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DENSITY OF CLASSICAL POINTS IN EIGENVARIETIES

David Loeffler

Abstract. In this short note, we study the geometry of the eigenvariety parametrizing
p-adic automorphic forms for GL1 over a number field, as constructed by Buzzard. We

show that if K is not totally real and contains no CM subfield, points in this space arising
from classical automorphic forms (i.e. algebraic Grössencharacters of K) are not Zariski-
dense in the eigenvariety (as a rigid space); but the eigenvariety posesses a natural formal
scheme model, and the set of classical points is Zariski-dense in the formal scheme.

We also sketch the theory for GL2 over an imaginary quadratic field, following Cale-
gari and Mazur, emphasizing the strong formal similarity with the case of GL1 over a
general number field.

1. Introduction

In the influential paper [4], Coleman and Mazur constructed a p-adic rigid analytic
space (the eigencurve) parametrizing the Hecke eigenvalues of overconvergent p-adic
modular eigenforms. More recently, analogues of the eigencurve, known as eigenva-
rieties, have been constructed which interpolate Hecke eigenvalues of automorphic
representations for a wide range of reductive groups (see e.g. [1, 6, 9]).

For the Coleman–Mazur eigencurve, it is known that the set of points correspond-
ing to classical modular eigenforms (classical points) is a Zariski-dense subset. The
two ingredients in the proof of this result are Coleman’s classicality criterion for
overconvergent eigenforms [3], and the fact that the map from the eigencurve to the
underlying p-adic weight space is locally finite and flat. For more general eigenvari-
eties, one has analogues of the first fact (e.g. [9, Theorem 3.9.6]), but it is not always
the case that the map to weight space is flat, so one cannot deduce that classical
points are dense in the eigenvariety.

In this note, we investigate in detail a special case where these phenomena can be
studied more explicitly: the case of GL1 over a number field K. In this case an explicit
description of the eigenvariety has been given by Buzzard in [1]. It follows easily from
this description that if K is neither Q nor an imaginary quadratic field, then the map
from the eigenvariety to weight space is not flat. We show that if moreover K is not
totally real and has no CM subfield, then the set of classical points is not Zariski-
dense in the eigenvariety (considered as a rigid space). However, we show that the
eigenvariety has a natural formal scheme structure, and the set of classical points is
always Zariski-dense in the eigenvariety when considered as a formal scheme.

This investigation was motivated by the results of [2] for GL2 over an imaginary
quadratic field, where somewhat similar phenomena occur. In this setting one works
with the “ordinary eigenvariety” constructed by Hida [8]. (This ordinary eigenvariety
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should be a component of the eigenvariety given by the machinery of [6], although the
details of this construction do not appear to have been written down.) In Section 5, we
recall the results of [2] which show that classical points are not dense in the ordinary
eigenvariety when considered as a rigid space. However, this ordinary eigenvariety also
carries a natural formal scheme structure, and we show that the results of op.cit. are
not sufficient to rule out the possibility that some component of this space contains
infinitely many classical points (and hence that classical points are dense in that
component when considered as a formal scheme).

2. Zariski density in formal and rigid spaces

Let A be a finite algebra over the formal power series ring Zp�T1, . . . , Tn� for
some n ≥ 0, which is flat over Zp (i.e. p is not a zero-divisor in A). Then we
have a choice of geometric objects attached to A: the affine scheme Spec(A), and its
generic fibre Spec(A[ 1p ]); the affine formal scheme Spf(A); and the rigid-analytic space
(Spf(A))rig obtained by applying Berthelot’s generic fibre construction [5, Section 7].
We abbreviate the latter by Rig(A).

Proposition 2.1. The following three sets are in canonical bijection with each other:

• Points of Spec(A[ 1p ]), i.e., maximal ideals of A[ 1p ];
• Points of Rig(A);
• Equivalence classes of morphisms of formal schemes Spf(O) → Spf(A), with
O the ring of integers of a finite extension of Qp. Here two morphisms
Spf(O) → Spf(A) and Spf(O′) → Spf(A) are equivalent if there exists a
third such ring O′′ and a commutative diagram

Spf(O′′) −−−−→ Spf(O′)
⏐
⏐
�

⏐
⏐
�

Spf(O) −−−−→ Spf(A).

Proof. See [5, Sections 7.1.9–7.1.10]. �

We do not, however, obtain bijections between closed subvarieties of these geo-
metric objects; closed subschemes of Spec(A[ 1p ]) biject with closed formal subschemes
of Spf A flat over Zp, but these correspond to a subset of the closed subvarieties of
Rig(A). Most of the content of the present note relates in some way or another to
the following key example. If A = Zp�T �, then Rig(A) is the rigid-analytic open unit
disc, and the set of points T such that (1 + T )pn

= 1 for some n ∈ N is a closed
subvariety of Rig(A) (cut out by the p-adic logarithm log(1 + T )), which is clearly
not the analytification of any closed subvariety of Spf(A).

If P (A) is the common set of points from the preceding proposition, we refer to the
topology on P (A) whose closed subsets are given by ideals of A[ 1p ] (or, equivalently,
closed subvarieties of Spf(A) flat over Zp) as the formal Zariski topology, and the
topology whose closed subsets are given by rigid-analytic subvarieties of Rig(A) as
the rigid Zariski topology. As the preceding example shows the rigid Zariski topology
may be strictly finer than the formal Zariski topology.



DENSITY OF CLASSICAL POINTS IN EIGENVARIETIES 985

3. Character spaces

Let G be a compact abelian p-adic analytic group. Since any such group has
a subgroup of finite index isomorphic to Zd

p for some d, it is topologically finitely
generated. Hence, it is isomorphic to a direct sum of finitely many procyclic subgroups
[10, Theorem 4.3.5]. Since each factor must also be p-adic analytic, each of these
procyclic subgroups must be either finite or isomorphic to Zp, and we see that G is
isomorphic to Zd

p × H for some finite abelian group H.

Theorem 3.1. For any group G as above, the functor mapping an Artinian lo-
cal Zp-algebra A to the set of continuous group homomorphisms G → A× is pro-
representable, and is represented by the formal scheme Ĝ = Spf Zp�G�, where Zp�G�
is the Iwasawa algebra of G, equipped with the canonical character G → Zp�G�×.
Moreover, the generic fibre Ĝrig of Ĝ is the rigid space constructed in [1, Lemma 2]
which represents the corresponding functor on the category of affinoid Qp-algebras.

Proof. Essentially by definition, any continuous homomorphism G → A× extends
uniquely to a ring homomorphism Zp�G� → A, and conversely any ring homomor-
phism Zp�G� → A gives a group homomorphism G → A× by composition with the
canonical character (which is continuous, since A is Artinian). Furthermore, Zp�G�
can clearly be written as an inverse limit of the quotients (Z/pnZ)�G/U� for U open
in G, which are Artinian Zp-algebras. Moreover, if G1 and G2 are two such groups,
we have

Zp�G1 × G2� = Zp�G1�⊗̂ZpZp�G2�;
the generic fibre construction commutes with fibre products, so it suffices to check
that the generic fibre of Spf Zp�G� agrees with Buzzard’s construction when G is
either Zp or a finite cyclic group; both of these cases are easy. �

Now let K be a number field. We define

O×
K,p := (OK ⊗ Zp)× =

∏

v|p
O×

K,v.

It is clear that O×
K,p is an abelian p-adic analytic group of dimension d = [K : Q];

we let W = Ô×
K,p. A point of W is thus equivalent to a continuous homomorphism

O×
K,p → E×, for E some finite extension of Qp; we refer to these as p-adic weights for

K.
Let K◦

∞ be the identity component of (K⊗R)×, and U any open compact subgroup
of (Ap,∞

K )×. We define
H(U) = A×

K/K× · U · K◦∞.

Definition 3.1. [1, Section 2] The eigenvariety for GL1 /K of tame level U is the
formal Zp-scheme E(U) = Ĥ(U).

The inclusion O×
K,p ↪→ A×

K gives a continous map O×
K,p → H(U) whose kernel is

the closure in O×
K,p of the abelian group Γ(U) = K×∩

(

U · O×
K,p · K◦

∞
)

. The cokernel
of this map is finite (it is the ray class group modulo UK◦

∞) and hence H(U) is also a
compact abelian p-adic analytic group, of dimension equal to 1+ r2(K)+ δ(K) where
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r2(K) is the number of complex places of K and δ(K) is the defect in Leopoldt’s
conjecture for K at p.

If we write Q(U) = O×
K,p/Γ(U), then we can identify Q(U) with a finite-index

subgroup of H(U); hence, we have maps Zp�O×
K,p� � Zp�Q(U)� ↪→ Zp�H(U)�, where

the second map is finite and flat (and becomes étale after inverting p). Thus, the
morphism E(U) → W factors as a finite flat surjective map followed by the inclusion
of the closed subscheme W(U) = Q̂(U) of W. In particular, we have the following
result:

Proposition 3.1. Every component of E(U) has dimension equal to 1 + r2 + δ, and
maps surjectively to a component of W(U).

(Note that E(U) is not flat over W unless O×
K is finite, i.e., K is either Q or an

imaginary quadratic field.)

4. Algebraic points

Let us fix embeddings of Q into Qp and into C. Let κ be a p-adic weight for K.
We say that κ is algebraic if we can write

κ(x) =
∏

i

σi(x)ni

where σ1, . . . , σd are the ring homomorphisms OK,p → Qp arising from the d embed-
dings K ↪→ Q, and ni ∈ Z. If κ is algebraic in the above sense when restricted to some
open neighbourhood of the identity, we say κ is locally algebraic; this is equivalent to
the existence of a factorization κ = εκ′ where κ′ is algebraic and ε has finite order.

The norm map NK/Q extends continuously to a homomorphism O×
K,p → Z×

p . We
say κ is parallel if it factors through this map; we say κ is locally parallel if this holds
on some open neighbourhood of the identity. Note that an algebraic weight is parallel
if and only if the ni are all equal.

Our choice of embeddings gives a bijection between algebraic Grössencharacters
of K (of level U) and points of E(U) whose projection to W is locally algebraic.
This maps a Grössencharacter of infinity-type x �→ ∏

i σi(x)ni to a locally algebraic
character with the same algebraic part.

For the rest of this section, let us make the following assumption:

Assumption. The field K contains no CM subfield.

Theorem 4.1. [11] If the above assumption holds, then the infinity-type of every
algebraic Grössencharacter of K is parallel.

If κ is a locally algebraic weight, we define c(κ) to be the smallest integer r ≥ 0
such that κ is algebraic when restricted to 1 + prOK,p.

Proposition 4.1. For any N < ∞, there is a one-dimensional closed formal sub-
scheme of W that contains every locally algebraic weight κ ∈ W(U) with c(κ) ≤ N .

Proof. If κ ∈ W(U) is locally algebraic, then by Weil’s theorem it must be of the form
x �→ ε(x)NK/Q(x)k for some k ∈ Z and finite-order ε. We may assume without loss
of generality that NK/Q(Γ(U)) = {1}, so ε and NK/Q(x)k both lie in W(U).
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Since the subgroup Γ(U) · (1 + pNOK,p) has finite index in O×
K,p, there are only

finitely many candidates for ε. Hence the locally algebraic weights with c(κ) ≤ N are
contained in the union of finitely many translates of the one-dimensional subscheme
W0 ⊆ W parametrizing parallel weights (which is simply the space of characters of
NK/Q

(

O×
K,p

)

⊆ Z×
p ). �

We assume henceforth that K is not totally real, so W(U) has dimension 1+r2+δ >
1. It follows that the locally algebraic weights with c(κ) ≤ N are not dense in the
formal Zariski topology of W(U). In particular, for a fixed coefficient field E which is
discretely valued, the set of E-valued finite-order characters is finite (since E contains
finitely many p-power roots of unity) and thus the locally algebraic E-valued weights
are not formally Zariski-dense in W(U).

Proposition 4.2. The closure of the locally algebraic weights in the rigid Zariski
topology of W(U) is a closed rigid subvariety of W (U) of dimension 1. However, this
set is dense in the formal Zariski topology of W(U).

Proof. Let u1, . . . , ud−1 be a Zp-basis for the torsion-free part of the subgroup

C =
{

x ∈ O×
K,p : NK/Q(x) = 1

}

.

The functions κ �→ log(κ(ui)) are analytic functions on Wrig. Moreover, the deriva-
tives of these functions are linearly independent at the origin, and hence anywhere
(since they are homomorphisms of rigid-analytic group varieties). Thus they cut out
a reduced rigid subvariety of Wrig of dimension 1. I claim that every locally algebraic
point of W(U) lies in this subvariety. Indeed, suppose κ is such a point, with residue
field E. Then κ(C) must be finite, since the algebraic part of κ is trivial on C. There-
fore κ(u1), . . . , κ(ud) must be roots of unity in E×; as the subgroup of C generated
by the ui is pro-p, these must be p-power roots of unity. Hence, they are zeros of the
p-adic logarithm.

On the other hand, the powers of the norm character O×
K,p → Z×

p are in W(U),
and the closure of these (in either the formal or the rigid Zariski topology) is a formal
subscheme of W of dimension 1; so the dimension of the rigid Zariski closure of the
locally algebraic weights in W(U) is exactly 1.

For the second statement, since W(U) = Q̂(U) is affine, it suffices to check that
there is no nonzero element of Zp�Q(U)� whose image under any locally constant
character is zero. This is clear since Zp�Q(U)� is by construction the inverse limit of
the Zp-group rings of the finite quotients of Q(U). �

We now lift these statements to E(U). If χ is a point of E(U), we say χ is lo-
cally algebraic if its image κ ∈ W(U) is so (equivalently, if it corresponds to an
algebraic Grössencharacter of K); if this is the case, we define c(χ) = c(κ), which is
the smallest power of p divisible by the p-part of the conductor of the corresponding
Grössencharacter.

Proposition 4.3. For any N < ∞, the set of locally algebraic points χ ∈ E(U)
with c(χ) < N (or with values in a given coefficient field E) is contained in a
one-dimensional closed formal subscheme of E(U). The set of all locally algebraic
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points is not contained in any proper closed subscheme of E(U), but is contained in a
one-dimensional closed subvariety of the generic fibre E(U)rig.

Proof. The map f : E(U) → W(U) is finite and flat. Hence, the preimage of a closed
formal subscheme of W(U) is a closed formal subscheme of E(U) of the same dimen-
sion. Hence for any N < ∞, the preimage of the formal subscheme of Proposition 4.1
is a one-dimensional closed formal scubscheme of E(U) containing every locally alge-
braic point χ ∈ E(U) with c(χ) < N . Similarly, the preimage of the subvariety of
W(U)rig given by Proposition 4.2 is a closed rigid subvariety of E(U)rig containing
every locally algebraic point.

It remains to show that the set of all locally algebraic points of E(U) is dense in the
formal Zariski topology, or, equivalently, that there is no element of Zp�H(U)� whose
image under every locally algebraic character is zero. As for W(U) above, this follows
from the fact that Zp�H(U)� is the inverse limit of the Zp-group rings of the finite
quotients of H(U); so every nonzero element of the ring Zp�H(U)� has nonzero image
under some locally constant, and hence a fortiori locally algebraic, character. �

It follows from the above proposition that for a field K satisfying our assumptions
(such as Q( 3

√
2)), a rigid-analytic function on E(U)rig is not determined by its values

at locally algebraic characters, but that a bounded rigid-analytic function is deter-
mined by these values.

Remark 4.1. If K does contain CM subfields, then there is a maximal such subfield
K0. Let us write e = 1+r2(K0)+δ(K0) if such a K0 exists, and e = 1 otherwise. Then
we have the following generalization of the above proposition, valid for an arbitrary
number field: for any N , the (rigid or formal) Zariski closure of the set of locally
algebraic points χ ∈ E(U) with c(χ) < N has dimension at most e, as does the rigid
Zariski closure of the set of all locally algebraic points. Moreover, this dimension is
strictly smaller than dim E(U) unless K is either totally real or CM.

5. Sketch of the GL2 theory

We now suppose K is an imaginary quadratic field in which p splits, and N is an
integral ideal of OK prime to p. For integers a, b ≥ 2, we let Sa,b(Γ1(Npr)) denote the
space of cuspidal cohomological automorphic forms for GL2 /K of weight (a, b) and
level Γ1(Npr); equivalently, this is the space H1

par(Y1(Npr),Va,b) where Y1(Npr) is
the appropriate arithmetic quotient of GL2(AK) and Va,b is the locally constant sheaf
on Y1(Npr) corresponding to the algebraic representation of ResK/Q GL2 of highest
weight (a, b). This is a finite-dimensional vector space over K.

We fix a choice of prime p | p, and hence an embedding K ↪→ Qp. For a locally
constant character χ of O×

K,p of conductor c, with values in a finite extension E of
Qp, we let Sa,b(Γ1(Npc), χ)ord denote the subspace of Sa,b(Γ1(Npc)) ⊗K E of forms
on which the diamond operators act via χ and which are ordinary at p and p.

We say that a locally algebraic weight κ : x �→ xaxbε(x) ∈ W, with ε of finite
order, is arithmetical if a, b ≥ 2.
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Theorem 5.1 ([8, Theorem 3.2]). There exists a finitely generated Zp�O×
K,p�-module

H such that for any arithmetical character κ as above,

Sa,b(Γ1(Npc, ε)ord ∼= H ⊗
Zp�O×

K,p�,κ E.

The sheaf H on W corresponds to the pushforward of O(E(U)) to W in the GL1

theory. Hida has given a characterization of its geometry analogous to proposition
3.1 above:

Theorem 5.2 ([8, Theorem 6.2]). The support of H is an equidimensional subscheme
of W of dimension 1.

We also have an obstruction to the existence of locally algebraic points arising from
archimedean considerations, analogous to Theorem 4.1:

Theorem 5.3 ([7, Section 3.6.1]). The space Sa,b(Γ1(Npc)) is zero unless a = b.

Hence, any arithmetical weight lying in Supp H is locally parallel, and thus con-
tained in a translate by some locally constant character of the one-dimensional sub-
scheme W0 parametrizing parallel weights.

Theorem 5.4 ([2, Lemma 8.8]). There exist triples (K, N, p) such that Supp H has
nonempty intersection with, but does not contain, the component of W0 containing
the character x �→ (NK/Q x)2.

Corollary 5.1. If (K, N, p) is such a triple, then Supp H has irreducible components
X of dimension 1 such that for any N < ∞, the set of arithmetical weights κ ∈ X
with c(κ) < N is finite; in particular, there are finitely many arithmetical weights in
X(E) for any given field E. Furthermore, the set of all arithmetical weights is not
dense in the rigid Zariski topology of Supp H.

Proof. By the preceding lemma, there exists a component X of Supp H which inter-
sects, but does not equal, the component of W0 containing x �→ (NK/Q x)2. Hence, it
has finite intersection with W0 or any translate of W0 by a locally constant charac-
ter (since Spf W0 is quasicompact), which establishes the first claim. For the second
claim, we note that the set of all locally parallel weights in W is the points of a one-
dimensional closed rigid-analytic subvariety, as in Proposition 4.2, each component
of which has finite intersection with X; so its intersection with X is not dense in the
rigid-analytic Zariski topology of X. �

However, since the set of locally parallel weights is not formally Zariski-closed in
W, one cannot rule out the possibility that the set of all arithmetical locally algebraic
weights in X is infinite (and hence dense in X for the formal Zariski topology).

Remark 5.1. It is asserted in [2, Theorem 8.9] that there are components X which
contain only finitely many arithmetical weights, but the proof given therein relies
on the assertion that the intersection of X with the set of locally parallel weights is
formally Zariski closed in X (and hence must be either finite or all of X); this is false
as the set of all locally parallel weights is not formally Zariski closed in W, and the
rigid space Wrig is not quasicompact. Similarly, the arguments of Theorem 7.1 of
op.cit. do not show that the Galois-theoretic deformation space constructed therein
has finitely many specializations with parallel Hodge–Tate weights, but rather the
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weaker statement that it has finitely many parallel weight specializations which are
crystalline at p and p (or become so over any fixed extension of Qp).

Remark 5.2. The essential difference between the GL1 and GL2 cases is that in the
latter we lack an explicit description of the subscheme Supp H. Thus, in the former
case we can show that every component of E(U) contains infinitely many points
corresponding to classical automorphic forms, while in the latter case we cannot rule
out the existence of irreducible components of Supp H containing only finitely many
such points — we merely assert that the existence of such components has not been
proven.
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