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ON THE MINIMAL MODEL THEORY FOR DLT PAIRS OF
NUMERICAL LOG KODAIRA DIMENSION ZERO

Yoshinori Gongyo

Abstract. We prove the existence of good log minimal models for dlt pairs of numerical
log Kodaira dimension 0.
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1. Introduction

Throughout this article, we work over C, the complex number field. We will make
use of the standard notation and definitions as in [KM] and [KMM]. The minimal
model conjecture for smooth varieties is the following:

Conjecture 1.1 (Minimal model conjecture). Let X be a smooth projective variety.
Then there exists a minimal model or a Mori fiber space of X.

This conjecture is true in dimension 3 and 4 by Kawamata, Kollár, Mori, Shokurov
and Reid (cf. [KMM, KM, Sho2]). In the case where KX is numerically equivalent to
some effective divisor in dimension 5, this conjecture is proved by Birkar (cf. [Bi1]).
When X is of general type or KX is not pseudo-effective, Birkar, Cascini, Hacon and
McKernan prove Conjecture 1.1 in arbitrary dimension ([BCHM]). Moreover if X has
maximal Albanese dimension, Conjecture 1.1 is true by [F2]. In this article, among
other things, we consider Conjecture 1.1 in the case ν(KX) = 0 (for the definition of
ν, see Definition 2.3):

Theorem 1.1. Let (X, Δ) be a projective Q-factorial dlt pair such that ν(KX +Δ)= 0.
Then there exists a minimal model (Xm, Δm) of (X, Δ).
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Actually the author heared from Vladimir Lazić that Theorem 1.1 for klt pairs has
been proved by Druel (cf. [D]) after he finished this work. In this article, more-
over, we give the generalization of his result for dlt pairs by using the sophisti-
cated Birkar–Cascini–Hacon–McKernan’s results and Druel’s method. Essentially our
method seems to be same as Druel’s. However, by expanding this result to dlt pairs
we give the different proof of the abundance theorem for log canonical pairs in the
case ν = 0 as shown by [CKP, Ka2]:

Theorem 1.2 (=Theorem 6.1). Let X be a normal projective variety and Δ an
effective Q-divisor. Suppose that (X, Δ) is a log canonial pair such that ν(KX +Δ) =
0. Then KX + Δ is abundant, i.e., ν(KX + Δ) = κ(KX + Δ).

For the first time, Nakayama proved Theorem 1.2 when (X, Δ) is klt. Nakayama’s
proof is independent of Simpson’s results [Sim]. Simpson’s results are used to approach
the abundance conjecture in [CPT]. Campana–Perternell–Toma prove Theorem 1.2
when X is smooth and Δ = 0. Siu also gave an analytic proof of it (cf. [Siu]). The
results of [CKP, Ka2, Siu] depend on [Sim, Bu]. In this article, we show Theorem 1.2
by using a method different from [CPT, CKP, Ka2, Siu]. In our proof of Theorem
1.2, we do not need results of [Sim, Bu]. Our proof depends on [BCHM, G].

We summarize the contents of this article. In Section 2, we define the Kodaira
dimension and the numerical Kodaira dimension, and collect some properties of these.
In Section 3, we review a log minimal model program with scaling and works of Birkar–
Cascini–Hacon–McKernan. In Section 4, we introduce the divisorial Zariski decom-
position and collect some properties of it. Section 5 is devoted to the proof of the
existence of minimal models in the case ν = 0. In Section 6, we prove Theorem 1.2.

Notation and Definition 1.1. Let K be the real number field R or the rational
number field Q. We set K>0 = {x ∈ K|x > 0}.

Let X be a normal variety and let Δ be an effective K-divisor such that KX + Δ
is K-Cartier. Then we can define the discrepancy a(E, X, Δ) ∈ K for every prime
divisor E over X. If a(E, X, Δ) ≥ −1 (resp. > −1) for every E, then (X, Δ) is called
log canonical (resp. kawamata log terminal). We sometimes abbreviate log canonical
(resp. kawamata log terminal) to lc (resp. klt).

Assume that (X, Δ) is log canonical. If E is a prime divisor over X such that
a(E, X, Δ) = −1, then cX(E) is called a log canonical center (lc center, for short) of
(X, Δ), where cX(E) is the closure of the image of E on X. For the basic properties
of log canonical centers, see [F1, Section 9].

Let π : X → S be a projective morphism of normal quasi-projective varieties and
D a Z-Cartier divisor on X. We set the complete linear system |D/S| = {E|D ∼Z,S

E ≥ 0} of D over S. The base locus of the linear system |D/S| is denoted by Bs|D/S|.
When S = Spec C, we denote simply |D| and Bs|D|.

2. Preliminaries

Definition 2.1 (Classical Iitaka dimension, cf. [N, II, 3.2, Definition]). Let X be a
normal projective variety and D an R-Cartier divisor on X. If |�mD�| �= ∅, we put a
dominant rational map

φ|�mD�| : X ��� Wm,
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with respect to the complete linear system of �mD�. We define the Classical Iitaka
dimension κ(D) of D as the following:

κ(D) = max{dimWm}
if H0(X, �mD�) �= 0 for some positive integer m and κ(D) = −∞ otherwise.

Lemma 2.1. Let Y be a normal projective variety, ϕ : Y → X a projective birational
morphism onto a normal projective variety, and let D be an R-Cartier divisor on X.
Then it holds the following:

(1) κ(ϕ∗D) = κ(ϕ∗D + E) for any ϕ-exceptional effective R-divisor E, and
(2) κ(ϕ∗D) = κ(D).

Proof. (1) and (2) follows from [N, II, 3.11, Lemma]. �
The following is remarked by Shokurov:

Remark 2.1. In general, κ(D) may not coincide with κ(D′) if D ∼R D′. For example,
let X be the P

1, P and Q closed points in X such that P �= Q and a irrational number.
Set D = a(P − Q). Then κ(D) = −∞ in spite of the fact that D ∼R 0.

However, fortunately, κ(D) coincides with κ(D′) if D and D′ are effective divisors
such that D ∼R D′ ([Ch, Corollary 2.1.4]). Hence, it seems reasonable that we define
the following as the Iitaka (Kodaira) dimension for R-divisors.

Definition 2.2 (Invariant Iitaka dimension, [Ch, Definition 2.2.1], cf. [CS, Section
7]). Let X be a normal projective variety and D an R-Cartier divisor on X. We
define the invariant Iitaka dimension κ(D) of D as the following:

K(D) = κ(D′)

if there exists an effective divisor D′ such that D ∼R D′ and K(D) = −∞ otherwise.
Let (X, Δ) be a log canonical. Then we call K(KX + Δ) the log Kodaira dimension
of (X, Δ).

Definition 2.3 (Numerical Iitaka dimension). Let X be a normal projective variety,
D an R-Cartier divisor and A an ample Cartier divisor on X. We set

σ(D, A) = max{k ∈ Z≥0| lim sup
m→∞

m−kdimH0(X, �mD� + A) > 0},

if H0(X, �mD� + A) �= 0 for infinitely many m ∈ N and σ(D, A) = −∞ otherwise.
We define

ν(D) = max{σ(D, A)|A is a ample divisor on Y }.
Let (X, Δ) be a log pair. Then we call ν(KX+Δ) the numerical log Kodaira dimension
of (X, Δ). If Δ = 0, we simply say ν(KX) is the numerical Kodaira dimension of X.

Lemma 2.2. Let Y be a normal projective variety, ϕ : Y → X a projective birational
morphism onto a normal projective variety, and let D be an R-Cartier divisor on X.
Then it holds the following:

(1) ν(ϕ∗D) = ν(ϕ∗D + E) for any ϕ-exceptional effective R-divisor E,
(2) ν(ϕ∗D) = ν(D), and
(3) ν(D) = max{k ∈ Z≥0|Dk �≡ 0} when D is nef.

Proof. See [N, V, Proposition 2.7]. �
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Lemma 2.3 ([N, V, Proposition 2.7 (1)]). Let X be a projective variety and D and
D′

R-Cartier divisors on X such that D ≡ D′. Then ν(D) = ν(D′).

Remark 2.2. ν(D) is denoted as κσ(D) in [N, V, Section 2]. Moreover Nakayama
also defined κ−

σ (D), κ+
σ (D) and κν(D) as some numerical Iitaka dimensions. In this

article, we mainly treat in the case where ν(D) = 0, i.e., κσ(D) = 0. Then it holds
that κ−

σ (D) = κ+
σ (D) = κν(D) = 0 (cf. [N, V, Proposition 2.7 (8)]). Moreover, if a

log canonical pair (X, Δ) has a weakly log canonical model in the sense of Shokurov,
then ν(KX + Δ) coincides with the numerical log Kodaira dimension in the sense of
Shokurov by Lemma 2.2 (cf. [Sho1, Proposition 2.4]).

Definition 2.4. Let π : X → S be a projective morphism of normal quasi-projective
varieties and D an R-Cartier divisor on X. We set

B≡(D/S) =
⋂

D≡SE≥0

SuppE.

When S = Spec C, we denote simply B≡(D).

We introduce a dlt blow-up. The following theorem was originally proved by Pro-
fessor Christopher Hacon (cf. [F1, Theorem 10.4, KK, Theorem 3.1]). For a simpler
proof, see [F3, Section 4]:

Theorem 2.1 (Dlt blow-up). Let X be a normal quasi-projective variety and Δ an
effective R-divisor on X such that KX + Δ is R-Cartier. Suppose that (X, Δ) is log
canonical. Then there exists a projective birational morphism ϕ : Y → X from a
normal quasi-projective variety with the following properties:

(i) Y is Q-factorial,
(ii) a(E, X, Δ) = −1 for every ϕ-exceptional divisor E on Y , and
(iii) for

Γ = ϕ−1
∗ Δ +

∑

E:ϕ-exceptional

E,

it holds that (Y, Γ) is dlt and KY + Γ = ϕ∗(KX + Δ).

The above theorem is very useful for studying log canonical singularities
(cf. [F1, G, KK]).

3. Log minimal model program with scaling

In this section, we review a log minimal model program with scaling and introduce
works by Birkar–Cascini–Hacon–McKernan.

Lemma 3.1 (cf. [Bi1, Lemma 2.1, F1, Theorem 18.9]). Let π : X → S be a projective
morphism of normal quasi-projective varieties and (X, Δ) a Q-factorial projective log
canonical pair such that Δ is a K-divisor. Let H be an effective Q-divisor such that
KX + Δ + H is π-nef and (X, Δ + H) is log canonical. Suppose that KX + Δ is not
π-nef. We put

λ = inf{α ∈ R≥0|KX + Δ + αH is π-nef}.
Then λ ∈ K>0 and there exists an extremal ray R ⊆ NE(X/S) such that (KX +

Δ) · R < 0 and (KX + Δ + λH) · R = 0.
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Definition 3.1 (Log minimal model program with scaling). Let π : X → S be
a projective morphism of normal quasi-projective varieties and (X, Δ) a Q-factorial
projective divisorial log terminal pair such that Δ is a K-divisor. Let H be an effective
K-divisor such that KX + Δ + H is π-nef and (X, Δ + H) is divisorial log terminal.
We put

λ1 = inf{α ∈ R≥0|KX + Δ + αH is π-nef}.
If KX + Δ is not π-nef, then λ1 > 0. By Lemma 3.1, there exists an extremal ray
R1 ⊆ NE(X/S) such that (KX+Δ)·R1 < 0 and (KX+Δ+λ1H)·R1 = 0. We consider
an extremal contraction with respect to this R1. If it is a divisorial contraction or a
flipping contraction, let

(X, Δ) ��� (X1, Δ1)

be the divisorial contraction or its flip. Since KX1 + Δ1 + λ1H1 is π-nef, we put

λ2 = inf{α ∈ R≥0|KX1 + Δ1 + αH1 is π-nef},
where H1 is the strict transform of H on X1. Then we find an extremal ray R2 by
the same way as the above. We may repeat the process. We call this program a log
minimal model program with scaling of H over S. When this program runs as the
following:

(X0, Δ0) = (X, Δ) ��� (X1, Δ1) ��� · · · ��� (Xi, Δi) · · · ,

then
λ1 ≥ λ2 ≥ λ3 . . . ,

where λi = inf{α ∈ R≥0|KXi−1 + Δi−1 + αHi−1 is π-nef} and Hi−1 is the strict
transform of H on Xi−1.

The following theorems are slight generalizations of [BCHM, Corollary 1.4.1,
BCHM, Corollary 1.4.2]. These seem to be well-known for the experts.

Theorem 3.1 (cf. [BCHM, Corollary 1.4.1]). Let π : X → S be a projective morphism
of normal quasi-projective varieties and (X, Δ) be a Q-factorial projective divisorial
log terminal pair such that Δ is an R-divisor. Suppose that ϕ : X → Y is a flipping
contraction of (X, Δ). Then there exists the log flip of ϕ.

Proof. Since −(KX + Δ) is ϕ-ample, so is −(KX + Δ − ε�Δ�) for a sufficiently
small ε > 0. Because ρ(X/Y ) = 1, it holds that KX + Δ ∼R,Y c(KX + Δ − ε�Δ�)
for some positive number c. By [BCHM, Corollary 1.4.1], there exists the log flip
of (X, Δ − ε�Δ�). This log flip is also the log flip of (X, Δ) since KX + Δ ∼R,Y

c(KX + Δ − ε�Δ�). �

Theorem 3.2 (cf. [BCHM, Corollary 1.4.2]). Let π : X → S be a projective morphism
of normal quasi-projective varieties and (X, Δ) be a Q-factorial projective divisorial
log terminal pair such that Δ is an R-divisor. Suppose that there exists a π-ample
R-divisor A on X such that Δ ≥ A. Then any sequences of log minimal model
program starting from (X, Δ) with scaling of H over S terminate, where H satisfies
that (X, Δ + H) is divisorial log terminal and KX + Δ + H is π-nef.

The above theorem is proved by the same argument as the proof of [BCHM,
Corollary 1.4.2] because [BCHM, Theorem E] holds on the above setting.
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4. Divisorial Zariski decomposition

In this section, we introduce the divisorial Zariski decomposition for a pseudo-effective
divisor.

Definition 4.1 (cf. [N, III, Definition 1.13, Ka1]). Let π : X → S be a projective
morphism of normal quasi-projective varieties and D an R-Cartier divisor. We call
that D is a limit of movable R-divisors over S if [D] ∈ Mov(X/S) ⊆ N1(X/S) where
Mov(X/S) is the closure of the convex cone spanned by classes of fixed part free
Z-Cartier divisors over S. When S = Spec C, we denote simply Mov(X).

Definition 4.2 (cf. [N, III, Definitions 1.6 and 1.12]). Let X be a smooth projective
variety and B a big R divisor. We define

σΓ(B) = inf{multΓB′|B ≡ B′ ≥ 0},
for a prime divisor Γ. Let D be a pseudo-effective divisor. Then we define the
following:

σΓ(D) = lim
ε→0+

σΓ(D + εA),

for some ample divisor A. We remark that σΓ(D) is independent of the choice of
A. Moreover the above two definitions coincide for a big divisor because a function
σΓ(·) on Big(X) is continuous where Big(X) := {[B] ∈ N1(X)|B is big} (cf. [N, III,
Lemma 1.7]). We set

N(D) =
∑

Γ:prime divisor

σΓ(D)Γ and P (D) = D − N(D).

We remark that N(D) is a finite sum. We call the decomposition D = P (D) + N(D)
the divisorial Zariski decomposition of D. We say that P (D) (resp. N(D)) is the
positive part (resp. negative part) of D.

Remark that the decomposition D ≡ P (D) + N(D) is called several names: the
sectional decomposition [Ka1], the σ-decomposition [N], the divisorial Zariski decom-
position [Bo], and the numerical Zariski decomposition [Ka2].

Proposition 4.1. Let X be a smooth projective variety and D a pseudo-effective
R-divisor on X. Then it holds the following:

(1) σΓ(D) = limε→0+ σΓ(D + εE) for a pseudo-effective divisor E, and
(2) ν(D) = 0 if and only if D ≡ N(D).

Proof. (1) follows from [N, III, Lemma 1.4]. (2) follows from [N, V, Proposition
2.7 (8)]. �

5. Existence of minimal models in the case ν = 0

Theorem 5.1 (cf. [D, Corollaire 3.4]). Let X be a Q-factorial projective variety
and Δ an effective R-divisor such that (X, Δ) is divisorial log terminal. Suppose that
ν(KX + Δ) = 0. Then any log minimal model programs starting from (X, Δ) with
scaling of H terminate, where H satisfies that H ≥ A for some effective R-ample
divisor A, (X, Δ + H) is divisorial log terminal, and KX + Δ + H is nef.
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Proof. Let (X, Δ) ��� (X1, Δ1) be a divisorial contraction or a log flip. Remark that
it holds that

ν(KX + Δ) = ν(KX1 + Δ1)

from Lemma 2.2(1) and the negativity lemma. Now we run a log minimal model
program

(Xi, Δi) ��� (Xi+1, Δi+1)

starting from (X0, Δ0) = (X, Δ) with scaling of H. Assume by contradiction that
this program does not terminate. Let {λi} be as in Definition 3.1. We set

λ = lim
i→∞

λi.

If λ �= 0, the sequence is composed by (KX + Δ + 1
2λH)-log minimal model program.

Thus the sequence terminates by Theorem 3.2. Therefore we see that λ = 0. Now
there exists j such that (Xi, Δi) ��� (Xi+1, Δi+1) is a log flip for any i ≥ j. Replace
(X, Δ) by (Xj , Δj), we lose the fact that A is ample. Then we see the following:

Claim 5.1. KX + Δ is a limit of movable R-divisors.

Proof of Claim 5.1. See [Bi2, Step 2 of the proof of Theorem 1.5] or [F3, Theorem
2.3]. �

Let ϕ : Y → X be a log resolution of (X, Δ). We consider the divisorial Zariski
decomposition

ϕ∗(KX + Δ) = P (ϕ∗(KX + Δ)) + N(ϕ∗(KX + Δ))

(Definition 4.2). Since

ν(ϕ∗(KX + Δ)) = ν(KX + Δ) = 0,

we see P (ϕ∗(KX + Δ)) ≡ 0 by Proposition 4.1(2). Moreover we see the following
claim:

Claim 5.2. N(ϕ∗(KX + Δ)) is a ϕ-exceptional divisor.

Proof of Claim 5.2. Let G be an ample divisor on X and ε a sufficiently small positive
number. By Proposition 4.1(1), it holds that

SuppN(ϕ∗(KX + Δ)) ⊆ SuppN(ϕ∗(KX + Δ + εG)).

If it holds that ϕ∗(N(ϕ∗(KX + Δ))) �= 0, we see that B≡(KX + Δ + εG) has codi-
mension 1 components. This is a contradiction to Claim 5.1. Thus N(ϕ∗(KX + Δ))
is a ϕ-exceptional divisor. �

Hence KX + Δ ≡ 0, in particular, KX + Δ is nef. This is a contradiction to the
assumption. �

Corollary 5.1. Let X be a Q-factorial projective variety and Δ an effective R-divisor
such that (X, Δ) is divisorial log terminal. Suppose that ν(KX + Δ) = 0. Then there
exists a log minimal model of (X, Δ).

Remark 5.1. These results are on the absolute setting. It may be difficult to extends
these to the relative settings. See [F3].
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6. Abundance theorem in the case ν = 0

In this section, we prove the abundance theorem in the case where ν = 0 for an
R-divisor:

Theorem 6.1. Let X be a normal projective variety and Δ an effective R-divisor.
Suppose that (X, Δ) is a log canonical pair such that ν(KX + Δ) = 0. Then
ν(KX + Δ) = K(KX + Δ). Moreover, if Δ is a Q-divisor, then ν(KX + Δ) =
κ(KX + Δ) = K(KX + Δ).

First we extends [G, Theorem 1.2] to an R-divisor.

Lemma 6.1 (cf. [FG, Theorem 3.1]). Let X be a normal projective variety and Δ an
effective K-divisor. Suppose that (X, Δ) is a log canonical pair such that KX +Δ ≡ 0.
Then KX + Δ ∼K 0.

Proof. By taking a dlt blow-up (Theorem 2.1), we may assume that (X, Δ) is a Q-
factorial dlt pair. If K = Q, then the statement is nothing but [G, Theorem 1.2].
From now on, we assume that K = R. Let

∑
i Bi be the irreducible decomposition of

Supp Δ. We put V =
⊕
i

RBi. Then it is well known that

L = {B ∈ V | (X, B) is log canonical}
is a rational polytope in V . We can also check that

N = {B ∈ L |KX + B is nef}
is a rational polytope and Δ ∈ N (cf. [Bi2, Proposition 3.2] and [Sho1, 6.2 First
Main theorem]). We note that N is known as Shokurov’s polytope. Therefore, we
can write

KX + Δ =
k∑

i=1

ri(KX + Δi),

such that
(i) Δi is an effective Q-divisor such that Δi ∈ N for every i,
(ii) (X, Δi) is log canonical for every i, and
(iii) 0 < ri < 1, ri ∈ R for every i, and

∑k
i=1 ri = 1.

Since KX + Δ is numerically trivial and KX + Δi is nef for every i, KX + Δi is
numerically trivial for every i. By [G, Theorem 1.2], we see that KX + Δ ∼R 0. �
Proof of Theorem 6.1. By taking a dlt blow-up (Theorem 2.1), we may assume that
(X, Δ) is a Q-factorial dlt pair. By Corollary 5.1, there exists a log minimal model
(Xm, Δm) of (X, Δ). From Lemma 2.2(3), it holds that KXm + Δm ≡ 0. By Lemma
6.1, it holds that K(KXm + Δm) = 0. Lemma 2.1 implies that K(KX + Δ) = 0. If
Δ is a Q-divisor, then there exists an effective Q-divisor E such that KX + Δ ∼Q E
by Corollary 5.1 and Lemma 6.1. Thus, we see that κ(KX + Δ) = K(KX + Δ). We
finish the proof of Theorem 6.1. �
Corollary 6.1. Let π : X → S be a projective surjective morphism of normal quasi-
projective varieties, and let (X, Δ) be a projective log canonical pair such that Δ is
an effective K-divisor. Suppose that ν(KF + ΔF ) = 0 for a general fiber F , where
KF + ΔF = (KX + Δ)|F . Then there exists an effective K-divisor D such that
KX + Δ ∼K,π D.



ON THE MINIMAL MODEL THEORY IN THE CASE ν = 0 999

Proof. This follows from Theorem 6.1 and [BCHM, Lemma 3.2.1]. �
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