, we have

Theorem 3.2. A contact sub-Riemannian metric is (4, 1)-sub-rigid.

Example. The paradigmatic example of sub-rigid structures presented in [4] was that
of a degenerate framing. That is, on R

n, a system of vector fields x → (X1(x), . . . ,
Xn(x)), which are linearly independent everywhere except at an isolated point, say
0. As an example, take n = 1, and the geometric structure being a vector field
X(x) = f(x) ∂

∂x . A diffeomorphism φ is isometric if φ′(x)f(x) = f(φ(x)). If f does
not vanish, then we have a true parallelism, and it is 0-rigid: trivial 0-jet implies
trivial 1-jet, say at the point 0 ∈ R; in other words, φ(0) = 0 implies φ′(0) = 1.

Assume now that f(0) = 0, then φ is isometric up to order k+1 at 0, if it satisfies,
at the point 0, all the equations obtained by taking derivatives up to order k of the
equality: φ′(x)f(x) = f(φ(x)). Assume f has a zero of order d at 0, e.g. f(x) = xd,
and that jet10(φ) = 1, i.e., φ(0) = 0 and φ′(0) = 1; then we need derivatives of φ up
to order d + 2 in order to conclude that jet20(φ) = 1, i.e., φ′′(0) = 0. Therefore, the
structure is (d+ 2, 1)-sub-rigid.

Remarks 3.2.
(1) An essentially equivalent example is given in ([11], Section 5.11.B) to show

weakness of Iso-rigidity in comparison with rigidity.
(2) One may think following [4] that, as above, there is always a degeneracy phe-

nomenon behind sub-rigidity. One may in particular ask if a sub-rigid structure is
rigid on an open dense set? However, the examples of the lightlike structure on
the Minkowski lightcone, and the standard contact sub-Riemannian metric on the
Heisenberg group, show that sub-rigid structures can be homogeneous. They are in
particular nowhere rigid.

4. Proof of Theorem 3.2

Proof. Let (D,h) be a contact sub-Riemannian structure on M . For computation, it
is useful to see (D,h) as an equivalence class of pairs (ω, h) where ω is any contact
form defining D. The correspondence (ω, h) → h̄ discussed in Section 1.0.1 does not
depend on the particular choice of ω. We will show that the 1-jet of h̄ is determined
by the the 3-jet of (ω, h).
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Let X1, . . . , X2d be a local system of smooth vector fields generating D, where
dimM = 2d + 1. The normalized form ω′ = fω (determined canonically by (ω, h),
that is its maximal power coincides with the h-volume form on D) is defined by

fdωd(X1, . . . , X2n) = det(h(Xi, Xj)ij).

Its Reeb vector field R is defined algebraically by

df(Xi)ω(R) + fdω(Xi, R) = 0, and fω(R) = 1, for all i.

If X0 is a vector field transverse to D, then h̄(Xi, X0)ij , i, j ≥ 0, are given by the
h(Xi, Xj), i, j > 0, and the coordinates of R in the moving frame {X0, . . . , X2d}. In
particular the first derivatives of h̄ come from third derivatives of (ω, h).

Let f be a diffeomorphism, f∗ω = ω1 and f∗h = h1. Thus f∗h̄ = h̄1. If f is
a 4-isometry for (ω, h), then by definition ω and ω1 (resp. h and h1) coincide up to
order 3. It then follows that h̄ and h̄1 coincide up to order 1, that is f a 2-isometry
for h̄. If f was merely a 4-isometry for (D,h), then, ω will coincide up to order 3 with
a multiple gω1, which leads to the same conclusion for h̄.

To prove (4, 2)-sub-rigidity for (D,h), apply the 1-rigidity (say the (2, 1)-sub-
rigidity) of Riemannian metrics. We get here that, if f is a 4-isometry with a trivial
1-jet, then it has a trivial 2-jet. �

Example. Endow R
3 with the contact hyperplane field determined by the form ω =

dz − xdy together the restriction of dx2 + dy2 on it. The map f(x, y, z) = (x +
1
2z

2, y − 1
2zx

2, z + 1
2yz

2) belongs to Iso3
0. It has a trivial 1-jet, but a non-trivial 2-jet.

Therefore, the structure is not (3, 1)-sub-rigid.

5. On the proof of Theorem 3.1

We give in what follows hints on the proof of Theorem 3.1. Details, especially for
Sections 5.1.2 and 5.2 will appear in [6].

5.1. The transversally conformal case. Let us consider first the transversally
conformal case. Locally, M = Q × I, and g(q,r) = c(q, r)hq. An isometry φ has the
form φ : (q, r) → (ψ(q, r), δ(q, r)). Since φ preserves the characteristic foliation of g,
it acts on the quotient space Q, that is, ψ does not depend on r.

5.1.1. The local isometry equation. The isometric equation is:

c(ψ(q), δ(q, r))φ∗h = c(q, r)h

That is, φ is conformal, say with a distortion f (i.e., φ∗h = fh), which satisfies the
cocycle property: c(ψ(q), δ(q, r))f(q) = c(q, r).

Infinitesimal case. For the sake of simplicity, even for infinitesimal isometries, we
will assume that their ψ-part depends only on q (what is a priori true in this case
is that the derivatives on ψ with respect to r vanish according to the order of the
infinitesimal isometry).

Fix a point, say (q, r) = (0, 0). The fact that φ = (ψ, δ) is isometric of order 1
(and fixes (0, 0)) means exactly that the previous equation is satisfied for (0, 0). So
ψ(0) = 0, δ(0, 0) = 0, and ψ is conformal at order 1.
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First step: φ ∈ Iso3
(0,0)(g) and jet1(0,0)φ = 1 =⇒ jet30ψ = 1:

• The fact that φ has a trivial 1-jet translates to: D0φ = 1, ∂δ
∂q = 0 and ∂δ

∂r = 1.
• The fact that φ ∈ Iso2

(0,0)(g) means that the second derivatives of φ at (0, 0)
satisfy all the equalities obtained by derivating the previous equation. Here,
using that ∂δ

∂q = 0, we observe that we have in fact that ψ ∈ Iso2
0(h), that

is ψ is not only conformal, but isometric for h. Then, we use 1-rigidity of
Riemannian metrics to deduce that jet20(ψ) = 1.

• Now, φ ∈ Iso3
(0,0)(g) implies in particular that ψ is 3-conformal for h. We

then apply Liouville Theorem, that is the 3-rigidity of conformal Riemannian
metrics, and deduce that jet30(ψ) = 1.

5.1.2. Second step: φ ∈ Iso3
(0,0) and jet30ψ = 1 =⇒ jet2(0,0)δ = jet2(0,0)r, i.e., all

the second derivatives of δ vanish at (0, 0). The equation φ ∈ Iso3
(0,0) obtained by

taking second derivatives of the isometric equation gives relations between jet20(δ)
and jet30(ψ). Since, we already know that D0ψ = 1 and all other derivatives of
order ≤ 3 vanish, we obtain equations relating second derivatives of δ (the first deriva-
tives of δ are known). We then prove that this system of algebraic linear equations
(on these derivatives) is determined and that all the second derivatives of δ vanish.

5.2. The general case, generalized conformal structures. When gq,r has a
general form rather the split one in the transversally conformal case, we get on the
quotient space a kind of generalized conformal structure. This means that at each
q ∈ Q, we are giving Sq ⊂ Sym2∗(TqM), the space of Euclidean scalar products
on TqQ, such that Sq is the image of a (non-parameterized) curve. The case of
Riemannian metrics corresponds to Sq reduced to one point, and that of conformal
structures to that where all the elements of Sq are proportional. (Of course, we assume
everything depends smoothly on q).

The proof of Theorem 3.1 goes through an adaptation of Liouville theorem to
generalized conformal structures, that is a generalized conformal structure is 2-rigid.

The second step in the proof of Theorem 3.1 is the same as in the transversally
conformal case.

6. Weakness

We show in what follows how the sub-rigidity is weak in comparison to rigidity, by
considering preserving structure actions of special groups (as a nice recent reference
of the subject of these actions, one may consult [14]).

6.1. Gromov representation theorem for rigid structures. Let G be a Lie
group acting on a compact manifold M by preserving an analytic geometric structure
σ and a volume form. The Gromov representation theorem concerns the case where
σ is rigid and G is a simple Lie group. It states that M tends to look like a quotient
G/Λ, where Λ is a co-compact lattice in G. The precise statement is that π1(M) is
large, in the sense that it has a representation in some linear group whose the Zariski
closure of the image contains a copy of the Lie group G (see for instance [9]). This
result was generalized for actions of lattices in G, by Fisher–Zimmer:
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Theorem 6.1. [15] Let Γ be a lattice in a simple Lie group G of rank ≥ 2. Suppose Γ
acts on a manifold M analytically by preserving an analytic rigid geometric structure,
and ergodically for a volume form. Then, either:

(1) Γ acts via a homomorphism in a compact subgroup K ⊂ Diff(M) (and thus M
is a homogeneous space K/C, by ergodicity), or

(2) As in Gromov representation theorem, π1(M) admits a homomorphism in
some GL N (R) whose Zariski closure contains a subgroup locally isomorphic to the
Lie group G.

We will show below that this does not extend to sub-rigid structures.

Extension of Killing fields. One crucial ingredient in the proof on the previous results
is that, for rigid geometric structures, local analytic Killing fields extend to the full
manifold if it is simply connected (see [1, 11, 16]). More precisely, let M be analytic,
simply connected and endowed with an analytic rigid geometric structure σ. Let V
be a Killing field of σ defined on an open set U ⊂ M (that is the local flow of V
preserves σ). Then, V extends (as an analytic Killing field) to M .

This fact is no longer true for sub-rigid structures. Indeed, let g = x2ddx2 be a
“singular” Riemannian metric on R. On R − {0}, the metric is regular, and hence
flat, it has a Lie algebra of Killing fields of dimension 1. No such Killing field extends
at 0. Indeed, as 0 is the unique singular point of g, it will be fixed by any local
isometry φ defined on its neighborhood. Furthermore there is a well defined distance
dg derived from g, and thus, dg(0, x) = dg(0, φ(x)). This implies that φ is necessarily
±Id. In particular any Killing field defined around 0 vanishes in a neighborhood of 0
and hence everywhere.

6.2. No Gromov representation for sub-rigid structures. In the sub-rigid
case, we have the following example:

Theorem 6.2. The lattice SL 3(Z) acts analytically and ergodically on a compact
simply connected manifold, by preserving an analytic sub-rigid structure and a volume
form. More precisely, there exists a holomorphic action of SL 3(Z + jZ), j = e

2π
3 i, on

a compact Calabi–Yau 3-manifold (i.e., a simply connected Kähler manifold with a
holomorphic volume form). The action preserves a holomorphic sub-rigid structure,
and is ergodic (it is measurably isomorphic to an affine action on a complex torus of
dimension 3).

Remark 6.1. Observe this is a sub-rigid counter-example for the Fisher–Zimmer
version concerning higher rank lattices actions whereas the original Gromov’s theorem
deals with actions of Lie groups. The suspension of a lattice action gives rise to an
action of its ambient Lie group G, which always satisfies the Gromov representation
theorem. It remains therefore open to see if an analogous result as in the theorem
above is true for actions of Lie groups as SL 3(R)?

Proof. Before giving the construction, let us discuss somewhat the general question
of taking pull-backs of geometric structures.



1212 SAMIR BEKKARA AND ABDELGHANI ZEGHIB

Pull-Back. Let π : M ′ →M be a differentiable map, with M and M ′ of same dimen-
sion n. Assume M is endowed with an H-structure σ (H a subgroup of GL n(R)). If
π has no critical points (π a local diffeomorphism) then, one defines straightforwardly
π∗(σ). Indeed, jet1(π) is well defined as a map GL (1)(M ′) → GL (1)(M), and then
one composes it with σ : GL (1)(M) → GL n(R)/H. In contrast, there is generally no
mean to define π∗(σ) at a critical point. As an example, there is no definition of the
inverse image of a vector field on M .

Let us now describe a situation where the definition of the pull-back of an H-
structure is possible as a geometric structure in the Gromov sense, but not as an
H-structure. Assume σ is a parallelism x → (e1(x), . . . , en(x)) on M . One defines a
geometric structure σ′ : GL (1)(M ′) → Matn(R) by:

u = (u1, . . . , un) ∈ GL (1)
y (M ′) → σ′(u) = (aij(u)) ∈ Matn(R),

whereDyπ(ui) = Σaij(u)ej(π(y)). In other words, σ′(u) is the matrix of the derivative
Dyπ with respect to the bases (u1, . . . , un) and (e1(π(y)), . . . , en(π(y))) of TyM

′ and
Tπ(y)M , respectively.

Case of the affine flat connection. Another situation which serves in the proof of our
theorem is that of the usual affine structure on R

n. This is an H-structure of order 2,
i.e., a map σ : GL (2)(Rn) → GL

(2)
0 (Rn), where GL

(2)
0 (Rn) is the set of invertible jets

in jet20(R
n,Rn) (the space of jets (Rn, 0) → R

n), i.e., the inverse image of GL n(R)
under the projection jet20,0(R

n,Rn) → GL n(Rn) ⊂ jet10,0(R
n,Rn) (the space of jets

(Rn, 0) → (Rn, 0)). The usual affine connection on R
n is obtained from the projection

GL (2)(Rn) = R
n × GL

(2)
0 (Rn) → GL

(2)
0 (Rn). Now the point is that σ extends as a

map σ̄ : jet20(R
n,Rn) → jet20,0((R

n,Rn). The smooth map π always induces a map
jet2(π) : GL (2)(M ′) → jet20(R

n,Rn). We define π∗(σ) as σ̄ ◦ jet2(π).
If the degeneracy of π is bounded, that is there exists k such that jetk

x(π) �= 0, for
any x, then π∗(σ) is sub-rigid.

The construction is natural, and thus, if a group Γ acts on M ′ and R
n equivariantly

with respect to π, and if the action on R
n is affine, then, Γ preserves the pull-back of

the geometric structure on M ′.
All this applies identically to the torus T

n = R
n/Zn, since we have the same

trivialization of the jet bundle GL (2)(Tn).

Actions. Consider Γ a subgroup of SL n(Z) and let it act as usually on T
n. Blow-up

a finite orbit of Γ (e.g. a rational point), and get a manifold M ′ with a Γ-action.
It was proved by Katok–Lewis [17] that this action is volume preserving, and by
Beneviste–Fisher [4] that it preserves a sub-rigid structure, but can not preserve a
rigid one.

Orbifolds. Here, we assume that there is a finite index subgroup F ⊂ SL n(Z) com-
muting with Γ. We then consider the orbifold M0 = T

n/F . It inherits a Γ-invariant
natural flat affine connection in an orbifold sense.

The next step is to desingularize M0 in order to get a (regular) manifold M ′ with
a Γ-action equivariant with respect to a projection M ′ →M0.
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An example. Take F to be the group isomorphic to Z/2Z generated by the involution
I : x → −x. If n = 2, the quotient around fixed points is just a cone with opening
angle π. It follows that the so obtained orbifold is a topological surface. It is in
fact a topological sphere, with exactly 4 conic singularities on which Γ = SL 2(Z)
acts continuously by preserving a continuous volume form. The singularities can be
solved to give the usual differentiable structure on the sphere, but this can not be
done Γ-equivariantly.

Complex case. A higher dimensional generalization is possible, but in a complex
framework. So, we start with a complex torus A = C

n/Λ (of complex dimension
n). We consider M0 = A/F , where F is the same previous group generated by the
involution I. If n ≥ 2, M0 is no longer a topological manifold, since the fixed points
of I are not conical. We then start blowing-up A on I-fixed points, in a complex way,
and get M1. We have a projection p1 : M1 → A with singular fibers isomorphic to
CPn−1 over I-fixed points. Now, F acts naturally on M1 with conical singularities,
and hence M2 = M1/F is a topological manifold. The resolution of singularities yields
a complex structure on M2 with a natural Γ-holomorphic action.

Our case. For n = 2, we get a Kummer surface, a special case of K3 surfaces. Observe
that the volume form dv = dz1 ∧ dz2 is F -invariant and hence well defined on M2.
However, even if the form p∗1(dv) is singular along the exceptional fibers, it gives rise
to a true regular holomorphic volume form on M2.

In order to have a similar construction in dimension 3, we replace F by the group
generated by the rotation J : z → jz where j = e

2π
3 i on C

3 (see [10], Section
7.6). It preserves the volume form, and therefore, we get on the corresponding M2 a
holomorphic volume form.

Regarding the Γ-action, we take, Γ = SL 3(Z+ jZ) and Λ = (Z+ jZ)3 ⊂ C
3. Thus,

Γ is a lattice in SL 3(C), it preserves Λ and commutes with J .
As in the cases n = 1, 2, one can prove directly that M2 is simply connected.

Another idea is to use the fact that M2 has holomorphic volume form to deduce
it has a vanishing first Chern class. Then, apply Yau’s theorem to get a Kähler
Ricci flat metric on it. But, for such manifolds, up to a finite cover, there is a de
Rham decomposition into a product of a flat torus, and (compact) simply connected
manifolds (hyper-Kähler and Calabi–Yau, see [7]). Thus, it suffices to verify that
M2 has no torus (of dimension 1, 2, or 3) as a factor, to prove that it has a finite
fundamental group. �

Remark 6.2. One can use general theory of rigid transformation groups to see that
the latter action can not preserve a (real) analytic rigid geometric structure. Indeed,
by [11, 16], the isometry group of a unimodular analytic rigid structure on a simply
connected manifold have a finite number of connected components. This means that
up to a finite index, the Γ-action extends to an action of a Lie group, which can be
easily seen to be impossible.
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