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A CHARACTERIZATION OF BI-LIPSCHITZ EMBEDDABLE
METRIC SPACES IN TERMS OF LOCAL BI-LIPSCHITZ

EMBEDDABILITY

Jeehyeon Seo

Abstract. We characterize uniformly perfect, complete, doubling metric spaces, which
embed bi-Lipschitzly into Euclidean space. Our result applies in particular to spaces
of Grushin type equipped with Carnot–Carathéodory distance. Hence we obtain the

first example of a sub-Riemannian manifold admitting such a bi-Lipschitz embedding.
Our techniques involve a passage from local to global information, building on work of
Christ and McShane. A new feature of our proof is the verification of the co-Lipschitz

condition. This verification splits into a large-scale case and a local case. These cases
are distinguished by a relative distance map which is associated to a Whitney-type
decomposition of an open subset Ω of the space. We prove that if the Whitney cubes

embed uniformly bi-Lipschitzly into a fixed Euclidean space, and if the complement of
Ω also embeds, then so does the full space.

1. Introduction

A map between two metric spaces is bi-Lipschitz if distances in the image and source
should not exceed distances in the source and image respectively by more than a
fixed, universal multiplicative constant. More precisely, a map f between metric
spaces (X, dX) and (Y, dY ) is called bi-Lipschitz if there exists an L ≥ 1 such that

(1.1)
1
L
dX(x, y) ≤ dY (f(x), f(y)) ≤ LdX(x, y)

for all x, y ∈ X.
Bi-Lipschitz maps play a role in computer science as well as in many branches of

mathematics. Solving the Sparsest cut problem approximately is important in the
theory of approximation algorithms. The best-known algorithm for this question is
related to the Goemans–Linial conjecture [9, 15]. Recently, Cheeger and Kleiner [7]
together with Lee and Naor [20] gave an counterexample to the Goemans–Linial
conjecture. They showed that the Heisenberg group admits a metric which is of
negative type, yet does not admit a bi-Lipschitz embedding into L1.

Bi-Lipschitz maps are related to problems of differentiability by Rademacher’s
theorem. Lipschitz maps form the right substitute for smooth maps in the theory
of analysis on metric spaces. We would like to know for which metric spaces the
resulting analysis is genuinely new and for which ones the analysis can be seen as just
classical analysis on a suitable subset of a Banach space. This leads to the question
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to characterize metric spaces that embed bi-Lipschitzly into classical Banach spaces.
However, the characterization of metric spaces which are bi-Lipschitz equivalent to
(Rn, Eucl) or even of metric spaces, which are bi-Lipschitzly embeddable into (Rn,
Eucl) remain difficult open problems in Geometric Analysis.

We are interested in the question of which metric spaces embed bi-Lipschitzly into
Euclidean space. We state some progress on this problem. Assouad gave a partial
answer: every snowflaked version of a doubling metric space embeds bi-Lipschitzly
into some Euclidean space [1]. Even though the theorem of Assouad completely
answers the question, which metric spaces are quasisymmetrically embeddable into
Euclidean space, this result does not guarantee bi-Lipschitz embeddability of the
original metric space. In particular, the Heisenberg group, which is a doubling metric
space, admits no bi-Lipschitz embedding into Euclidean space. Luosto [16] together
with Luukkainen and Movahedi–Lankarani [17] gave a precise relationship between
Assouad dimension and dimension of receiving Euclidean space for ultra metric spaces:
an ultrametric space is bi-Lipschitzly embeddable into R

n if and only if its Assouad
dimension is less than n.

Semmes [22] showed that R
n equipped with any metric δω deformed by A1-weight

ω admits a bi-Lipschitz embedding into some R
N . However, (Rn, δω) may be not

bi-Lipschitzly equivalent to R
n. Bishop [3] constructed a Sierpinski carpet E ⊂ R

2

and an A1-weight ω which blows up on E. In this construction, he showed that w is
not comparable to the Jacobian of any quasiconformal mapping.

In this paper, we will characterize uniformly perfect complete metric spaces which
admit a bi-Lipschitz embedding in terms of uniform local bi-Lipschitz embeddability.
Indeed, uniform perfectness and existence of a doubling measure yield existence of a
Whitney-type decomposition. Furthermore, uniform local bi-Lipschitz embeddabil-
ity of Christ cubes associated with such a decomposition implies global bi-Lipschitz
embeddability.

Theorem 1.1. A uniformly perfect complete metric space (X, d) admits a bi-Lipschitz
embedding into some Euclidean space if and only if the following conditions hold:

(1) it supports a doubling measure μ,
(2) there exists a closed subset Y of X which admits a bi-Lipschitz embedding into

some R
M1 ,

(3) Ω = X\Y admits uniformly Christ-local bi-Lipschitz embeddings into some R
M2 .

The bi-Lipschitz constant and dimension of receiving Euclidean space depend on the
data of the metric space X, the doubling constant of μ, M1, M2, and the bi-Lipschitz
constants in conditions (2) and (3).

We now discuss applications of Theorem 1.1 to the bi-Lipschitz embedding question
for sub-Riemannian manifolds. For more information of Carnot–Carathéodory geome-
try, see [10] and [19]. Pansu [21] showed that a version of Rademacher’s differentiation
theorem holds for Lipschitz maps on Carnot groups: every Lipschitz map between
Carnot groups is almost everywhere differentiable in some sense and its differential is
a Lie group homomorphism. Semmes observed that Pansu’s result implies that non-
abelian Carnot groups admit no bi-Lipschitz embedding into Euclidean space (The-
orem 7.1 in [23]). Cheeger proved a remarkable extension of Rademacher’s theorem
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for doubling p-Poincaré spaces and gave a corresponding nonembedding theorem (see
Section 10 and Theorem 14.3 in [4]).

By Cheeger’s theorem, we can deduce nonembeddability of certain regular sub-
Riemannian manifolds. However, his result does not apply to singular sub-Riemannian
manifolds. This paper is motivated by the question whether or not the Grushin plane
embeds bi-Lipschitzly into Euclidean space. While the Grushin plane is one of the sim-
plest singular sub-Riemannian manifold, the previous known nonembedding theorems
do not apply. In contrast, as an application of Theorem 1.1 we will prove bi-Lipschitz
embeddability of the Grushin plane. This is the first example of a sub-Riemannian
manifold that embeds bi-Lipschitzly into Euclidean space.

Definition 1.1. The Grushin plane G is R
2 with horizontal distribution spanned by

X1 =
∂

∂x
and X2 = x

∂

∂y
.

Theorem 1.2. The Grushin plane equipped with Carnot–Carathéodory distance
admits a bi-Lipschitz embedding into some Euclidean space.

The structure of this paper follows. In the second section, we shall see Assouad’s
embedding theorem and Lipschitz extension theorem. We will review Michael Christ’s
construction of a system of dyadic cubes [8] in doubling metric spaces. We will next
construct a Whitney-type decomposition, which we call a Christ-Whitney decompo-
sition (Lemma 2.1) for a uniformly perfect space supporting a doubling measure. We
will also introduce some definitions and lemmas which set the stage for Theorem 1.1.

In the following section, we shall characterize bi-Lipschitz embeddable metric
spaces by proving Theorem 1.1. To this end, we first apply McShane’s extension
theorem to extend a Lipschitz map on Y to X. We introduce the Whitney distance
map dW (Definition 2.7). It is the key tool for construction of a co-Lipschitz map. We
break the Christ–Whitney decomposition into two parts using the Whitney distance
map. After some basic preliminaries, we will construct a W-local co-Lipschitz and
W-large scale co-Lipschitz map on these parts (Lemmas 3.1 and 3.2).

In Section 3, we discuss applications of Theorem 1.1 to the bi-Lipschitz embedding
question for sub-Riemannian manifolds. We prove bi-Lipschitz embeddability of the
Grushin plane into some Euclidean space.

2. Preliminaries

2.1. Notation and terminology. For a metric spaceX = (X, d), we write diam(A)
(or diamd(A) in case we need to mention the metric) for the diameter of a set A ⊂ X,
and dist(A,B) for the distance between nonempty sets A, B ⊂ X. We abbreviate
dist(A, x) = dist(A, {x}) for a set A ⊂ X and x ∈ X. We abbreviate Rn for (Rn,
Eucl) and write dE for the Euclidean metric. As customary, we let C, c, · · · denote
finite positive constants. These constants may depend on auxiliary data a, b, etc ; we
indicate this by writing C(a, b) or c(a, b). We also write a � b if there is a constant
C such that a ≤ C b.

We recall that the map f : X → Y is a bi-Lipschitz embedding if (1.1) holds. We
do not assume that f is onto. We say an invertible map f : X → Y between metric
spaces is co-Lipschitz if f−1 is Lipschitz. We call any constant L satisfying (1.1) a
bi-Lipschitz constant for f .
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Definition 2.1. A metric space (X, d) is uniformly perfect if there exists a constant
A > 0 such that for each x ∈ X and 0 < r < diamX there is a point y ∈ X which
satisfies A−1r ≤ d(x, y) ≤ r. We say that (X, d) is A-uniformly perfect.

Uniform perfectness implies nonexistence of separating annuli of large modulus and
nonexistence of isolated points. Every connected metric space is uniformly perfect.
In an A-uniformly perfect space, B(x, r) \B(x, A−1r) is nonempty for all x ∈ X and
0 < r < diamX and so A−1r ≤ diamB(x, r) ≤ 2r.

The doubling condition provides a kind of boundedness of the geometry of the space.

Definition 2.2. A Borel measure μ in a metric space is called doubling if balls have
finite and positive measure for any nonempty ball and there is a constant D ≥ 1
such that

(2.1) μ(B(x, 2r)) ≤ Dμ(B(x, r))

for all x ∈ X and r > 0. We call D a doubling constant.

Definition 2.3. A metric space is called doubling if there is a constant C so that
every set of diameter d in the space can be covered by at most C sets of diameter at
most d/2.

2.2. Basic theorems. In this section, we recall Assouad’s embedding theorem and
McShane’s Lipschitz extension theorem.

Definition 2.4 (Snowflaking). If (X, d) is a metric space, then its snowflaking is a
metric space (X, dε), where 0 < ε < 1. We say that (X, dε) is a snowflaked version
of (X, d).

Theorem 2.1 (Assouad [1]). Each snowflaked version of a doubling metric space
admits a bi-Lipschitz embedding into some Euclidean space. If 0 < ε < 1, then
(R, dE

ε) embeds bi-Lipschitzly into R
k, where k is the smallest integer which is greater

than 1
ε .

The identity snowflaking (X, d) → (X, dε) is tε-quasisymmetric and hence, each
metric space is quasisymmetrically embedded in Euclidean space if and only if it is
doubling. However, Assouad’s theorem does not answer whether or not the orig-
inal metric space embeds bi-Lipschitzly. For example, whereas the snowflaking of
the Heisenberg group endowed with Carnot–Carathéodory distance, (H, dcc

ε), ad-
mits a bi-Lipschitz embedding into some Euclidean space, the Heisenberg group is
not bi-Lipschitzly embeddable into any Euclidean space. Such nonembeddability is a
consequence of Pansu’s Rademacher-type theorem [21] as observed by Semmes [23].
It also follows from Cheeger’s nonembedding theorem [4].

To prove Theorem 2.1, Assouad builds a multiscale family of maps on scale 2−j

for each j ∈ Z and glues these maps together into an embedding using 2−j-nets and
a coloring map. A similar idea will appear in the proof of Theorem 3.1. In fact, we
shall consider a Whitney-type decomposition instead of nets and use a coloring map
to increase dimension of receiving Euclidean space.

With some restrictions on X and Y , and for A ⊂ X, every Lipschitz function
f : A→ Y can be extended to a Lipschitz function F : X → Y . We recall McShane’s
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Lipschitz extension theorem. Since McShane’s Lipschitz extension map has no re-
striction on the source space, it is useful for our purpose. For further information,
see [12, 13].

Theorem 2.2 (McShane). Let X be an arbitrary metric space. If A ⊂ X and
f : A→ R is L-Lipschitz, then there exists an L-Lipschitz function F : X → R which
extends f . i.e. F |A = f .

Corollary 2.1 (McShane). Let f : A → R
M where A ⊂ X, be an L-Lipschitz

function. Then, there exists an
√
ML-Lipschitz function F : X → R

M such that
F |A = f .

2.3. Christ–Whitney decomposition. As Euclidean space has a system of dyadic
cubes, every doubling metric measure space also has a system of sets akin to classical
dyadic cubes. The following Proposition 2.1 may be transparent if we think of Qk

α as
being essentially a cube of diameter roughly δk with center zk

α. When Qk+1
β ⊂ Qk

α,
we say that Qk+1

β is a child of Qk
α and Qk

α is a parent of Qk+1
β .

Proposition 2.1 (Christ [8]). Let (X, d, μ) be a doubling metric measure space. Then,
there exists a collection of open subsets {Qk

α ⊂ X | k ∈ Z , α ∈ Ik} where Ik is some
index set depending on k, and constants δ ∈ (0, 1) , a0 ∈ (0, 1), η > 0 and C1, c <∞
such that

(1) μ(X \ ∪α∈Ik
Qk

α) = 0, for all k ∈ Z.
(2) For any α, β, k, and l with l ≥ k, either Ql

β ⊂ Qk
α or Ql

β

⋂
Qk

α = ∅.
(3) Each Qk

α has exactly one parent and at least one child for all k ∈ Z.
(4) For each (α, k), there exists zk

α ∈ Xsuch that

B(zk
α, a0δ

k) ⊂ Qk
α ⊂ B(zk

α, C1δ
k).

We now introduce a Whitney-type decomposition on an open subset of a uni-
formly perfect metric space supporting a doubling measure. As open subset of Eu-
clidean space has a Whitney decomposition from a system of dyadic cubes, we have
a Whitney-type decomposition from a system of Christ cubes. We call it a Christ–
Whitney decomposition. This decomposition has a comparability condition (see (4)
Lemma 2.1) in addition to all conditions of a Whitney decomposition. This compa-
rability condition together with doubling condition will play an important role in the
proof of Lemma 2.3, which yields existence of a coloring map in Lemma 2.4.

Lemma 2.1. Suppose that (X, d, μ) is a A-uniformly perfect metric space supporting
a doubling metric measure, Y is a closed subset of X, and Ω = X \ Y . Then Ω has a
Christ–Whitney decomposition MΩ satisfying the following properties:

(1) μ(Ω \ ∪Q∈MΩQ) = 0.

(2) diam(Q) ≤ dist(Q, Y ) ≤ 4C1A

δ
diam(Q).

(3) Q ∩Q′ = ∅.
(4) For any Q ∈ MΩ, there exists x ∈ Ω such that

(∗) B(x, a0δ
k) ⊂ Q ⊂ B(x, C1δ

k)

for some k.
The constants δ, a0 and C1 are deduced from Proposition 2.1.
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Remark 2.1. We say that Q is (C1, a0)-quasiball if (∗) holds for some x and δ. From
now on, we will call a ball B(x, C1δ

k) containing Q a C1-quasiball of Q and denote it
by B̃Q. We observe that diam(B̃Q) is comparable to δk by uniform perfectness of X.

Proof. Since Ω = X \ Y is a doubling metric measure space, we have a family of
subsets

{Qk
α ⊂ Ω | k ∈ Z , α ∈ Ik}

for fixed constants δ and C1 so that μ(Ω \ ∪α∈Ik
Qk

α) = 0 from Proposition 2.1. We
now consider layers, defined by Ωk = {x | c′δk < dist(x, Y ) ≤ c′δk−1}, where c′ is a
positive constant we shall fix momentarily. Obviously, Ω = ∪∞

k=−∞Ωk.
We now make an initial choice of Q’s, and denote the resulting collection by M0.

Our choice is made as follows. We consider Q’s chosen from Ak = {Qk
α | α ∈ Ik} for

each k ∈ Z, (each such Q is of size approximately δk), and include a Q in M0 if it
intersects Ωk. In other words,

M0 = ∪k{Q ∈ Ak | Q ∩ Ωk 
= ∅}.

We then have μ(Ω \ ∪Q∈M0Q) = 0. For an appropriate choice of c′,

(2.2) diam(Q) ≤ dist(Q, Y ) ≤ 4C1A

δ
diam(Q).

Let us prove (2.2) first. Suppose Q ∈ Ak, then
1
A
δk ≤ diam(Q) ≤ 2C1δ

k because

of uniform perfectness. Since Q ∈ M0, there exists x ∈ Q ∩ Ωk. Thus, dist(Q,Y ) ≤
dist(x, Y ) ≤ c′δk−1 ≤ c′A

δ
diamQ ≤ 4C1A

δ
diam(Q) and dist(Q, Y ) ≥ dist(x, Y ) −

diam(Q) ≥ c′δk − 2C1 δ
k = 2C1 δ

k ≥ diam(Q). If we choose c′ = 4C1, we get the
equation (2.2).

Notice that the collection M0 has all required properties, except that Q’s in it
are not necessarily disjoint. To finish the proof of the lemma we need to refine our
choice leading to M0, eliminating Q’s which were really unnecessary. We require the
following observation. Suppose Q ∈ Ak and Q′ ∈ Ak′

. If Q and Q′ are not disjoint,
then one of two must be contained in the other. Start now with any Q ∈ M0, and
consider the unique maximal parent in M0 which contains it. We let MΩ denote
the collection of maximal Q’s in M0. The last property comes straightforward from
Proposition 2.1 and Lemma 2.1 is therefore proved. �

We now define new concepts Q∗ and Q∗∗ corresponding to a Whitney cube Q and
a dilated Whitney cube λQ respectively in the classical Whitney decomposition.

Definition 2.5. For any fixed Q ∈ MΩ, we denote by Q∗ the collection of all R ∈ MΩ

whose distance from Q does not exceed minimum diameters of R and Q by a fixed
constant ε. We denote by Q∗∗ the collection of all S ∈ MΩ whose distance from
some R ∈ Q∗ does not exceed minimum diameters of R and S by a fixed constant ε.
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Figure 1. The gray balls are elements of Q∗ and gray and black
balls are elements of Q∗∗.

Figure 2. Let the square be the Whitney distance ball of radius
16M1L1

2 centered at Q. W-local co-Lipschitz means |f(p)− f(q)| �
d(p, q) for any p ∈ Q and q ∈ R where dW(Q, R) < 16M1L1

2. W-
large scale co-Lipschitz means |f(p) − f(q)| � d(p, q) for p ∈ Q and
q ∈ R with dW(Q, R) ≥ 16M1L1

2.

Here ε is a fixed number such that 0 < ε < 1. In other words,
(1) Q∗ = ∪{R ∈ MΩ | dist(Q, R) < εmin{diam(Q), diam(R)} }.
(2) Q∗∗ = ∪{S ∈ MΩ | dist(S, R) < εmin{diam(S), diam(R)} for some R ∈

Q∗ }.
Remark 2.2. Q∗ could contain no other Christ-cubes except Q. Throughout this
paper, we can choose any ε. However, in practice, we will restrict ε to a universal fixed
number in (0, 1) since we will consider condition of uniformly Christ-local bi-Lipschitz
embeddings (Definition 2.6).

Remark 2.3. Figures 1–3 illustrate an idea how our construction goes. Of course,
actual shapes will depend on a metric space.

We next see some propositions related to Q∗ and Q∗∗.
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Figure 3. g and dist(·, Y ) satisfy W-large scale co-Lipschitz bounds.

Proposition 2.2. For any fixed Q ∈ MΩ, suppose R ∈ Q∗. Then,
[
4C1A

δ
+ 1 + ε

]−1

diam(R) ≤ diam(Q) ≤
[
4C1A

δ
+ 1 + ε

]

diam(R)

Proof. We suppose that diam(R) ≥ diam(Q). Then, we arrive at

diam(R) ≤ dist(R, Y )

≤ diam(Q) + dist(Q, Y ) + dist(R, Q)

≤
[
4C1A

δ
+ 1 + ε

]

diam(Q)

and the symmetrical implication proves the proposition. �

Proposition 2.3. Let (X, d) be a uniformly perfect metric space supporting a dou-
bling measure μ, and let MΩ be a Christ–Whitney decomposition as in Lemma 2.1.

(1) Suppose Q ∈ MΩ. Then there are at most N Christ cubes in MΩ in Q∗∗.
(2) Any point in MΩ is contained in at most N of Q∗∗.

The number N is independent of Q. It depends on the doubling constant of μ, ε, and
the data of X.

Proof. For any R ∈ Q∗∗, we have comparability between diam(Q) and diam(R) from
Proposition 2.2. Therefore, diam(Q∗∗) is comparable to diam(Q). Doubling condition
yields that there are at most a finite number of such R’s and hence there are at most
N(μ, C1, A, δ, ε) Christ cubes in Q∗∗.

Let p be a point in MΩ and write p ∈ R. We now observe that for any Q ∈ R∗∗,
we have R ∈ Q∗∗. We have p ∈ Q∗∗ for all Q ∈ R∗∗ and hence p is contained in at
most N sets of type Q∗∗ by Proposition 2.3 (1). �

We now build a family of Lipschitz cutoff functions. We will use these functions
to construct a W-local co-Lipschitz map by composing with uniformly Christ-local
bi-Lipschitz embeddings. See Lemma 3.2.



A CHARACTERIZATION OF BI-LIPSCHITZ EMBEDDABLE METRIC SPACES 1187

Lemma 2.2. There exist functions ϕQ : X → R where Q ∈ MΩ with the following
properties:

(1) 0 ≤ ϕQ ≤ 1,
(2) ϕQ|Q∗ = 1,
(3) ϕQ|X\Q∗∗ = 0,

(4) ϕQ is Lipschitz with constant
C

diam(Q)
,

(5) For all p ∈ Ω, we have ϕQ(p) 
= 0 for at most N cubes Q ∈ MΩ.

Here, C and N denote uniformly fixed constants independent of the choice of element
Q ∈ MΩ. They depend on the data of X, ε, and the doubling constant of μ.

Proof. We define

ϕQ(x) = min
{

1,
dist(x,X \Q∗∗)

dist(Q∗, X \Q∗∗)

}

.

Then, (1), (2), and (3) are obvious and (5) follows from Proposition 2.3. To check
(4), note that

|ϕQ(p) − ϕQ(q)| ≤ d(p, q)
dist(Q∗, X \Q∗∗)

.

Thus, it suffices to show that

dist(Q∗, X \Q∗∗) ≥ cdiam(Q)

To this end, let x be a point in Q∗. We write x ∈ R for some R ∈ Q∗ and choose
y ∈ S ∈ X \Q∗∗. Then,

d(x, y) ≥ dist(R, S)

≥ εmin{diam(R), diam(S)}
≥ C(L1, A, δ, ε) diam(Q).

The last inequality is deduced from the comparability between diam(R) and diam(Q)
in case diam(S) ≥ diam(R). Otherwise, diam(R) ≥ diam(S), we divide into two
cases, either

(1) diam(R) ≥ diam(S) ≥ 1

2
[
4C1A

δ
+ 1
] diam(R)

or

(2) diam(S) <
1

2
[
4C1A

δ
+ 1
] diam(R).
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In the first case, we have obviously comparability between diam(S) and diam(R). In
the second case, we use the comparability condition of a Christ–Whitney decomposi-
tion. Then,

dist(R, S) ≥ dist(R, Y ) − dist(S, Y ) − diam(S)

≥ diam(R) −
[
4C1A

δ
+ 1
]

diam(S)

≥ 1
2

diam(R)

≥ C(L1, A, δ) diam(Q).

Therefore, the proof of (4) is completed. �

Remark 2.4. We use the fact that ϕQ = 1 on Q∗ and ϕQ = 0 off Q∗∗ so that the
map h̃Q = hQ · ϕQ defined in Subsection 3.3 is bi-Lipschitz on Q∗ and supported on
Q∗∗. These properties are needed in the proof of Lemma 3.2; see case (3).

Definition 2.6. Let (X, d, μ) be a uniformly perfect metric space supporting a dou-
bling measure and let Y be a closed subset of X. We say that Ω = X \ Y admits
uniformly Christ-local bi-Lipschitz embeddings if there exist bi-Lipschitz embeddings
of each Q∗∗ into a fixed Euclidean space with uniform bi-Lipschitz constant.

2.4. Whitney distance map. The following relative distance map plays a key role
to construct a co-Lipschitz map from a metric space into Euclidean space in Section 3.
We will break MΩ into two parts and construct co-Lipschitz maps on these parts
(Definition 3.1) by using the Whitney distance map.

Definition 2.7. The Whitney distance map dW on MΩ × MΩ is defined by

dW(Q,R) =
dist(Q, R)

min(diam(Q),diam(R))
.

Remark 2.5. The Whitney distance map dW is not a metric. In fact, if Q ∩R 
= ∅,
then dW(Q, R) = 0. We observe that

dW(Q, R) ≤ dW(Q, S) + dW(S, R) + 1

if diam(S) ≤ min{diam(Q), diam(R)}.
Throughout this paper, we will use the terminology Whitney distance ball of radius

ρ for the set of all elements in MΩ such that Whitney distance to a fixed center cube
in MΩ is less than ρ. We write BW(Q, ρ) for the Whitney distance ball of radius ρ
with center Q.

The next lemma allows us to construct a coloring map that gives different colors
to Christ cubes within a given Whitney distance ball.

Lemma 2.3. Each Whitney distance ball of radius ρ contains a finite number of ele-
ments of the Christ–Whitney decomposition MΩ. The number depends on the doubling
constant of μ and ρ.

Proof. We fix a Christ cube Q ∈ MΩ and we require to count the number of R ∈ MΩ

such that dW(Q,R) < ρ. We have two cases either (1) diam(Q) < diam(R) or (2)
diam(R) ≤ diam(Q).
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Suppose diam(Q) < diam(R). Then, we have

dist(R, Y ) − dist(Q, Y ) < dist(Q, R) + diam(Q) < (ρ+ 1) diam(Q).

Since dist(Q, Y ) ≤ 4C1 A
δ diam(Q), we have an upper bound for diam(R) in terms of

diam(Q). That is, diam(R) <
(
ρ+ 1 + 4C1 A

δ

)
diam(Q).

Similarly, diam(R) has a lower bound in terms of the size of Q in the case of
diam(R) ≤ diam(Q):

diam(R) ≥
(

ρ+ 1 +
4C1A

δ

)−1

diam(Q).

Therefore, the number of R ∈ MΩ in BW(Q, ρ) is the sum of the cardinality of the
following sets:

(2.3)

{

R ∈ MΩ

∣
∣
∣
∣
∣

diam(Q) < diam(R) < (ρ+ 1 + 4C1 A
δ )diam(Q),

dist(Q,R) < ρdiam(Q)

}

and

(2.4)

{

R ∈ MΩ

∣
∣
∣
∣
∣

diam(R) ≤ diam(Q) <
(
ρ+ 1 + 4C1 A

δ

)
diam(R),

dist(Q,R) < ρdiam(R)

}

.

Now we suppose that p and q are centers of C1-quasiballs B̃Q and B̃R which have
approximately sizes of Q and R. If R is in either the set (2.3) or the set (2.4), then
we find that

(2.5) d(p, q) ≤ diam(Q) + dist(Q, R) + diam(R) <
(

2ρ+ 1 +
4C1A

δ

)

diam(Q).

Thus, the number of R ∈ MΩ in BW(Q, ρ) is at most twice of the number of centers
q satisfying (2.5). In other words, we can count the number of R’s in (2.3) and (2.4)
by counting the number of centers of C1-quasiballs B̃R. By the doubling condition,
the ball centered at p with radius (2ρ + 1 + 4C1 A

δ )diam(Q) can be covered by finite
number of C1-quasiballs centered at such q. Finally, the comparability of the size of
R and that of the ball centered at q concludes Lemma 2.3. �

We write the number of Christ cubes within Whitney distance ball of radius ρ as
m = m(ρ, D) in terms of ρ and the doubling constant D of μ.

Lemma 2.4. There exists a coloring map

K : MΩ −→ {1, 2, 3, . . . ,M} for some M > m(m− 1)

such that any two boxes within Whitney distance ball of radius ρ have different colors.
In other words, if R′, R′′ have dW(R′, R′′) < ρ, then K(R′) 
= K(R′′).

Proof. We apply Zorn’s lemma. Let us consider the partially ordered set (P,�)
where P is the collection of maps k defined from S ⊂ MΩ to {1, 2, . . . ,M} so that
k(R) 
= k(R′) for all R, R′ ∈ S whose Whitney distance is less than ρ. The inequality
(k,S) � (k′,S ′) means k′ is a extension of k (S ⊂ S ′ ∈ P and k′|S = k).

By Zorn’s lemma, there exists a maximal element k̂. If the domain of k̂ is MΩ,
then we can set K = k̂. Otherwise, take Q′ ∈ MΩ \ domain(k̂). We now want to give
a color to Q′. The color of Q′ should differ from any color already assigned to any R
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where dW(Q′, R) < ρ and also differ from any color already assigned to any S where
dW(S, R) < ρ and dW(Q′, R) < ρ. We observe that the number of such R is at most
m−1 and the number of S for given R is at most m. Thus, the total number of colors
seen is at most m(m− 1). Since M > m(m− 1), there is a color remaining which can
be assigned to Q′; this contradicts maximality of k̂. �

3. Bi-Lipschitz embeddable metric spaces

Now we are ready to state the main theorem. It asserts that in a uniformly per-
fect complete metric space supporting a doubling measure, the local information of
uniformly Christ-local bi-Lipschitz embeddability (Definition 2.6) can be turned into
global information of bi-Lipschitz embeddability.

Theorem 3.1. A uniformly perfect complete metric space (X, d) admits a bi-Lipschitz
embedding into some Euclidean space if and only if the following conditions hold:

(1) it supports a doubling measure μ,
(2) there exists a closed subset Y of X which admits a bi-Lipschitz embedding into

some R
M1 ,

(3) Ω = X\Y admits uniformly Christ-local bi-Lipschitz embeddings into some R
M2 .

The bi-Lipschitz constant and dimension of receiving Euclidean space depend on the
data of the metric space X, the doubling constant of μ, M1, M2, and the bi-Lipschitz
constants in conditions (2) and (3).

Outline of proof
Suppose that we have a L-bi-Lipschitz embedding f from (X, d) into R

n for some n.
Euclidean space is a doubling metric space and the doubling condition is bi-Lipschitz
invariant. Hence, (X, d) is a complete doubling metric space. Thus, there exists a
doubling measure μ ([18, 24]). The second condition is trivial, setting Y = X. The
third condition is trivial since Ω = ∅.

The content of the theorem is the other implication: a uniformly perfect complete
space satisfying (1), (2), and (3) embeds bi-Lipschitzly in some Euclidean space.
We will use Proposition 3.1 to complete the main theorem. Since the full measure
set MΩ ∪ Y is dense in X and the constructed map in Proposition 3.1 is uniformly
continuous, Theorem 3.1 follows immediately. Therefore, we will focus on proving
Proposition 3.1 in Subsections 3.1, 3.2, and 3.3.

Proposition 3.1. Let (X, d, μ) be a A-uniformly perfect, complete, doubling metric
space and let Y be a closed subset of X. Then, the full measure set MΩ ∪ Y admits a
bi-Lipschitz embedding into some Euclidean space if the followings are satisfied:

(1) Y admits a bi-Lipschitz embedding into some R
M1 ,

(2) Ω = X\Y admits uniformly Christ-local bi-Lipschitz embeddings into some R
M2 .

The bi-Lipschitz constant and dimension of receiving Euclidean space depend on the
data of metric space X, the doubling constant, M1, M2, and the bi-Lipschitz constants
in conditions (1) and (2).

We briefly outline the proof of Proposition 3.1. We first extend a (bi)-Lipschitz
map f on Y to a global Lipschitz map g on X, using McShane’s extension theorem
(see Theorem 2.2 and Corollary 2.1). We then suppose that f is a L1-bi-Lipschitz
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embedding from Y into R
M1 . From McShane’s theorem, we have a

√
M1L1-Lipschitz

extension map
g : X −→ R

M1 such that g|Y = f.

From now on we fix such L1 and M1 is chosen sufficiently large relative to other data
C1, A, and δ. The precise choice of M1 will be made in connection with the estimate
in (3.1).

In general, the map g is not globally co-Lipschitz on a full measure set MΩ of Ω.
Therefore, we next shall construct a co-Lipschitz map using a local and large scale
argument in the sense of Whitney distance on a Christ–Whitney decomposition (see
Definitions 2.7 and 3.1).

Definition 3.1. Let Q be any fixed cube in MΩ. We say f : MΩ → R
n is W-local

co-Lipschitz if it is co-Lipschitz for any two points p ∈ Q, q ∈ R where R is in
BW(Q, 16M1L1

2). We say f is W-large scale co-Lipschitz if it is co-Lipschitz for any
two points p ∈ Q and q ∈ R where R is not in BW(Q, 16M1L1

2) (see Figure 2).

In Subsection 3.1, we will construct a W-large scale co-Lipschitz map and global
Lipschitz map on MΩ. To this end, we will break the complement of an arbitrary
Whitney distance ball of radius 16M1L1

2 into two parts using relative distance in
terms of the distance between two cubes and their maximum diameter. We shall
see that McShane’s extension map g and distance map from Y , dist(·, Y ), which are
global Lipschitz maps, are W-large scale co-Lipschitz on these two parts respectively.

In Subection 3.2, we will construct a W-local co-Lipschitz map on MΩ via putting
together all local patches of bi-Lipschitz embeddings. We will assign different colors
to elements in a Christ–Whitney decomposition within arbitrary Whitney distance
ball of radius 16M1L1

2.
Finally, in Subection 3.3, we will construct a global bi-Lipschitz embedding on the

full measure set MΩ ∪ Y of X completing the proof of Lemma 3.1.

3.1. W-large-scale co-Lipschitz and global Lipschitz map on MΩ. We con-
struct a W-large scale co-Lipschitz and global Lipschitz map on a full measure set
MΩ ⊂ Ω. Roughly speaking, McShane’s extension map guarantees a W-large scale
co-Lipschitz bound for points p, q in MΩ whose distance is big enough with respect
to the maximum diameter of cubes containing them. Whenever p ∈ Q and q ∈ R
have the property that dist(Q, R) exceeds their maximum diameter by a fixed con-
stant, we consider points z, z′ in Y which realize distances to p, q respectively. Then,
|g(p)−g(z)| and |g(q)−g(z′)| are approximately greater than the maximum diameter
and we can conclude co-Lipschitz from the triangle inequality. Furthermore, when
the distance between two points is small enough with respect to the maximum diam-
eter, |d(p, Y ) − d(q, Y )| is approximately greater than the maximum diameter (see
Figure 3).

Lemma 3.1. Let Q be any fixed cube in MΩ. For any two points p ∈ Q and q ∈ R,
where dW(Q, R) ≥ 16M1L1

2, the McShane extension map g and dist(·, Y ) satisfy
W-large scale co-Lipschitz bounds. More precisely,

(1) If
dist(Q, R)

max(diam(Q), diam(R))
≥ 8M1L1

2

1 + 4 C1 A
δ

, then

|g(p) − g(q)| ≥ C(L1, M1) d(p, q).
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(2) If
dist(Q, R)

max(diam(Q), diam(R))
≤ 8M1L1

2

1 + 4 C1 A
δ

, then

|dist(p, Y ) − dist(q, Y )| ≥ C(L1, M1) d(p, q).

Proof. We may assume that diam(R) ≥ diam(Q) without loss of generality. We
choose z, z′ ∈ Y such that dist(Y, Q) = dist(z, Q) and dist(Y, R) = dist(z′, R). We
claim that z 
= z′. In fact, d(z, z′) ≥ 1

2 d(p, q). To conclude the claim, we suppose
that d(z, z′) < 1

2 d(p, q). Then,

d(p, q) ≤ d(p, z) + d(z, z′) + d(z′, q).

Thus, we have

d(p, q) ≤ 2 [d(p, z) + d(z′, q)]

≤ 2 [dist(z, Q) + diam(Q) + dist(z′, R) + diam(R)]

≤ 2 [dist(Y, Q) + diam(Q) + dist(Y, R) + diam(R)]

≤ 2
(

4C1A

δ
+ 1
)

[diam(Q) + diam(R)]

≤ 2
(

4C1A

δ
+ 1
)(

1 + 4C1A
δ

8M1L1
2 +

1
16M1L1

2

)

dist(Q, R)

≤ (1 + 4C1 A
δ )(3 + 4C1 A

δ )
8M1L1

2 d(p, q).

This is a contradiction provided M1 is selected sufficiently large relative to C1, A, and
δ. Now,

|g(p) − g(q)| ≥ |f(z) − f(z′)| − |f(z) − g(p)| − |f(z′) − g(q)|
≥ 1
L1

d(z, z′) − C d(z, p) − C d(z′, q).

where C =
√
M1L1 from McShane’s theorem. We have

d(p, z) ≤
(

4C1A

δ
+ 1
)

diam(Q) ≤ (4C1 A
δ + 1)

16M1L1
2 dist(Q, R)

≤ (4C1 A
δ + 1)

16M1L1
2 d(p, q).

Similarly, we have

|g(q) − g(z′)| ≤ L1 d(z′, q) ≤
( 4C1 A

δ + 1)2

8M1L1
2 d(p, q).
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In conclusion,

|g(p) − g(q)| ≥
[

1
2L1

− 2C
(4C1 A

δ + 1)2

8M1L1
2

]

d(p, q)

≥ 1
2L1

[

1 − ( 4C1 A
δ + 1)2

2
√
M1

]

d(p, q)

≥ 1
4L1

d(p, q)(3.1)

since we can choose M1 sufficiently large. This completes the proof of the first case.
In second case, we have

16M1L1
2diam(Q) ≤ dist(Q, R) ≤ 8M1L1

2

1 + 4 C1 A
δ

diam(R).

Therefore, 2(1 + 4 C1 A
δ ) diam(Q) ≤ diam(R). We now have

|dist(p Y ) − dist(q Y )| ≥ dist(q, Y ) − dist(p, Y )

≥ dist(R, Y ) − dist(Q, Y ) − diam(Q)

≥ diam(R) −
(

1 +
4C1A

δ

)

diam(Q)

≥ 1
2

diam(R)

while d(p, q) ≤ diam(Q) + dist(Q, R) + diam(R) � diam(R). Thus, we proved the
second case. �

3.2. W-local co-Lipschitz and global Lipschitz map on MΩ. We next construct
a W-local co-Lipschitz and global Lipschitz map on a full measure set MΩ ⊂ Ω into
some Euclidean space. In general, M1 + 1, the dimension of the target space of
g(·) × dist(·, Y ) is not large enough to construct a co-Lipschitz map. Hence, we
will use a coloring map that gives additional dimension of the Euclidean space (see
Lemma 2.4).

Suppose that hQ’s are L2-bi-Lipschitz embeddings of Q∗∗ for each Q ∈ MΩ into
R

M2 with uniformly determined L2 and M2. Now we consider the map

h̃Q = hQ · ϕQ : X −→ R
M2 ;

it is bi-Lipschitz on Q∗, Lipschitz on X, and supported on Q∗∗. We recall that {ϕQ}
is a family of Lipschitz cutoff functions as in Lemma 2.2. Then, we may assume that
for some c

h̃Q(Q∗) ⊂ B(0, c L2diam(Q)) \B
(

0,
1
cL2

diam(Q)
)

,

because we can postcompose with an isometric translation map of R
M2 if necessary.

Next, we will put together all patches to make a W-local co-Lipschitz map by assigning
different colors to each element in MΩ. We will denote {e1, e2, . . . , eM} by an
orthonormal basis for R

M .
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Lemma 3.2. The following map H from MΩ into (RM2)M given by

(3.2) H(p) =
∑

Q∈MΩ

h̃Q(p) ⊗ eK(Q),

is a global Lipschitz and W-local co-Lipschitz map. The (W-local) bi-Lipschitz con-
stant depends on L1, L2 and M1. That is,

|H(p) −H(q)| ≥ C(L1, L2, M1) d(p, q)

for any points p in any fixed Q and q in R where dW(Q,R) < 16M1L1
2.

Proof. Since h̃Q is bi-Lipschitz on Q∗ with the uniform bi-Lipschitz constant L2,
Lipschitz on X, and supported on Q∗∗, the map H is a finite sum of Lipschitz maps
from Proposition 2.3. Thus, it is Lipschitz on Ω. Now, we will show that H is a
W-local co-Lipschitz map according to positions of two points p and q on MΩ. There
are three cases.

(1) If p, q ∈ Q∗, then h̃Q is bi-Lipschitz on Q∗ and Q is the element in MΩ that
shares the same color at p and q. Therefore, we find that

|H(p) −H(q)| ≥ |h̃Q(p) − h̃Q(q)|
= |hQ(p) − hQ(q)|, since ϕQ|Q∗ = 1

≥ 1
L2

d(p, q)

since hQ is L2-bi-Lipschitz.
(2) If p ∈ Q, q /∈ Q∗∗, then h̃Q(q) = 0. Thus, we have

|H(p) −H(q)| ≥ |h̃Q(p) − h̃Q(q)| = |h̃Q(p)|
≥ 1
cL2

diam(Q).

On the other hand, we observe that

d(p, q) ≤ diam(Q) + dist(Q, R) + diam(R)

≤ diam(Q) + dist(Q, R) + dist(R, Y )

≤ 2diam(Q) + 2dist(Q, R) + dist(Q, Y ).

Since dist(Q, Y ) ≤ 4 C1 A
δ diam(Q) and

dist(Q, R) ≤ 16M1L1
2 min{diam(Q), diam(R)} ≤ 16M1L1

2diam(Q),

we conclude
d(p, q) � diam(Q)

and so |H(p) −H(q)| � d(p, q) as desired.
(3) If p ∈ Q, q ∈ Q∗∗, then there is R ∈ Q∗ so that p, q ∈ R∗ and h̃R is bi-Lipschitz

on R∗. Therefore, we conclude the following from the first case:

|H(p) −H(q)| ≥ |h̃R(p) − h̃R(q)| ≥ 1
L2

d(p, q).

�
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3.3. Global bi-Lipschitz embedding on a full measure set MΩ ∪ Y . Finally,
we are ready to construct a global bi-Lipschitz embedding on a full measure set of X.
We define the map F from MΩ ∪ Y into R

M1 × (RM2)M × R as follows:

(3.3) F (p) =

{
g(p) ×H(p) × dist(p, Y ), for p ∈ MΩ ;
f(p) × {0} × {0}, for p ∈ Y.

Then F is Lipschitz on a full measure set MΩ ⊂ Ω because g and dist(·, Y ) are
Lipschitz on X and H is a finite sum of Lipschitz maps on MΩ. Moreover, when we
define H(q) = 0 for q ∈ Y , then for every p ∈ MΩ and any q ∈ Y , we arrive at

|H(p) −H(q)| = |H(p)| =

∣
∣
∣
∣
∣
∣

∑

Q∈MΩ

h̃Q(p) ⊗ eK(Q)

∣
∣
∣
∣
∣
∣

≤ N L2 diam(Q)

≤ N L2 dist(Q,Y )

≤ N L2 d(p, q)

We have shown that F is co-Lipschitz on MΩ by Lemmas 3.1 and 3.2 and F |Y = f
is co-Lipschitz. Finally, we have a bi-Lipschitz embedding F from a full measure set
MΩ ∪ Y of X into R

M1 × (RM2)M × R. The bi-Lipschitz constant depends on the
data of metric space X, the doubling constant of μ, M1, M2, L1, and L2. Therefore,
Proposition 3.1 is proved.

4. Applications

We recall the Rademacher-type theorems of Pansu and Cheeger. Then, we discuss
their applications to the problem of bi-Lipschitz nonembedding. In contrast, as an
application of Theorem 3.1 we will prove that the Grushin plane equipped with
Carnot–Carathéodory distance embeds bi-Lipschitzly into Euclidean space. Thus,
we obtain the first example of a sub-Riemannian manifold admitting a bi-Lipschitz
embedding.

We recall definitions of the Heisenberg group and the Grushin plane.

Definition 4.1. The Heisenberg group H is R
3 with horizontal distribution spanned

by two vectors

X1 =
∂

∂x
− y

2
∂

∂z
and X2 =

∂

∂y
+
x

2
∂

∂z
.

It is the first non trivial example of step 2 Carnot group and it has dilations

(4.1) δλ(x, y, z) = (λx, λy, λ2z).

Definition 4.2. The Grushin plane G is R
2 with horizontal distribution spanned by

X1 =
∂

∂x
and X2 = x

∂

∂y
.

We next define dilations δλ on G by

(4.2) δλ(x, y) = (λx, λ2y)
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whenever p = (x, y) ∈ G and λ > 0. Then, X1 and X2 are homogeneous of degree
one with respect to the dilations. Hence, the Carnot–Carathéodory distance satisfies

(4.3) dcc (δλ(p, q)) = λ dcc(p, q).

for all p, q ∈ G. See (4.5) for definition of Carnot–Carathéodory distance. The points
on the line x = 0 are singular, while the other points in the plane are regular. We
write A for the set of singular points. For more information about the Grushin plane,
see [2].

Remark 4.1. The Grushin plane with Carnot–Carathéodory distance is a globally
doubling measure space and satisfies globally Poincaré inequality with respect to
Lebesgue measure.

The Grushin plane G with Lebesgue measure is a locally doubling metric measure
space satisfying locally p-Poincaré inequality for any p ≥ 1 ([11], [14]). We fix a
compact K which contains a neighborhood of the origin and r0 > 0. For any p ∈ G

and any r > 0, we choose λ > 0 so that δλ(B(p, 2r)) = B(δλ(p), 2λ r) is contained in
K and λ r ≤ r0. Then the doubling condition holds for δλ(B(p, r)) = B(δλ(p), λr)
and δλ(B(p, 2r)) = B(δλ(p), 2λr). Since μ(δλ(E)) = λ3μ(E) for any set E ⊂ G

we conclude the doubling condition for B(p, r). A similar argument applies to the
Poincaré inequality.

4.1. Bi-Lipschitz nonembedding theorems. In Euclidean space, Rademacher’s
theorem states that a Lipschitz function is differentiable almost everywhere and the
derivative is linear. We shall state theorems of Pansu and Cheeger which are ana-
logues of Rademacher’s theorem in some sense. These theorems can be applied to get
nonembeddability of some metric spaces into Euclidean space.

Theorem 4.1 (Pansu [21]). Let (M, •) and (N, �) be Carnot groups. Every Lips-
chitz mapping f between open sets in M and N is differentiable almost everywhere.
Moreover, the differential

dfy(x) = lim
t→0

δt−1 [f(y)−1
� f(y • δt(x))]

is a Lie group homomorphism almost everywhere.

Here (δt) denotes the family of dilations in M or N . See (4.1) for the case of the
Heisenberg group.

Semmes [23] observed that Theorem 4.1 implies that nonabelian Carnot groups
M cannot be embedded bi-Lipschitzly in Euclidean space. If M had a bi-Lipschitz
embedding f into some Euclidean space R

n, then f must be differentiable in the sense
of Pansu and its differential should be an isomorphism. This gives a contradiction
because it has nontrivial kernel. Hence M cannot be bi-Lipschitz embeddable. In par-
ticular, the Heisenberg group does not admit a bi-Lipschitz embedding into Euclidean
space.

Rademacher’s theorem states that infinitesimal behavior of any Lipschitz functions
on R

n is approximated at almost every point by some linear function; that is, a linear
combination of the coordinate functions. Cheeger proved a remarkable extension of
Rademacher’s theorem in doubling metric measure spaces supporting a p-Poincaré
inequality. He constructed coordinate charts that span the differentials of Lipschitz
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functions. Moreover, his work gives a way to get nonembeddability results by using
a purely geometric and analytic method.

Theorem 4.2 (Cheeger [4]). If (X, d, μ) is a doubling metric measure space support-
ing a p-Poincaré inequality for some p ≥ 1, then (X, d, μ) has a strong measurable
differentiable structure, i.e., a countable collection of coordinate patches {(Xα, πα)}
that satisfy the following conditions:

(1) Each Xα is a measurable subset of X with positive measure and the union of
the Xα’s has full measure in X.

(2) Each πα is a N(α)-tuple of Lipschitz functions, for some N(α) ∈ N, where
N(α) is bounded from above independently of α.

(3) Given a Lipschitz function f : X −→ R, there exists an L∞ function dfα :
Xα −→ R

N(α) so that

lim sup
y→x

|f(y) − f(x) − dfα(x)· (πα(y) − πα(x))|
d(x, y)

= 0 for μ− a.e x ∈ Xα.

Cheeger also provided a uniform statement that covers many of the known nonem-
bedding results.

Theorem 4.3 (Cheeger). If a doubling p-Poincaré space X admits a bi-Lipschitz
embedding into some finite-dimensional Euclidean space, then at almost every point
x ∈ Xα, the tangent cone of X at x is bi-Lipschitz equivalent to R

N(α).

We can deduce from Cheeger’s theorem the known nonembedding results both for
the Carnot groups and for Laakso spaces. Cheeger and Kleiner generalized the almost
everywhere differentiability for Lipschitz maps on PI space to any Banach space V
with Radon–Nikodým property ([5, 6]).

We now check nonembeddability of the Heisenberg group H by applying Cheeger’s
nonembedding theorem. The Heisenberg group has a strong measurable differen-
tiable structure with a single coordinate patch (H, π1, π2), where π1(x, y, t) = x and
π2(x, y, t) = y. If we assume that the Heisenberg group admits a bi-Lipschitz em-
bedding into some Euclidean space, then every tangent cone at almost every point in
H must be bi-Lipschitz equivalent to R

2. Since the Hausdorff dimension of H is not
equal to 2, we conclude bi-Lipschitz nonembeddability.

In contrast to the Heisenberg group, Cheeger’s nonembedding theorem does not
answer whether or not the Grushin plane locally embeds into some Euclidean space.
The Grushin plane G with Lebesgue measure is a doubling metric measure space sup-
porting p-Poincaré inequality for any p ≥ 1 (see Remark 4.1). Let K be any compact
subset of G and A be set of singular points, y-axis. It has a Cheeger’s coordinate
patch (K \ A, π1, π2), where π1(x, y) = x and π2(x, y) = y. Since every tangent cone
to K \ A is bi-Lipschitz equivalent to R

2, we cannot conclude non-embeddability of
the Grushin plane, unlike the case of the Heisenberg group. Indeed, we prove that
the Grushin plane admits a bi-Lipschitz embedding into some Euclidean space.

4.2. The Grushin plane. The metric on G\A is the Riemannian metric ds2 making
X1 and X2 into an orthonormal basis for the tangent space,

(4.4) ds2 = dx2 +
dy2

x2
.
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The metric can be extended across A as the Carnot–Carathéodory distance (or
cc-distance) by means of the length element ds2, since the horizontal distribution
satisfies the Hörmander condition.

For any horizontal curve γ : [0, 1] → G, we write γ(t) = (x(t), y(t)) for a parame-
terized horizontal curve. Then, we have

(4.5) length(γ) =
∫ 1

0

√

x′(t)2 +
y′(t)2

x(t)2
dt.

The following proposition gives distance estimates for the Carnot–Carathéodory dis-
tance on G. Nagel–Stein–Wainger [19] provide distance estimates for cc-metrics
induced by more general families of vector fields satisfying the Hörmander condition.

Proposition 4.1. The Carnot–Carathéodory distance on A is comparable to
√
dE.

Now fix points p = (x1, y1) and q = (x2, y2) in G\A. We have the following distance
estimates:

1
2

⎛

⎝|x1 − x2| + |y1 − y2|√

min(|x1|, |x2|)2 + 4|y1 − y2|

⎞

⎠(4.6)

≤ dcc(p, q) ≤ 4(|x1 − x2| +
√
|y1 − y2|).

Proof. The first estimation of the cc-distance on A is deduced from equation (4.2).
The upper bound in equation (4.6) comes from the triangle inequality. We will use
equation (4.5) to get the lower bound in equation (4.6). Let γ(t) = (x(t), y(t)) be a
parameterized horizontal curve joining p to q where t ∈ [0, 1]. Then,

(∗) length(γ) ≥ |x1 − x2|.
If there exists K such that |x(t)| ≤ K for all t ∈ [0, 1], then length(γ) ≥ K−1|y1 −y2|.
Otherwise, there exists t0 ∈ [0, 1] such that |x(t0)| ≥ K. Then,

length(γ) ≥ length(γ̃) ≥ max{|x(t0) − x1|, |x(t0) − x2|} ≥ K − min{|x1|, |x2|}
where γ̃ is a subcurves of γ joining p to (x(t0), y(t0)) or q to (x(t0), y(t0)). Then, we
have the following:

(∗∗) length(γ) ≥ sup
K>max{|x1|,|x2|}

min{K − min{|x1|, |x2|},K−1|y1 − y2|}.

When we choose K =
√

min(|x1|, |x2|)2 + 4|y1 − y2| and average (∗) and (∗∗), then
we get distance estimates (4.6). �

We next consider the lattice of points in R
2 whose coordinates are integers. Then,

this lattice determines a mesh M0 × M0. For each j ∈ Z, consider the submesh
Mj = 2−jM0 × 2−2jM0 which is set of cubes in R

2 of sidelengths 2−j and 2−2j

respectively. From the above distance estimates, G\A has a Whitney decomposition.
We recall this in the following Proposition 4.2.

Proposition 4.2. Let A be y-axis. Then its complement Ω = G \A is the union of a
sequence of cubes Q, whose interiors are mutually disjoint and whose diameters are
approximately proportional to their distances from A. More precisely,

(1) Ω = ∪Q∈WΩQ.
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(2) Any two cubes are mutually disjoint.
(3) distcc(Q,A) ≤ diamcc(Q) ≤ 8 distcc(Q,A).

The Grushin plane is complete, doubling, and uniformly perfect metric space. Since
cc-distance on A is comparable to

√
dE , we apply Assouad’s theorem. Then we have

a L-bi-Lipschitz embedding f from A into R
3 for some L. If we verify the condition of

uniformly Christ-local bi-Lipschitz embeddings, then we can conclude the following
theorem.

Theorem 4.4. The Grushin plane equipped with Carnot–Carathéodory distance
admits a bi-Lipschitz embedding into some Euclidean space.

It is enough to verify the existence of uniformly Christ-local bi-Lipschitz embed-
dings. In this case, Q∗ is the set of all Whitney cubes which intersect Q and Q∗∗ is
the set of all Whitney cubes which intersect Q∗ (see Definition 2.5).

Lemma 4.1. The complement of A admits uniformly Christ-local bi-Lipschitz
embeddings.

Proof. We observe that Q∗∗ is a closed two-dimensional Riemannian manifold for
each Q. For any two elements Q and Q′ in WΩ, we have Q′ = Φ(Q) where Φ
is composition of translation map ς with respect to {0} × R and expansion map
ψ(x, y) = (2(j′−j)x, 22(j′−j)y). Then, we have diam(Q′) = 2(j′−j)diam(Q) from
Proposition 4.2. Therefore, we can cover all Q∗∗ by balls B1, B2, . . . , BN of radius
diam(Q) > 0 where N is independent of Q. For each i, there exist L-bi-Lipschitz
diffeomorphisms for some L

ϕi : 5Bi → ϕi(5Bi) ⊂ R
2.

Without loss of generality, we may assume that |ϕi(x)| ≥ diam(Q) for all i and x ∈
5Bi. let ui ∈ C∞

0 (2Bi) be such that 0 ≤ ui ≤ 1 and ui|Bi = 1, and let vi ∈ C∞
0 (5Bi)

be such that 0 ≤ vi ≤ 1 and vi|4Bi = 1. Then, we define ϕ : X → R
2N × R

2N

ϕ(x) := (ϕ1(x)u1(x), . . . , ϕN (x)uN (x), ϕ1(x)v1(x), . . . , ϕN (x)vN (x))

Obviously ϕ is smooth, and hence it is Lipschitz with Lipschitz constant 2LN . We will
show that ϕ is co-Lipschitz. To this end, let us assume first that d(x, y) > 3 diam(Q).
Then, there exists i such that ui(x) = 1 and vi(x) = 0. Thus,

|ϕ(x) − ϕ(y)| ≥ |ϕi(x)ui(x) − ϕi(y)ui(y)|
= |ϕi(x)|
≥ diam(Q) ≥ 1

C(C1, A, δ)
d(x, y).

The last inequality arises from comparability of diam(Q) and diam(Q∗∗) (see Propo-
sition 2.2). On the other hand, if d(x, y) ≤ 3diam(Q), then there exists i such that
vi(x) = 1 = vi(y). Thus,

|ϕ(x) − ϕ(y)| ≥ |ϕi(x) − ϕi(y)| ≥ 1
L
d(x, y).

Therefore, we have uniformly local bi-Lipschitz embeddings on each Q∗∗ into R
4N .

The bi-Lipschitz constant and dimension of the target space are independent of Q. �
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Theorem 4.4 can be generalized to cover other singular sub-Riemannian mani-
folds similar to the Grushin plane. We denote points in R

n × R
l by p = (x, y),

where x = (x1, x2, . . . , xn) ∈ R
n and y = (y1, y2, . . . , yl) ∈ R

l. We let α =
(α1, α2, . . . , αn) be an n-tuple of non-negative integers with length |α| =

∑n
i=1 αi.

If x = (x1, x2, . . . , xn) ∈ R
n, we put xα := xα1

1 xα2
2 · · ·xαn

n .

Definition 4.3. The space of Grushin type is R
n × R

l for n, l ∈ N with horizontal
distribution spanned by Xi and Yj for i = 1, 2, , . . . , n and j = 1, 2, , . . . , l

Xi =
∂

∂xi
and Yj = xαj ∂

∂yj

where for each j, αj is an n-tuple of non-negative integers αj
i and |αj | = k.

Theorem 4.5. The space of Grushin type equipped with Carnot–Carathéodory dis-
tance admits a bi-Lipschitz embedding into some Euclidean space.

Proof. We can follow similar steps as the proof of Theorem 4.4. We omit the proof. �

5. Questions and remarks

So far we have given a characterization of Euclidean bi-Lipschitz embeddability of
uniformly perfect metric spaces supporting a doubling measure. The hypothesis in
Theorem 3.1 is based on a Christ–Whitney decomposition deduced from uniform per-
fectness and existence of a doubling measure. We emphasize that uniform perfectness
is only used for existence of a Christ–Whitney decomposition.

Question 5.1. Can the condition of uniform perfectness be weakened?

From Theorem 3.1, the dimension M1 +MM2 + 1 of the Euclidean space depends
on the bi-Lipschitz constant L1 and the doubling constant of μ. However, the number
of colors M is not optimal. Thus, the following question naturally arises.

Question 5.2. What is the minimal dimension of Euclidean space into which a metric
space satisfying the conditions in Theorem 3.1 bi-Lipschitzly embeds?

As an application of Theorem 3.1, we have considered the Grushin space. We
now can consider the space of Grushin type with extended horizontal distribution on
R

n × R
l.

Definition 5.1. The extended space of Grushin type is R
n × R

l for n, l ∈ N with
horizontal distribution spanned by Xi and Yj for i = 1, 2, . . . , n and j = 1, 2, . . . , l

Xi =
∂

∂xi
and Yj = xαj ∂

∂yj
.

Remark 5.1. We emphasize that the lengths |αj
i | can be distinct in Definition 4.3.

It seems that we can follow similar steps to prove embeddability. However, some
of the technical details must be checked.

Conjecture 5.1. The extended space of Grushin type with Carnot–Carathéodory dis-
tance admits a bi-Lipschitz embedding into Euclidean space.
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In the case of spaces of Grushin type, horizontal distributions are good enough to
have uniformly Christ-local embeddings. Therefore, the following problem naturally
comes up.

Problem 5.3. Find sufficient conditions on a higher dimensional horizontal distribu-
tion in a given sub-Riemannian manifold so as to guarantee the existence of uniformly
Christ-local bi-Lipschitz embeddability.

Even more generally, we meet the following problems:

Problem 5.4. Characterize Christ-local bi-Lipschitz embeddability.

If Problem 5.4 were solved, then we could characterize bi-Lipschitz embeddable
metric spaces with geometric and analytic criteria. Therefore, we could determine
which metric spaces admit a bi-Lipschitz embedding and we can classify up to
bi-Lipschitz equivalence those metric spaces which are subsets of Euclidean space.

Problem 5.5. Find other examples of sub-Riemannian manifolds that satisfy condi-
tions in Theorem 3.1 and hence, embed bi-Lipschitzly into Euclidean space.
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x+101.



1202 JEEHYEON SEO

[12] J. Heinonen, Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York,

(2001).
[13] J. Heinonen, Lectures on Lipschitz analysis, volume 100 of Report. University of Jyväskylä,
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