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SOBOLEV AND HARDY–LITTLEWOOD–SOBOLEV
INEQUALITIES: DUALITY AND FAST DIFFUSION

Jean Dolbeault

Abstract. In the euclidean space of dimension d ≥ 3, Sobolev and Hardy–Littlewood–

Sobolev inequalities can be related by duality. We investigate how to relate these in-
equalities using the flow of a fast diffusion equation. Up to a term which is needed
for homogeneity reasons, the difference of the two terms in Sobolev’s inequality can be
seen as the derivative with respect to time along the flow of an entropy functional based

on the Hardy–Littlewood–Sobolev inequality. A similar result also holds in dimension
d = 2 with Sobolev and Hardy–Littlewood–Sobolev inequalities replaced, respectively,
by a variant of Onofri’s inequality and by the logarithmic Hardy–Littlewood–Sobolev

inequality, while the flow is determined by a super-fast diffusion equation.
By considering second derivatives in time of the entropy functional along the flow of

the fast diffusion equation, we obtain an improvement of Sobolev’s inequality in terms

of the entropy. However, for integrability reasons, the method is restricted to d ≥ 5.

1. Introduction

In dimension d ≥ 3, it is well known since Lieb’s paper [24] that Hardy–Littlewood–
Sobolev inequalities are dual of Sobolev’s inequalities. We will investigate this duality
using the flow of a fast diffusion equation which has been considered in [16]. In a
recent paper, [9], Carlen et al noticed that Hardy–Littlewood–Sobolev inequalities in
dimension d ≥ 3 and some special Gagliardo–Nirenberg inequalities can be related
through another fast diffusion equation. Although Carlen et al [9] have motivated
the present paper (see Remark 2.1), the two approaches are so far unrelated.

Consider Sobolev’s inequality in R
d, d ≥ 3,

(1.1) ‖u‖2
L2∗ (Rd) ≤ Sd ‖∇u‖2

L2(Rd), ∀ u ∈ D1,2(Rd),

where Sd is the Aubin–Talenti constant (see [1, 30] and also [5, 28] for earlier re-
lated results) and 2∗ = 2 d

d−2 . The space D1,2(Rd) is defined as the completion of
smooth solutions with compact support w.r.t. the norm w �→ ‖w‖ := (‖∇w‖2

L2(Rd) +
‖w‖2

L2∗ (Rd)
)1/2. The Hardy–Littlewood–Sobolev inequality

(1.2) Sd ‖v‖2

L
2 d

d+2 (Rd)
≥

∫
Rd

v (−Δ)−1v dx ∀ v ∈ L
2 d

d+2 (Rd)

involves the same optimal constant, Sd.
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To a convex functional F , we may associate the functional F ∗ defined by Legendre’s
duality as F ∗[v] := sup

(∫
Rd u v dx − F [u]

)
. For instance, to F1[u] = 1

2 ‖u‖2
Lp(Rd)

defined on Lp(Rd), we henceforth associate F ∗
1 [v] = 1

2 ‖v‖2
Lq(Rd) on Lq(Rd) where p

and q are Hölder conjugate exponents: 1/p + 1/q = 1. The supremum can be taken
for instance on all functions in Lp(Rd), or, by density, on the smaller space of the
functions u ∈ Lp(Rd) such that ∇u ∈ L2(Rd). Similarly, to F2[u] = 1

2 Sd ‖∇u‖2
L2(Rd),

we associate F ∗
2 [v] = 1

2 S−1
d

∫
Rd v (−Δ)−1v dx where (−Δ)−1v = Gd ∗ v with Gd(x) =

1
d−2 |Sd−1|−1 |x|2−d. As a straightforward consequence of Legendre’s duality, if we
have a functional inequality of the form F1[u] ≤ F2[u], then we have the dual inequality
F ∗

1 [v] ≥ F ∗
2 [v]. In this sense, (1.1) and (1.2) are dual of each other, as it has been

noticed in [24].
In the present paper, we investigate this duality using a nonlinear diffusion equa-

tion. If v is a positive solution of the following fast diffusion equation:

(1.3)
∂v

∂t
= Δvm t > 0 , x ∈ R

d,

and if we define H(t) := Hd[v(t, ·)], with

Hd[v] :=
∫

Rd

v (−Δ)−1v dx − Sd ‖v‖2

L
2 d

d+2 (Rd)
,

then we observe that

1
2

H′ = −
∫

Rd

vm+1 dx + Sd

(∫
Rd

v
2 d

d+2 dx

) 2
d

∫
Rd

∇vm · ∇v
d−2
d+2 dx,

where v = v(t, ·) is a solution of (1.3). With the choice m = d−2
d+2 , we find that

m + 1 = 2 d
d+2 , so that the above identity can be rewritten with u = vm as follows.

Proposition 1.1. Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (1.3) with

nonnegative initial datum in L2d/(d+2)(Rd), then

1
2

d

dt

[∫
Rd

v (−Δ)−1v dx − Sd ‖v‖2

L
2 d

d+2 (Rd)

]

=
(∫

Rd

vm+1 dx

) 2
d [

Sd ‖∇u‖2
L2(Rd) − ‖u‖2

L2∗ (Rd)

]
≥ 0.

As a consequence, one can prove that (1.2), which amounts to H ≤ 0, is a conse-
quence of (1.1), that is H′ ≥ 0, by showing that lim supt>0 H(t) = 0. In this way, we
also recover the property that u = vm is an optimal function for (1.1) if v is optimal
for (1.2).

As we shall see next, t �→ H(t) is concave function. Using this property, we
can actually obtain optimal integral remainder terms which improve on the usual
Sobolev inequality (1.1), but only when d ≥ 5, for integrability reasons: see Theo-
rem 2.1. A slightly weaker result is the following improved Sobolev inequality, which
relates (1.1) and (1.2).
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Theorem 1.1. Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive constant C

such that, for any w ∈ D1,2(Rd), we have

Sd ‖wq‖2

L
2 d

d+2 (Rd)
−

∫
Rd

wq (−Δ)−1wq dx

≤ C ‖w‖
8

d−2

L2∗ (Rd)

[
‖∇w‖2

L2(Rd) − Sd ‖w‖2
L2∗ (Rd)

]
.

Moreover, we know that C ≤ (
1 + 2

d

) (
1 − e−d/2

)
Sd.

The issue of adding correction terms to Sobolev’s inequality and getting improved
versions of it has been studied in [4], in the bounded domain case. Also see [7] for an
earlier related paper. However, in [4], Brezis and Lieb were also asking the question of
measuring the distance to the manifold of optimal functions in the case of the euclidean
space. A few years later, Bianchi and Egnell gave an answer in [6] using compactness
methods, with no explicit value of the constant. Since then, considerable efforts have
been devoted to obtain quantitative improvements of Sobolev’s inequality. On the
whole euclidean space, nice results based on rearrangements have been obtained in
[13] and we refer to [12] for an interesting review of the various results that have been
established over the years. It has to be noted that they are all of different nature
than the inequality in Theorem 1.1, which is the main result of this paper.

Our approach is based on the evolution equation (1.3). Many papers have been
devoted to the study of the asymptotic behaviour of the solutions, in bounded
domains: [3, 19, 29], or in the whole space: [20, 22, 27]. In particular, the Cauchy–
Schwarz inequality has been repeatedly used, for instance in [3, 29], and turns out
to be a key tool in the proof of Theorem 1.1, as well as the solution with separation
of variables, which is related to the Aubin–Talenti optimal function for (1.1). See
Section 2 for details. The novelty in our approach is to consider the problem from the
point of view of the functional associated to (1.2) using (1.3) with m = (d−2)/(d+2).

2. Improved Sobolev inequalities

This section is devoted to the proof of Theorem 1.1. We shall assume that

m =
d − 2
d + 2

and d ≥ 3.

From the computations of Section 1, it is clear that the maximum of Hd[v] is achieved if
and only if u = vm is an extremal for Sobolev’s inequality. This is of course consistent
with the fact that extremal points for Hardy–Littlewood–Sobolev inequalities and
Sobolev inequalities are related through Legendre’s duality precisely by the relation
u = vm.

It is also straightforward to check that (1.3) admits special solutions with separation
of variables such that, for any T > 0,

vT (t, x) = c (T − t)α (F (x))
d+2
d−2 , ∀ (t, x) ∈ (0, T ) × R

d,

where α = (d + 2)/4, c1−m = 4 m d, m = d−2
d+2 , p = d/(d − 2) and F is the Aubin-

Talenti solution of −ΔF = d (d − 2) F (d+2)/(d−2). Such a solution vanishes at t = T
and this behaviour is generic in a large class of solutions. Define

‖v‖∗ := sup
x∈Rd

(1 + |x|2)d+2 |v(x)|.
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Lemma 2.1. [16, 31]. For any solution v of (1.3) with nonnegative, not identically
zero initial datum v0 ∈ L2d/(d+2)(Rd), there exists T > 0, λ > 0 and x0 ∈ R

d such
that v(t, ·) �≡ 0 for any t ∈ (0, T ) and

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·) − 1‖∗ = 0

with v(t, x) = λ(d+2)/2 vT (t, (x − x0)/λ).

We shall refer to such a solution as a solution vanishing at time T . The above
result has been established first in [16] when ‖v0‖∗ is finite and extended to solutions
corresponding to any initial data v0 ∈ L2d/(d+2)

+ (Rd) in [31, Theorem 7.10]. In this
framework, it is easy to establish further a priori estimates as follows.

Lemma 2.2. Let d ≥ 3 and m = (d−2)/(d+2). If v is a solution of (1.3) vanishing
at time T > 0 with initial datum v0 ∈ L2d/(d+2)

+ (Rd), then for any t ∈ (0, T ) we have
the estimates (

4 (T−t)
(d+2) Sd

) d
2 ≤

∫
Rd

vm+1(t, x) dx ≤
∫

Rd

vm+1
0 dx,

‖∇vm(t, ·)‖2
L2(Rd) ≥ S−1

d

(
4 (T−t)

d+2

) d
2−1

,

and the vanishing time T is bounded by

T ≤ 1
4

(d + 2) Sd

(∫
Rd

vm+1
0 dx

) 2
d

.

If additionally d ≥ 5, then T ≥ d+2
2 d

∫
Rd vm+1

0 dx ‖∇vm
0 ‖−2

L2(Rd)
and∫

Rd

vm+1(t, x) dx ≥
∫

Rd

vm+1
0 dx − 2 d

d+2 t ‖∇vm
0 ‖2

L2(Rd),

‖∇vm(t, ·)‖2
L2(Rd) ≤ ‖∇vm

0 ‖2
L2(Rd).

Proof. By definition of the vanishing time, we find that J(t) :=
∫

Rd v(t, x)m+1 dx
satisfies J(t) > 0 for any t ∈ (0, T ), J(T ) = 0 and, using the equation and integrating
by parts,

J′ = −(m + 1) ‖∇vm‖2
L2(Rd) ≤ −m + 1

Sd
J1− 2

d .

If d ≥ 5, then we also have

J′′ = 2 m (m + 1)
∫

Rd

vm−1 (Δvm)2 dx ≥ 0.

It is easy to check that such an estimate makes sense if v = vT . For a general solution,
this is also true as can be seen by rewriting the problem on S

d as in [16]. It is then
clear that integrability conditions for v are exactly the same as for vT .

By integrating the first inequality from t to T , we find that

−J(t)
2
d = J(T )

2
d − J(t)

2
d ≤ − 4 (T−t)

(d+2) Sd
∀ t ∈ [0, T ),

which gives an upper bound for T by choosing t = 0. The second inequality shows
the decay of t �→ ‖∇vm(t, ·)‖2

L2(Rd) and gives the estimate 0 = J(T ) ≥ J(0) + T J′(0),
thus providing a lower bound for T . �
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For later purpose, let us notice that

(2.1)
J′

J
≤ −m + 1

Sd
J−

2
d ≤ −κ with κ :=

2 d

d + 2
1
Sd

(∫
Rd

vm+1
0 dx

)− 2
d

≤ d

2 T
.

Next, we are going to compute the second derivative of H(t) = Hd[v(t, ·)] w.r.t. t
along the flow of (1.3). For this purpose, we assume that d ≥ 5 (see Remark 2.2
below) and notice that by the Cauchy–Schwarz inequality, we have

‖∇vm‖4
L2(Rd) =

(∫
Rd

v(m−1)/2 Δvm · v(m+1)/2 dx

)2

≤
∫

Rd

vm−1 (Δvm)2 dx

∫
Rd

vm+1 dx.

As a consequence, we get that Q(t) := ‖∇vm(t, ·)‖2
L2(Rd)

(∫
Rd vm+1(t, x) dx

)−(d−2)/d

is monotone decreasing. More precisely, with m = (d − 2)/(d + 2),

(2.2) Λ(t) :=

∫
Rd |∇(v(t, x))m|2 dx∫
Rd (v(t, x))m+1 dx

and G(t1, t2) := exp
[
(m + 1)

∫ t2

t1

Λ(s) ds

]
,

we get that Q′ = −2 m J
2
d−1 K with K :=

∫
Rd vm−1 |Δvm + Λ v|2 dx and, from

H′ = 2 J (Sd Q − 1),

we deduce that

(2.3) H′′ =
J′

J
H′ + 2 J Sd Q′ = −(m + 1) Λ H′ − 4 m Sd J

2
d K.

As a consequence, the standard Sobolev inequality can be improved by an integral
remainder term.

Theorem 2.1. Assume that d ≥ 5 and let q = d+2
d−2 . For any w ∈ D1,2(Rd) such that

‖wq‖∗ < ∞, we have

Sd ‖wq‖2

L
2 d

d+2 (Rd)
−

∫
Rd

wq (−Δ)−1wq dx +
4
q

Sd

∫ T

0

dt

∫ t

0

J
2
d (s) K(s) G(t, s) ds

= 2 ‖w‖
4

d−2

L2∗ (Rd)

[
‖∇w‖2

L2(Rd) − Sd ‖w‖2
L2∗ (Rd)

] ∫ T

0

G(t, 0) dt.

Here v is the solution of (1.3) with v0 = wq, m = (d−2)/(d+2) = 1/q, T is the van-
ishing time, Λ and G are defined by (2.2), and we recall that J(t) =

∫
Rd vm+1(t, x) dx,

K(t) =
∫

Rd vm−1(t, x) |Δvm(t, x) + Λ(t) v(t, x)|2 dx.

Proof. The identity follows from (2.3) after an integration from 0 to t and another
one from 0 to T . Details are left to the reader. �

Recall that the standard Hardy–Littlewood–Sobolev inequality (1.2) amounts to

Sd ‖wq‖2

L
2 d

d+2 (Rd)
−

∫
Rd

wq (−Δ)−1wq dx = −Hd[wq] ≥ 0.

The main drawback of Theorem 2.1 is that several quantities can be computed only
through the evolution equation and are therefore nonexplicit. With simple estimates,
we can however get rid of such quantities. This is the purpose of Theorem 1.1.
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Proof of Theorem 1.1. Notice that ‖wq‖2
L2d/(d+2)(Rd)

= ‖w‖1+2/d

L2∗ (Rd)
, so that the in-

equality holds in the space D1,2(Rd). Theorem 1.1 can be established first in the
setting of smooth functions such that ‖wq‖∗ < ∞ and then arguing by density.

From (2.1) and (2.3), we know that

H′′ ≤ −κ H′ with κ =
2 d

d + 2
1
Sd

(∫
Rd

vm+1
0 dx

)−2/d

.

By writing that −H(0) = H(T ) − H(0) ≤ H′(0) (1 − e−κ T )/κ and using the estimate
κ T ≤ d/2, we obtain the result. �

Remark 2.1. In [9], Carlen et al noticed that Hardy–Littlewood–Sobolev inequal-
ities and Gagliardo–Nirenberg inequalities can be related through the fast diffusion
equation (1.3) with exponent m = d/(d + 2), when d ≥ 3. The key computation goes
as follows:

1
2

d

dt
Hd[v(t, ·)] =

1
2

d

dt

[∫
Rd

v (−Δ)−1v dx − Sd ‖v‖2

L
2 d

d+2 (Rd)

]
(2.4)

= d (d−2)
(d−1)2 Sd ‖u‖4/(d−1)

Lq+1(Rd)
‖∇u‖2

L2(Rd) − ‖u‖2q
L2q(Rd)

with u = v(d−1)/(d+2) and q = (d + 1)/(d − 1), thus proving that d
dtHd[v(t, ·)] has

a sign because of Gagliardo–Nirenberg inequalities: see Remark 3.1 below. Accord-
ing, e.g., to [15], the asymptotic behaviour of (1.3) with m = d

d+2 is governed by the
Barenblatt self-similar solutions. By integrating along the flow of (1.3), this provides
an integral remainder term, which improves on Hardy–Littlewood–Sobolev inequali-
ties (1.2).

Remark 2.2. The reader may wonder why the condition d ≥ 5 has been introduced in
the setting of Theorems 1.1 and 2.1, while it was not present in Proposition 1.1. This
has been done for integrability reasons. As can easily be checked,

∫
Rd vm−1 (Δvm)2 dx

does not make sense if v is a solution with separation of variables and if d = 3 or 4.
Since the solution v of (1.3) uniformly converges to a solution with separation of
variables, v with the notations of Lemma 2.1, as well as the derivatives of v converge
to the derivatives of v (as follows by parabolic regularity theory), the computation
of H′′ cannot be carried out unless d ≥ 5.

This does not mean that one cannot extend the method to the cases d = 3 or d = 4,
by considering functionals relative to v, but such a question has not been studied yet.
We shall see examples of relative functionals (in dimension d = 2) in the next section.

3. The two-dimensional case

3.1. Logarithmic Hardy–Littlewood–Sobolev and Onofri inequalities. In di-
mension d = 2, Onofri’s inequality [26]

(3.1) log
(∫

R2
e g dμ

)
−

∫
R2

g dμ ≤ 1
16 π

∫
R2

|∇g|2 dx, ∀ g ∈ D(Rd)
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plays the role of Sobolev’s inequality in higher dimensions. Here the probability
measure dμ is defined by

dμ(x) := μ(x) dx with μ(x) :=
1

π (1 + |x|2)2
, ∀ x ∈ R

2.

Although there are many ways to derive such an inequality, it is interesting to see it
as a limit case of some Gagliardo–Nirenberg inequalities which are deeply connected
with the fast diffusion equation. Details will be provided in Section 3.2.

The logarithmic Hardy–Littlewood–Sobolev inequality can be written as follows:
for any f ∈ L1

+(R2) with M =
∫

R2 f dx, such that f log f , (1 + log |x|2) f ∈ L1(R2),
we have

(3.2)
∫

R2
f log

(
f

M

)
dx+

2
M

∫
R2×R2

f(x) f(y) log |x−y| dx dy+M (1 + log π) ≥ 0.

This inequality has recently attracted lots of attention in connection with the Keller–
Segel model or in geometry: see for instance [8, 18, 25]. It is also known to be a limit
case of the Hardy–Littlewood–Sobolev inequalities in dimension d = 2, as was noted
for instance in [11], and can also be characterized as the dual inequality of Onofri’s
inequality in dimension d = 2. Details will be given in Section 3.3.

Our purpose is to relate (3.1) to (3.2) by the mean of a nonlinear flow. This will
be done in Section 3.4, in a limit case of the fast diffusion equation, involving a loga-
rithmic nonlinearity. We will obtain the counterpart of Proposition 1.1 in dimension
d = 2. The analogue of Theorem 1.1 is for the moment still unknown.

3.2. From Gagliardo–Nirenberg inequalities to Onofri’s inequality. Con-
sider the following sub-family of Gagliardo–Nirenberg inequalities

(3.3) ‖f‖L2p(Rd) ≤ Cp,d ‖∇f‖θ
L2(Rd) ‖f‖1−θ

Lp+1(Rd)

with θ = θ(p) := p−1
p

d
d+2−p (d−2) , 1 < p ≤ d

d−2 if d ≥ 3 and 1 < p < ∞ if d = 2. Such
an inequality holds for any smooth function f with sufficient decay at infinity and, by
density, for any function f ∈ Lp+1(Rd) such that ∇f is square integrable. We shall
assume that Cp,d is the best possible constant. In [15], it has been established that
equality holds in (3.3) if f = Fp with

(3.4) Fp(x) = (1 + |x|2)−
1

p−1 , ∀ x ∈ R
d

and that all extremal functions are equal to Fp up to a multiplication by a constant,
a translation and a scaling. If d ≥ 3, the limit case p = d/(d − 2) corresponds to
Sobolev’s inequality and one recovers the results of Aubin and Talenti in [1, 30],
with θ = 1: the optimal functions for (1.1) are, up to scalings, translations and
multiplications by a constant, all equal to Fd/(d−2)(x) = (1 + |x|2)−(d−2)/2, and

Sd = (Cd/(d−2), d)2 .

Remark 3.1. Consider again the setting of Remark 2.2. An explicit computation
shows that d (d−2)

(d−1)2 Sd = (Cq,d)2q, thus proving that optimality is achieved simultane-
ously in both sides of (2.4), for any d ≥ 3. As observed in [9], a similar property holds
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in dimension d = 2: using the flow of (1.3) with exponent m = 1/2, it turns out that

‖v‖L1(R2)

8
d

dt

[
4 π

‖v‖L1(R2)

∫
R2

v (−Δ)−1v dx −
∫

R2
v log v dx

]

= ‖u‖4
L4(R2) ‖∇u‖2

L2(R2) − π ‖v‖6
L6(R2),

which is the Gagliardo–Nirenberg inequality (3.3) with d = 2, q = 3, and an optimal
constant such that π (C3,2)6 = 1.

When p → 1, the inequality becomes an equality, so that we may differentiate both
sides with respect to p and recover the euclidean logarithmic Sobolev inequality in
optimal scale invariant form (see [15, 21, 33] for details).

We now investigate the limit p → ∞ in (3.3) when d = 2: Onofri’s inequality (3.1)
can be obtained in the limit. As an endpoint case of the family of the Gagliardo–
Nirenberg inequalities (3.3), it plays the role of Sobolev’s inequality in dimension d≥ 3.

Proposition 3.1. Assume that g ∈ D(Rd) is such that
∫

R2 g dμ = 0 and let

fp := Fp

(
1 +

g

2 p

)
,

where Fp is defined by (3.4). Then we have

1 ≤ lim
p→∞Cp,2

‖∇fp‖θ(p)
L2(R2) ‖fp‖1−θ(p)

Lp+1(R2)

‖fp‖L2p(R2)
=

e
1

16 π

∫
R2 |∇g|2 dx∫

R2 e g dμ
.

We recall that μ(x) := 1
π (1 + |x|2)−2, and dμ(x) := μ(x) dx. Such a result of approx-

imation is not surprising in view of the existing literature (see for instance [2] in the
case of interpolations inequalities on the sphere or [17] in which Onofri’s inequality
is seen as a limit case of the Caffarelli–Kohn–Nirenberg inequalities). Moreover this
result nicely complements [15].

Proof. We can rewrite (3.3) as
∫

R2 |f |2p dx∫
R2 |Fp|2p dx

≤
( ∫

R2 |∇f |2 dx∫
R2 |∇Fp|2 dx

) p−1
2

∫
R2 |f |p+1 dx∫

R2 |Fp|p+1 dx

and observe that, with f = fp, we have:

(i) limp→∞
∫

R2 |Fp|2p dx =
∫

R2
1

(1+|x|2)2 dx = π and

lim
p→∞

∫
R2

|fp|2p dx =
∫

R2
F 2p

p (1 + g
2p )2p dx =

∫
R2

eg

(1 + |x|2)2
dx

so that
∫

R2 |fp|2p dx/
∫

R2 |Fp|2p dx converges to
∫

R2 e g dμ as p → ∞,

(ii)
∫

R2 |Fp|p+1 dx = (p − 1) π/2, limp→∞
∫

R2 |fp|p+1 dx = ∞, but

lim
p→∞

∫
R2 |fp|p+1 dx∫
R2 |Fp|p+1 dx

= 1,
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(iii) expanding the square and integrating by parts, we find that∫
R2

|∇fp|2 dx =
1

4p2

∫
R2

F 2
p |∇g|2 dx −

∫
R2

(1 + g
2p )2 Fp ΔFp dx

=
1

4p2

∫
R2

|∇g|2 dx +
2π

p + 1
+ o(p−2).

Here we have used
∫

R2 |∇Fp|2 dx = 2π
p+1 and the condition

∫
R2 g dμ = 0 in

order to discard one additional term of the order of p−2. On the other hand,
we find that

( ∫
R2 |∇fp|2 dx∫
R2 |∇Fp|2 dx

) p−1
2

∼
(

1 +
p + 1
8π p2

∫
R2

|∇g|2 dx

) p−1
2

∼ e
1

16 π

∫
R2 |∇g|2 dx

as p → ∞. Collecting these estimates concludes the proof. �

3.3. Legendre duality. Now we state the duality which relates Onofri’s inequal-
ity (3.1) and the logarithmic Hardy–Littlewood–Sobolev inequality (3.2) in R

2. With

F1[u] := log
(∫

R2
eu dμ

)
and F2[u] :=

1
16 π

∫
R2

|∇u|2 dx +
∫

R2
u μ dx,

Onofri’s inequality amounts to F1[u] ≤ F2[u].

Proposition 3.2. For any v ∈ L1
+(R2) with

∫
R2 v dx = 1, such that v log v and

(1 + log |x|2) v ∈ L1(R2), we have

F ∗
1 [v] − F ∗

2 [v] =
∫

R2
v log

(
v

μ

)
dx − 4 π

∫
R2

(v − μ) (−Δ)−1(v − μ) dx ≥ 0.

This result has already been observed by several authors: see for instance [2, 10,
11] for the duality argument on the two-dimensional sphere, which gives the above
inequality on R

2 by the stereographic projection. For completeness, let us give a
proof directly in the euclidean setting. We essentially follow the computation of
[8, Appendix] but explicitly compute the constants.

Proof. On the Orlicz space of functions u ∈ L1
loc(R

2) such that ∇u ∈ L2(R2) and
eu ∈ L1(R2, dμ), Legendre’s transform gives

F ∗
1 [v] =

∫
R2

u v dx − log
(∫

R2
eu dμ

)
with log v = log μ + u − log

(∫
R2

eu dμ

)
,

F ∗
2 [v] =

∫
R2

u (v − μ) dx − 1
16 π

∫
R2

|∇u|2 dx with − Δu = 8 π (v − μ),

which proves the result. �

A useful observation is the fact that −Δ log μ = 8 π μ can be inverted as

(−Δ)−1μ =
1

8 π
log μ + C.

It is then easy to check that u := (−Δ)−1μ = G2 ∗ μ, with G2(x) = − 1
2π log |x|, is

such that u(0) = 0, which determines C = 1
8 π log π. Hence with the notations of
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Proposition 3.2, we may observe that

F ∗
1 [v] =

∫
R2

v log
(

v

μ

)
dx,

F ∗
2 [v] = π

∫
R2

v (−Δ)−1v dx −
∫

R2
v log μ dx − 1 − log π.

Collecting these observations, we find that

F ∗
1 [v] − F ∗

2 [v] =
∫

R2
v log v dx − 4 π

∫
R2

v (−Δ)−1v dx + 1 + log π ≥ 0.

For any f ∈ L1
+(R2) with M =

∫
R2 f dx, such that f log f , (1 + log |x|2) f ∈ L1(R2),

this inequality, written for v = f/M , is nothing else than the logarithmic Hardy–
Littlewood–Sobolev inequality (3.1).

3.4. Duality through the flow of a fast diffusion equation. We may now pro-
ceed in the case d = 2 as we did for d ≥ 3. Let

H2[v] :=
∫

R2
(v − μ) (−Δ)−1(v − μ) dx − 1

4 π

∫
R2

v log
(

v

μ

)
dx .

Assume that v is a positive solution of

(3.5)
∂v

∂t
= Δ log

(
v

μ

)
t > 0, x ∈ R

2,

which replaces (1.3). Then we have the analogue of Proposition 1.1.

Proposition 3.3. Assume that d = 2. If v is a solution of (3.5) with nonnegative
initial datum v0 in L1(R2) such that

∫
R2 v0 dx = 1, v0 log v0 ∈ L1(R2) and v0 log μ ∈

L1(R2), then

d

dt
H2[v(t, ·)] =

1
16 π

∫
R2

|∇u|2 dx −
∫

R2

(
e

u
2 − 1

)
u dμ

with log(v/μ) = u/2.

The r.h.s. in the above identity is not exactly the nonnegative functional which
can be deduced from Onofri’s inequality (3.1), but both are related by an inequality,
which goes beyond a simple applications of Jensen’s inequality. If dν = eu/2 dμ is a
probability measure, using the convexity of u �→ u eu/2, we may indeed observe that

log
(∫

R2
eu dμ

)
= log

(∫
Rd

e
u
2 dν

)
≥

∫
Rd

u

2
dν =

1
2

∫
R2

e
u
2 dμ.

What we need to prove is that the inequality holds without the 1
2 factor. This follows

from the fact that the function

h(t) := log
(∫

R2
etu dμ

)

is such that h(0) = h(1/2) = 0, that h is convex, and that h′′ is nondecreasing. A
proof will be given in the Section 3.5.
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Lemma 3.1. For any smooth function u on R
2 such that

∫
R2 eu/2 dμ=1, we have

log
(∫

R2
eu dμ

)
≥

∫
R2

e
u
2 dμ.

In Proposition 3.3, the right-hand side is therefore nonnegative by Onofri’s inequality:

(3.6)
d

dt
H2[v(t, ·)] ≥ 1

16 π

∫
R2

|∇u|2 dx +
∫

R2
u dμ − log

(∫
R2

eu dμ

)
≥ 0.

As in [9], an integration w.r.t. t provides an improved inequality with an integral
remainder term. As a consequence of Lemma 3.1 and of Onofri’s inequality (3.1), we
also have the following inequality.

Corollary 3.1. For any u ∈ D(R2) such that
∫

R2 eu/2 dμ = 1, we have

1
16 π

∫
R2

|∇u|2 dx ≥
∫

R2

(
e

u
2 − 1

)
u dμ.

This inequality can of course be extended by density to the natural Orlicz space
for which all integrals are well defined.

Notice that, in (3.6), we only obtain an inequality, while Proposition 1.1 was pro-
viding an identity. A natural candidate to replace the functional J of Section 2 (see
in particular Lemma 2.2) in dimension d ≥ 3 is, in dimension d = 2, the functional
J := 2

∫
R2 v (log (v/μ) − 1) dx. A quick computation shows that, for homogeneity

considerations, there is no analogue of the Cauchy–Schwarz inequality which was the
key ingredient in the proof of Theorem 1.1.

3.5. Proofs. The computation of d
dtH2[v(t, ·)] in Section 3.4 is formal but can easily

be justified after noticing that the image w of v by the inverse stereographic projection
on the sphere S

2, up to a scaling, solves the equation
∂w

∂t
= ΔS2 log w.

More precisely, if x = (x1, x2) ∈ R
2, then u and w are related by

w(t, y) =
u(t, x)

4 π μ(x)
, y =

(
2 (x1,x2)
1+|x|2 , 1−|x|2

1+|x|2
)
∈ S

2 .

See [31, Section 8.2] for a review of some known results for the logarithmic diffusion
equation, or super-fast diffusion equation, ∂v

∂t = Δ log v, and [14, 32] for earlier results.
One of the main features of this equation is that the mass of v is not preserved.
However, Equation (3.5) differs through a source term, Δ log μ, which compensates
for the loss of mass. This is clear from the equation solved by w. Another consequence
is that the solution of (3.5) globally exists. With these observations in hand, the proof
of Proposition 3.3 readily follows. Details are left to the reader.

As already mentioned, mass is preserved along the evolution according of (3.5).
For simplicity, we shall assume that 1 =

∫
R2 v0 dx =

∫
R2 v(t, x) dx for any t ≥ 0 and

recall that
∫

R2 μ dx = 1.

Proof of Lemma 3.1. Inspired by Lata�la and Oleszkiewicz [23], let us define

h(t) := log
(∫

R2
etu dμ

)
.
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Claim 1: h is convex and h′ is convex. Let us observe that(∫
R2

etu dμ

)2

h′′(t) =
∫

R2
etu dμ

∫
R2

u2 etu dμ −
(∫

R2
u etu dμ

)2

≥ 0

by the Cauchy–Schwarz inequality. With one more derivation, we find that
(∫

R2
etu dμ

)3

h′′′(t) =
∫

R2
u3 etu dμ

(∫
R2

etu dμ

)2

− 3
∫

R2
u2 etu dμ

∫
R2

u etu dμ

∫
R2

etu dμ + 2
(∫

R2
u etu dμ

)3

.

Let us prove that h′′′(t) > 0 for t ∈ (0, 1) a.e. If
∫

R2 u etu dμ > 0, define

dνt :=
etu∫

R2 etu dμ
dμ and v :=

u∫
R2 u dνt

,

so that
∫

R2 v dνt = 1. Then h′′′(t) has the sign of
∫

R2(v3 − 3 v2 + 2) dνt. Taking the
constraint into account, a direct optimization shows that an optimal function v takes
two values, 1 ± a for some a > 0 and moreover, νt({v = 1 + a}) = νt({v = 1 − a})
because of the condition

∫
R2 v dνt = 1. In such a case, it is straightforward to check

that
∫

R2(v3 − 3 v2 + 2) dνt = 0, thus proving that h′′′(t) ≥ 0.
If

∫
R2 u etu dμ < 0, a similar computation with v := −u/

∫
R2 u dνt shows that

−h′′′(t) has the sign of
∫

R2(−v3 − 3 v2 + 2) dνt under the condition
∫

R2 v dνt = −1,
thus proving again that h′′′(t) ≥ 0.

Since h′(t) =
∫

R2 u dνt is monotone increasing,
∫

R2 u etu dμ = 0 occurs for at most
one t ∈ [0, 1] and we can conclude that h′ is convex.

Claim 2: h(1) ≥ h′(1/2). We know that h(0) = h(1/2) = 0 and, by convexity of
h′, h′′ is monotone nondecreasing. Let κ := h′′(1/2) and p := h′(1/2). On the one
hand, we have h′′(t) ≤ κ for any t ∈ [0, 1/2], which means that, after integrating from
t < 1/2 to 1/2, we have

p − h′(t) ≤ κ

(
1
2
− t

)
∀ t ∈

[
0,

1
2

]
.

Hence, one more integration from 0 to 1/2 gives

p

2
= [p t − h(t)]1/2

0 ≤
[
κ

t

2
(1 − t)

]1/2

0

=
κ

8
.

On the other hand, we have h′′(t) ≥ κ for any t ∈ [1/2, 1], which means that, after
integrating from 1/2 to t > 1/2, we have

h′(t) − p ≥ κ

(
t − 1

2

)
∀ t ∈

[
1
2
, 1

]
.

One more integration from 1/2 to 1 gives

h(1) − p

2
≥

[
κ

t

2
(t − 1)

]1/2

0

=
κ

8
.

Collecting the two estimates, we find that h(1) ≥ p, which proves the claim.
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Using h(0) = log
(∫

R2 dμ
)

= 0 and h(1/2) = log
(∫

R2 eu/2 dμ
)

= 0, we have found
that p = h′(1/2) =

∫
R2 u eu/2 dμ ≤ h(1) = log

(∫
R2 eu dμ

)
. This proves that

d

dt
H2[v(t, ·)] ≥ 1

16 π

∫
R2

|∇u|2 dx +
∫

R2
u dμ − log

(∫
R2

eu dμ

)
≥ 0,

where the last inequality is nothing else than Onofri’s inequality.
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