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A RELATION FOR GROMOV–WITTEN INVARIANTS OF LOCAL
CALABI–YAU THREEFOLDS

Siu-Cheong Lau, Naichung Conan Leung and Baosen Wu

Abstract. We compute certain open Gromov–Witten invariants for toric Calabi–Yau

threefolds. The proof relies on a relation for ordinary Gromov–Witten invariants for
threefolds under certain birational transformation, and a recent result of Kwokwai Chan.

1. Introduction

The aim of this paper is to compute genus zero open Gromov–Witten invariants
for toric Calabi–Yau threefolds, through a relation between ordinary local Gromov–
Witten invariants of the canonical line bundle KS of a projective surface S and the
canonical bundle KSn of a blow-up Sn of S at n points.

The celebrated SYZ mirror symmetry was initiated from the work of Strominger
et al. [19]. It successfully explains mirror symmetry when there is no quantum correc-
tion [15, 18]. It also works nicely for toric Fano manifolds [5]. Quantum corrections
are involved in this case, which are the open Gromov–Witten invariants counting
holomorphic disks bounded by Lagrangian torus fibers. Cho and Oh [7] classified
such holomorphic disks and computed the mirror superpotential. However, when the
toric manifold is not Fano, the moduli of holomorphic disks may contain bubble con-
figurations, leading to a nontrivial obstruction theory. The only known results are
the computations of the mirror superpotentials of Hirzebruch surface F2 by Fukaya
et al ’s [9] using their big machinery, and F2 and F3 by Auroux’s [1] via wall-crossing
technique (see also the excellent paper [2]).

Our first main result Theorem 4.1 identifies genus zero open Gromov–Witten in-
variants with ordinary Gromov–Witten invariants of another Calabi–Yau threefold.
As an illustration, we state its corollary for the case of canonical line bundles of toric
surfaces, avoiding technical terms at the moment.

Theorem 1.1 (Corollary of Theorem 4.1). Let S be a smooth toric projective surface
with canonical line bundle KS, which is itself a toric manifold. Let L ⊂ KS be a
Lagrangian toric fiber, which is a regular fiber of the moment map on KS equipped
with a toric Kähler form. We denote by β ∈ π2(KS , L) the class represented by a
holomorphic disk whose image lies in a fiber of KS → S. For any class α ∈ H2(S,Z)
represented by a curve C ⊂ S, we let α′ ∈ H2(S̃,Z) be the class represented by the
proper transform of C, where S̃ is the blow-up of S at one point.

Let nβ+α be the one-point genus zero open Gromov–Witten invariant of (KS , L)
(see equation (4) for its definition), and 〈1〉KS̃

0,0,α′ be genus zero Gromov–Witten
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invariant of KS̃ (see equation (2) for its definition). Suppose S̃ is Fano. Then

nβ+α = 〈1〉KS̃

0,0,α′ .

This result is used to derive open Gromov–Witten invariants in a recent paper [4]
on the SYZ program for toric Calabi–Yau manifolds. We prove Theorem 4.1 using
our second main result stated below and a generalized version of Chan’s result [3]
relating open and closed Gromov–Witten invariants.

Let S be a smooth projective surface and X = P(KS ⊕OS)→ S be the fiberwise
compactification of the canonical line bundle KS . Let Sn be the blowup of S at n
distinct points, and W = P(KSn⊕OSn) be the fiberwise compactification of KSn . We
relate certain n-point Gromov–Witten invariants of X to Gromov–Witten invariants
of W without point condition.

Theorem 1.2. Let X and W be defined above. Let h ∈ H2(X,Z) be the fiber class of
X → S and α ∈ H2(S,Z) viewed as a class in H2(X,Z) via the zero-section embedding
S = P(0⊕OS)→ X. Then for any n ≥ 0 we have

(1) 〈[pt], . . . , [pt]〉X0,n,α+nh = 〈1〉W0,0,α′ ,

where [pt] ∈ H6(X,Z) is the Poincaré dual of the point class, and α′ ∈ H2(Sn,Z) is
the proper transform of α.

Now we outline the proof of Theorem 1.2 in the case n = 1. Fix a generic fiber H of
X. Let x be the intersection point of H with the divisor at infinity P(KS ⊕ 0) ⊂ X.
We construct a birational map f : X π1←− X̃

π2��� W so that π1 is the blowup at
x, and π2 is a simple flop along H̃, which is the proper image of H under π1. We
compare Gromov–Witten invariants of X and W through the intermediate space X̃.
Equality (1) follows from the results of Gromov–Witten invariants under birational
transformations listed in Section 2.

We remark that Theorem 1.2 is a corollary of Proposition 3.1, which holds for
all genera. They can be generalized to the case when KS is replaced by other local
Calabi–Yau threefolds, as we shall explain in Section 3.

This paper is organized as follows. Section 2 serves as a brief review on definitions
and results that we need in Gromov–Witten theory. In Section 3, we prove Theorem
1.2 and its generalization to quasi-projective threefolds. In Section 4, we deal with
toric Calabi–Yau threefolds and prove Theorem 4.1. Finally in Section 5, we generalize
Theorem 1.2 to Pn-bundles over an arbitrary smooth projective variety.

2. Gromov–Witten invariants under birational maps

In this section, we review Gromov–Witten invariants and their transformation under
birational maps.

Let X be a smooth projective variety. Let Mg,n(X,β) be the moduli space of stable
maps f : (C;x1, . . . , xn) → X with genus g(C) = g and [f(C)] = β ∈ H2(X,Z). Let
evi : Mg,n(X,β) → X be the evaluation maps at marked points f 
→ f(xi). The
genus g n-pointed Gromov–Witten invariant for classes γi ∈ H∗(X), i = 1, . . . , n, is
defined as

〈γ1, · · · , γn〉Xg,n,β =
∫

[Mg,n(X,β)]vir

n∏
i=1

ev∗
i (γi).
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When the expected dimension of Mg,n(X,β) is zero, for instance, when X is a
Calabi–Yau threefold and n = 0, we will be interested primarily in the invariant

(2) 〈1〉Xg,0,β =
∫

[Mg,0(X,β)]vir
1,

which equals to the degree of the 0-cycle [Mg,0(X,β)]vir of Mg,0(X,β).
Roughly speaking, the invariant 〈γ1, . . . , γn〉Xg,n,β is a virtual count of genus g curves

in the class β which intersect with generic representatives of the Poincaré dual PD(γi)
of γi. In particular, if we want to count curves in a homology class β passing through
a generic point x ∈ X, we simply take some γi to be [pt], the Poincaré dual of a point.
In the genus zero case, there is an alternative way to do this counting: let π : X̃ → X
be the blow-up of X at one point x; we count curves in the homology class π!(β)− e,
where π!(β) = PD(π∗PD(β)) and e is the line class in the exceptional divisor. By
the result of Hu [13] (or the result of Gathmann [12] independently), this gives the
desired counting:

Theorem 2.1 ([12, 13]). Let π : X̃ → X be the blow-up of X at one point. Let e be
the line class in the exceptional divisor. Let β ∈ H2(X,Z), γ1, . . . , γn ∈ H∗(X). Then
we have

〈γ1, . . . , γn, [pt]〉X0,n+1,β = 〈π∗γ1, . . . , π
∗γn〉X̃0,n,π!(β)−e

where π!(β) = PD(π∗PD(β)).

Another result that we need is the transformation of Gromov–Witten invariants
under flops.

Let f : X ��� Xf be a simple flop between two threefolds along a smooth (−1,−1)
rational curve. There is a natural isomorphism

ϕ : H2(X,Z) −→ H2(Xf ,Z).

Suppose that Γ is an exceptional curve in X and Γf is the corresponding exceptional
curve in Xf . Then

ϕ([Γ]) = −[Γf ].
The following theorem is proved by Li and Ruan [17].

Theorem 2.2 ([17]). Let f : X ��� Xf be a simple flop between threefolds and ϕ be
the isomorphism given above. If β �= m[Γ] ∈ H2(X,Z) for any exceptional curve Γ
and γi ∈ H∗(Xf ), we have

〈ϕ∗γ1, . . . , ϕ
∗γn〉Xg,n,β = 〈γ1, . . . , γn〉Xf

g,n,ϕ(β).

3. Gromov–Witten invariants of projectivization of KS

We are now ready to prove Theorem 1.2 and its generalization to certain quasi-
projective threefolds.

Let S be a smooth projective surface. The fiberwise compactification p : X =
P(KS ⊕ OS) → S is a P1-bundle. We embed S into X as the zero section of the
bundle KS , i.e., S = P(0⊕OS) ⊂ X. We denote S+ := P(KS⊕0) ⊂ X be the section
at infinity of p : X → S, and let h be the fiber class of p. Then any class β ∈ H2(X,Z)
which is represented by a holomorphic curve can be written as α+nh, where n is the
intersection number of β with the infinity section S+, and p∗(β) = α ∈ H2(S,Z). By
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Riemann–Roch theorem, the expected dimension of M0,n(X,β) is 3n. One has the
Gromov–Witten invariant

〈[pt], . . . , [pt]〉X0,n,β ,

which counts rational curves in the class β passing through n generic points.
Let x1, . . . , xn be n distinct points in X and yi = p(xi) ∈ S. Consider the blow-up

π : Sn → S of S along the points y1, . . . , yn with exceptional divisors e1, . . . , en. For
α ∈ H2(S,Z), we let β′ ∈ H2(Sn,Z) to be the class π!α−∑n

i=1 ei, which is called the
strict transform of α. When α is represented by some holomorphic curve C, β′ is the
class represented by the strict transform of C under the blowup π.

Let W = P(KSn⊕OSn) be the fiberwise compactification of KSn . Then β′ defined
above is a homology class of W since Sn ⊂ W . The moduli space M0,0(W,β′) has
expected dimension zero, we get the Gromov–Witten invariant 〈1〉W0,0,β′ .

Proposition 3.1. Let S be a smooth projective surface. Denote p : X = P(KS ⊕
OS)→ S . Let X1 be the blowup of X at a point x on the infinity section of X → S.
Let W = P(KS1 ⊕ OS1) where π : S1 → S is the blowup of S at the point y = p(x).
Then W is a simple flop of X1 along the proper transform H̃ of the fiber H through x.

Proof. Since H̃ is the proper transform of H under the blowup π1 : X1 → X at
x, H̃ is isomorphic to P1 with normal bundle O(−1) ⊕ O(−1). We have a simple
flop f : X1 ��� X ′ along H̃. Next we show that X ′ ∼= W . To this end, we use an
alternative way to describe the birational map fπ−1

1 : X ��� X ′.
It is well known that a simple flop f is a composite of a blowup and a blowdown.

Let π2 : X2 → X1 be the blowup of X1 along H̃ with exceptional divisor E2
∼= H̃×P1.

Because the restriction of normal bundle of E2 to H̃ is O(−1), we can blow down X2

along the H̃ fiber direction of E2 to get π3 : X2 → X ′. Of course we have f = π3π
−1
2

and π3π
−1
2 π−1

1 : X ��� X ′.
Notice that the composite π−1

2 π−1
1 : X ��� X2 can be written in another way.

Let ρ1 : Z1 → X be the blowup of X along H with exceptional divisor E′. Let
F be the inverse image ρ−1(x). Then F ∼= P1. Next we blow up Z1 along F to
get ρ2 : Z2 → Z1. It is straightforward to verify that Z2 = X2 and ρ1ρ2 = π1π2.
Thus we have π3π

−1
2 π−1

1 = π3(ρ1ρ2)−1 : X ��� X ′, from which it follows easily that
X ′ ∼= W . �
Corollary 3.1. With notations as in the proposition, and let e1 be the exceptional
curve class of π, we have

(3) 〈1〉X1
g,0,β = 〈1〉Wg,0,β′ ,

where β = α+ kH̃ and β′ = π!α− ke1 for any nonzero α ∈ H2(S,Z).

Proof. From the proposition, we know there is a flop f : X1 ��� W . Applying
Theorem 2.2 to the flop f , since ϕ([H̃]) = −e1, we get

ϕ(β) = ϕ((π!
1α) + [kH̃]) = π!α− ke1 = β′.

Then (3) follows directly. �
When S1 is a Fano surface, KS1 is a local Calabi–Yau threefold and curves inside

S1 can not be deformed away from S1. Indeed any small neighborhood NS1 of S1

(resp. NS∪C of S ∪ C) inside any Calabi–Yau threefold has the same property. Here
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C is a (−1,−1)-curve, which intersects S transversely at a single point. Therefore
we can define local Gromov–Witten invariants for NS1 and NS∪C . Using a canonical
identification,

H2 (S1) � H2 (S)⊕ Z 〈e1〉 � H2 (S ∪ C) ,
the above corollary implies that the local Gromov–Witten invariants for local Calabi–
Yau threefolds NS1 and NS∪C are the same. When the homology class in S1 does not
have e1-component, this becomes simply the local Gromov–Witten invariants for NS .
This last relation for Gromov–Witten invariants of NS1 and NS was pointed out to us
by Hu [14] and he proved this result by the degeneration method. This relationship
was first observed by Chiang et al. [6] in the case S is P2 and genus is zero by explicit
calculations.

These results can be generalized to the case when KS is replaced by other local
Calabi–Yau threefolds. The illustration of such a generalization is given at the end of
this section.

Now we prove Theorem 1.2, that is

〈[pt], . . . , [pt]〉X0,n,β = 〈1〉W0,0,β′ .

Proof of Theorem 1.2. First, we assume n = 1, that is, π : S1 → S is a blowup of S
at one point y with exceptional curve class e1 and W = P(KS1 ⊕OS1). We need to
show that

〈[pt]〉X0,1,β = 〈1〉W0,0,β′ ,

where β = α+ h and β′ = π!α− e1.
Applying Theorem 2.1 to π1 : X1 → X, and notice that

π!
1(β)− e = π!

1(α+ h)− e = π!
1α+ [H̃],

which we denote by β1, we then have 〈[pt]〉X0,1,β = 〈1〉X1
0,0,β1

. Next we apply Proposition
3.1 for k = 1, we get

〈1〉X1
0,0,β1

= 〈1〉W0,0,β′ ,

which proves the result for n = 1.
For n > 1, we simply apply the above procedure successively. �

In particular, when S = P2 and n = 1, S1 is the Hirzebruch surface F1. We use �
to denote the line class of P2. The class of exceptional curve e represents the unique
minus one curve in F1 and f = π!�−e is its fiber class. In this case, the corresponding
class β′ = kπ!�− e = (k − 1)e + kf . The values of N0,β′ have been computed in [6].
Starting with k = 1, they are −2, 5,−32, 286,−3038, 35870. (See Table 1.)

We remark that Theorem 1.2 can be generalize to quasi-projective threefolds with
properties we describe below. Let X be a smooth quasi-projective threefold. Assume
there is a distinguished Zariski open subset U ⊂ X, so that U is isomorphic to the
canonical line bundle KS over a smooth projective surface S, and there is a Zariski
open subset S′ ⊂ S, so that each fiber F of KS over S′ is closed in X. Typical
examples of such threefolds include a large class of toric Calabi–Yau threefolds.

Theorem 1.2 still holds for such threefolds, provided that the blow-up of the surface
S mentioned above at a generic point is Fano. Since we will not use this generalization
in the paper, we only sketch the proof.



948 SIU-CHEONG LAU, NAICHUNG CONAN LEUNG AND BAOSEN WU

Table 1. Invariants of KF1 for classes ae+ bf

b 0 1 2 3 4 5 6
a
0 −2 0 0 0 0 0
1 1 3 5 7 9 11 13
2 0 0 −6 −32 −110 −288 −644
3 0 0 0 27 286 1651 6885
4 0 0 0 0 −192 −3038 −25216
5 0 0 0 0 0 1695 35870
6 0 0 0 0 0 0 −17064

First, we construct a partial compactification X̄ of X. Given a generic point
x ∈ U , we have a unique fiber through x, say H. Let {y} = H ∩ S. Take a small
open neighborhood y ∈ V , we compactify KV along the fiber by adding a section at
infinity as we did before. We call the resulting variety by X̄.

The Gromov–Witten invariant 〈[pt]〉X̄0,1,β is well defined. Indeed, let β ∈ H2(X̄,Z);
and suppose β = α + [H] for some α in H2(S,Z). The moduli space of genus zero
stable maps to X̄ representing β and passing through the generic point x is compact
since S is Fano. Then the invariants can be defined as before.

To show the equality 〈[pt]〉X̄0,1,β = 〈1〉S̃0,0,β′ , we construct a birational map f : X̄ ���
W as in the proof of Theorem 1.2. Let S̃ ⊂ W be the image of S. Then S̃ is the
blowup of S at y. Let β′ ∈ H2(S̃,Z) be the strict transform of α. Since S̃ is Fano,
we can define local Gromov–Witten invariant 〈1〉S̃0,0,β′ . The equality follows directly
as in the proof of Theorem 1.2.

4. Toric Calabi–Yau threefolds

In this section, we study open Gromov–Witten invariants of a toric Calabi–Yau man-
ifold and prove our main Theorem 4.1. As an application, we show that certain open
Gromov–Witten invariants for toric Calabi–Yau threefolds can be computed via local
mirror symmetry.

First, we recall the standard notations. Let N be a lattice of rank 3, M be its
dual lattice, and Σ0 be a strongly convex simplicial fan supported in NR, giving rise
to a toric variety X0 = XΣ0 . (Σ0 is ‘strongly convex’ means that its support |Σ0| is
convex and does not contain a whole line through the origin.) Denote by vi ∈ N the
primitive generators of rays of Σ0, and denote by Di the corresponding toric divisors
for i = 0, . . . ,m− 1, where m ∈ Z≥3 is the number of such generators.

Calabi–Yau condition for X0: There exists ν ∈ M such that (ν , vi) = 1 for all
i = 0, . . . ,m− 1.

By fixing a toric Kaehler form ω on X0, we have a moment map μ : X0 → P0,
where P0 ⊂MR is a polyhedral set defined by a system of inequalities

(vj , ·) ≥ cj
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for j = 0, . . . ,m− 1 and suitable constants cj ∈ R. (Figure 2 shows two examples of
toric Calabi–Yau varieties.)

Let L ⊂ X0 be a regular fiber of μ, and π2(X0, L) be the group of disk classes. For
b ∈ π2(X0, L), the most important classical quantities are the area

∫
b
ω and the Maslov

index μ(b). By [7], π2(X0, L) is generated by basic disk classes βi for i = 0, . . . ,m−1,
where each βi corresponds to the ray generated by vi.

Other than these two classical quantities, one has the one-pointed genus-zero
open Gromov–Witten invariant associated to b defined by Fukaya et al. [8] as fol-
lows. Let M1(X0, b) be the moduli space of stable maps from bordered Riemann
surfaces of genus zero with one boundary marked point to X0 in the class b, and
denote by [M1(X0, b)] its virtual fundamental class. One has the evaluation map
ev : M1(X0, b)→ L. The one-pointed open Gromov–Witten invariant associated to b
is defined as

(4) nb :=
∫

[M1(X0,b)]

ev∗[pt],

where [pt] ∈ Hn(L) is the Poincaré dual of a point in L. Since the expected dimension
ofM1(X0, b) is μ(b)+n−2 and ev∗[pt] is of degree n, nb is non-zero only when μ(b) = 2.

To investigate genus zero open Gromov–Witten invariants of a toric Calabi–Yau
manifold X0, we’ll need the following simple lemma for rational curves in toric vari-
eties:

Lemma 4.1. Let Y be a toric variety which admits ν ∈ M such that ν defines a
holomorphic function on Y whose zeros contain all toric divisors of Y . Then the
image of any non-constant holomorphic map u : P1 → Y lies in the toric divisors of
Y . In particular, this holds for a toric Calabi–Yau variety.

Proof. Denote the holomorphic function corresponding to ν ∈ M by f . Then f ◦ u
gives a holomorphic function on P1, which must be a constant by maximal principle.
f ◦ u cannot be constantly non-zero, or otherwise the image of u lies in (C×)n ⊂ Y ,
forcing u to be constant. Thus f ◦ u ≡ 0, implying the image of u lies in the toric
divisors of Y .

For a toric Calabi–Yau variety X0, (ν , vi) = 1 > 0 for all i = 0, . . . ,m− 1 implies
that the meromorphic function corresponding to ν indeed has no poles. �

As a consequence to the above lemma, we have the following:

Proposition 4.1. Assume the notations introduced above. For a disk class
b ∈ π2(X0, L) which has Maslov index two, M1(X0, b) is empty unless

(1) b = βi for some i; or
(2) b = βi + α, where the corresponding toric divisor Di is compact and

α ∈ H2(X0,Z) is represented by a rational curve.

Proof. By Theorem 11.1 of [8], M1(X0, b) is empty unless b =
∑

i kiβi +
∑

j αj where
ki ∈ Z≥0 and each αj ∈ H2(X0,Z) is realized by a holomorphic sphere. Since X0 is
Calabi–Yau, every αj has Chern number zero. Thus

2 = μ(b) =
∑

i

kiμ(βi) =
∑

i

2ki,
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where μ(b) denotes the Maslov index of b. Thus b = βi + α for some i = 0, . . . ,m− 1
and α ∈ H2(X0,Z) is realized by some chains Q of non-constant holomorphic spheres
in X0.

Now suppose that α �= 0, and so Q is not a constant point. By Lemma 4.1, Q must
lie inside

⋃m−1
i=0 Di. Q must have non-empty intersection with the holomorphic disk

representing βi ∈ π2(X0, L) for generic L, implying some components of Q lie inside
Di and have non-empty intersection with the torus orbit (C×)2 ⊂ Di. But if Di is
non-compact, then the fan of Di (as a toric manifold) is simplicial convex incomplete,
and so Di is a toric manifold satisfying the condition of Lemma 4.1. Then Q has
empty intersection with the open orbit (C×)2 ⊂ Di, which is a contradiction. �

It was shown in [7, 8] that nb = 1 for basic disc classes b = βi. The remaining task
is to compute nb for b = βi + α with nonzero α ∈ H2(X0). In this section we prove
Theorem 4.1, which relates nb to certain closed Gromov–Witten invariants, which can
then be computed by usual localization techniques.

Suppose we would like to compute nb for b = βi +α, and without loss of generality
let’s take i = 0 and assume that D0 is a compact toric divisor. We construct a toric
compactification X of X0 as follows. Let v0 be the primitive generator corresponding
to D0, and we take Σ to be the refinement of Σ0 by adding the ray generated by
v∞ := −v0 (and then completing it into a convex fan). We denote by X = XΣ

the corresponding toric variety, which is a compactification of X0. We denote by
h ∈ H2(X,Z) the fiber class of X, which has the property that h ·D0 = h ·D∞ = 1
and h ·D = 0 for all other irreducible toric divisors D. Then for α ∈ H2(X0,Z), we
have the ordinary Gromov–Witten invariant 〈[pt]〉X0,1,h+α.

When X0 = KS for a toric Fano surface S and D0 is the zero section of KS → S, by
comparing the Kuranishi structures on moduli spaces, it was shown by Chan [3] that
the open Gromov–Witten invariant nb indeed agrees with the closed Gromov–Witten
invariant 〈[pt]〉X0,1,h+α:

Proposition 4.2 ([3]). Let X0 = KS for a toric Fano surface S and X be the fiberwise
compactification of X0. Let b = βi + α with βi · S = 1 and α ∈ H2(S,Z). Then

nb = 〈[pt]〉X0,1,h+α.

Indeed his proof extends to our setup without much modification, and for the sake
of completeness we show how it works:

Proposition 4.3 (slightly modified from [3]). Let X0 be a toric Calabi–Yau manifold
and X be its compactification constructed above. Let b = βi + α with βi · S = 1
and α ∈ H2(S,Z), and we assume that all rational curves in X representing α are
contained in X0. Then

nb = 〈[pt]〉X0,1,h+α.

Proof. For notation simplicity let Mop := M1(X0, b) be the open moduli and Mcl :=
M1(X,h+α) be the corresponding closed moduli. By evaluation at the marked point
we have a T-equivariant fibration

ev : Mop → T,
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whose fiber at p ∈ T ⊂ X0 is denoted as M ev=p
op . Similarly we have a TC-equivariant

fibration
ev : Mcl → X̄,

whose fiber is M ev=p
cl . By the assumption that all rational curves in X representing

α is contained in X0, one has

M ev=p
op = M ev=p

cl .

There is a Kuranishi structure on M ev=p
cl which is induced from that on Mcl (please

refer to [11, 10] for the definitions of Kuranishi structures). Transversal multisections
of the Kuranishi structures give the virtual fundamental cycles [Mop] ∈ Hn(X0,Q)
and [M ev=p

op ] ∈ H0({p},Q). In the same way we obtain the virtual fundamental cycles
[Mcl] ∈ H2n(X,Q) and [M ev=p

cl ] ∈ H0({p},Q). By taking the multisections to be TC-
(T-) equivariant so that their zero sets are TC- (T-) invariant,

deg[M
ev=p

cl/op] = deg[M cl/op]

and thus it remains to prove that the Kuranishi structures on M ev=p
cl and M ev=p

op are
the same.

Let [ucl] ∈M ev=p
cl , which corresponds to an element [uop] ∈M ev=p

op . ucl : (Σ, q)→
X is a stable holomorphic map with ucl(q) = p. Σ can be decomposed as Σ0 ∪ Σ1,
where Σ0

∼= P1 such that u∗[Σ0] represents h, and u∗[Σ1] represents α. Similarly the
domain of uop can be docomposed as Δ ∪ Σ1, where Δ ⊂ C is the closed unit disk.

We have the Kuranishi chart (Vcl, Ecl,Γcl, ψcl, scl) around ucl ∈ M ev=p
cl , where we

recall that Ecl⊕ Im(Ducl ∂̄) = Ω(0,1)(Σ, u∗clTX) and Vcl = {∂̄f ∈ E; f(q) = p}. On the
other hand let (Vop, Eop,Γop, ψop, sop) be the Kuranishi chart around uop ∈M ev=p

op .
Now comes the key: since the obstruction space for the deformation of ucl|Σ0 is

0, Ecl is of the form 0⊕ E′ ⊂ Ω(0,1)(Σ0, ucl|∗Σ0
TX)× Ω(0,1)(Σ1, ucl|∗Σ1

TX). Similarly
Eop is of the form 0 ⊕ E′′ ⊂ Ω(0,1)(Δ, uop|∗ΔTX) × Ω(0,1)(Σ1, uop|∗Σ1

TX). But since
Ducl|Σ1

∂̄ = Duop|Σ1
∂̄, E′ and E′′ can be taken as the same subspace! Once we do this,

it is then routine to see that (Vcl, Ecl,Γcl, ψcl, scl) = (Vop, Eop,Γop, ψop, sop). �

Theorem 4.1. Let X0 be a toric Calabi–Yau threefold and denote by S the union
of its compact toric divisors. Let L be a Lagrangian torus fiber and b = β + α ∈ π2

(X0, L), where α ∈ H2(S) is represented by a rational curve and β ∈ π2(X0, L) is one
of the basic disk classes.

Given this set of data, there exists a toric Calabi–Yau threefold W0 with the fol-
lowing properties:

(1) W0 is birational to X0.
(2) Let S1 ⊂ W0 be the union of compact divisors of W0. Then S1 is the blowup

of S at one point.
(3) Denote by α′ ∈ H2(S1) the class of strict transform of the rational curve

representing α ∈ H2(S). Assume that every rational curve representative of
α′ in W0 lies in S1. Then the open Gromov–Witten invariant nb of (X0, L)
is equal to the ordinary Gromov–Witten invariant 〈1〉W0

0,0,α′ of W0, that is,

nb = 〈1〉W0
0,0,α′ .
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Figure 1. A flop

In particular for X0 = KS , W0 is KS̃ by this construction, and so we obtain
Theorem 1.1 as its corollary.

Proof. We first construct the toric variety W0. To begin with, let D∞ be the toric
divisor corresponding to v∞. Let x ∈ X be one of the torus-fixed points contained
in D∞. First we blow up x to get X1, whose fan Σ1 is obtained by adding the ray
generated by w = v∞ + u1 + u2 to Σ, where v∞, u1 and u2 are the normal vectors to
the three facets adjacent to x. There exists a unique primitive vector u0 �= w such that
{u0, u1, u2} generates a simplicial cone in Σ1 and u0 corresponds to a compact toric
divisor of X1: If {v0, u1, u2} spans a cone of Σ1, then take u0 = v0; otherwise since
Σ1 is simplicial, there exists a primitive vector u0 ⊂ R〈v0, u1, u2〉 with the required
property. Now 〈u1, u2, w〉R and 〈u1, u2, u0〉R form two adjacent simplicial cones in Σ1,
and we may employ a flop to obtain a new toric variety W , whose fan ΣW contains
the adjacent cones 〈w, u0, u1〉R and 〈w, u0, u2〉R (see Figure 1).
W is the compactification of another toric Calabi–Yau W0 whose fan is constructed

as follows: First we add the ray generated by w to Σ0, and then we flop the adjacent
cones 〈w, u1, u2〉 and 〈u0, u1, u2〉. W0 is Calabi–Yau because

(ν , w) = 1

and a flop preserves this Calabi–Yau condition. ΣW is recovered by adding the ray
generated by v∞ to the fan ΣW0 .

Now we analyze the transform of classes under the above construction. The class
h ∈ H2(X,Z) can be written as h′ +δ, where h′ ∈ H2(X,Z) is the class corresponding
to the cone 〈u1, u2〉R of Σ and δ ∈ H2(X0,Z). Let h′′ ∈ H2(X1,Z) be the class
corresponding to {u1, u2} ⊂ Σ1, which is flopped to e ∈ H2(W,Z) corresponding to
the cone 〈w, u0〉R of ΣW . Finally, let δ̃, α̃ ∈ H2(W,Z) be classes corresponding to
δ, α ∈ H2(X1,Z), respectively, under the flop. Then α′ = δ̃ + α̃ − e is actually the
strict transform of α.

Applying Proposition 4.3 and Theorem 1.2, we obtain the equality

nb = 〈1〉W0
0,0,α′ .

�

Finally, we give an example to illustrate the open Gromov–Witten invariants.

Example 4.1. Let X0 = KP2 . There is exactly one compact toric divisor D0 which
is the zero section of X0 → P2. The above construction gives W0 = KF1 (Figure
2). Let α = kl ∈ H2(X0,Z), where l is the line class of P2 ⊂ KP2 and k > 0. By
Theorem 4.1,

nβ0+kl = 〈1〉W0
0,0,kl−e = 〈1〉W0

0,0,kf+(k−1)e
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Figure 2. Polytope picture for KP2 and KF1

where e is the exceptional class of F1 ⊂ KF1 and f is the fiber class of F1 → P1. The
first few values of these local invariants for KF1 are listed in Table 1.

5. A generalization to Pn-bundles

In this section, we generalize Theorem 1.2 to higher dimensions, that is, to Pn-bundles
over an arbitrary smooth projective variety.

Let X be an n-dimensional smooth projective variety. Let F be a rank r vector
bundle over X with 1 ≤ r < n. Let p : W = P(F ⊕OX)→ X be a Pr-bundle over X.
There are two canonical subvarieties of W , say W0 = P(0⊕OX) and W∞ = P(F ⊕0).
We have W0

∼= X.
Let S ⊂ X be a smooth closed subvariety of codimension r+1 with normal bundle

N . Let π : X̃ → X be the blowup of X along S with exceptional divisor E = P(N).
Then F ′ = π∗F ⊗OX̃(E) is a vector bundle of rank r over X̃. Similar to p : W → X,
we let p′ : W ′ = P(F ′ ⊕OX̃)→ X̃.

It is easy to see that W and W ′ are birational. We shall construct an explicit
birational map g : W ��� W ′. It induces a homomorphism between groups

g′ : H2(W,Z)→ H2(W ′,Z).

Let β = h + α ∈ H2(W,Z) with h the fiber class of W and α ∈ H2(X,Z). Then we
establish a relation between certain Gromov–Witten invariants of W and W ′.

Proposition 5.1. Let Y = P(FS ⊕ 0) ⊂W . For g : W ��� W ′, we have

〈γ1, γ2, · · · , γm−1, PD([Y ])〉W0,m,β = 〈γ′1, · · · , γ′m−1〉W
′

0,m−1,β′ .

Here γ′i is the image of γi under H∗(W )→ H∗(W ′) and β′ = g′(β).

The birational map g : W ��� W ′ we shall construct below can be factored as

W
π−1
1��� W̃ f��� W ′.

Here π1 : W̃ →W is a blowup along a subvariety Y . We make the following assump-
tion:

(A) Let β = h + α ∈ H2(W,Z) with h the fiber class of W and α ∈ H2(X,Z).
Every curve C in class β can be decomposed uniquely as C = H ∪C ′ with H a fiber
and C ′ a curve in X.

It follows that the intersection of C and Y is at most one point. Under this
assumption we generalize Theorem 2.1 in a straightforward manner as follows.
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Proposition 5.2. Let the notation be as above. Let E′ be the exceptional divisor of
π1. Let e be the line class in the fiber of E′ → Y . Suppose the assumption (A) holds,
we have

〈γ1, γ2, · · · , γm−1, PD([Y ])〉W0,m,β = 〈γ̃1, . . . , γ̃m−1〉W̃0,m−1,β1
,

where γ̃i = π∗
1γi and β1 = π!(β)− e.

The proof of Proposition 5.1 is similar to that of Theorem 1.2.

Proof of Proposition 5.1. Since g = fπ−1
1 , applying Proposition 5.2, it suffices to

show
〈γ̃1, · · · , γ̃m−1〉W̃0,m−1,β1

= 〈γ′1, · · · , γ′m−1〉W
′

0,m−1,β′

for the ordinary flop f : W̃ ��� W ′.
Recall that Lee et al. [16] proved that for an ordinary flop f : M ��� Mf of

splitting type, the big quantum cohomology rings of M and Mf are isomorphic. In
particular, their Gromov–Witten invariants for the corresponding classes are the same.
Therefore, the above identity follows. �

In the rest of the section, we construct the birational map g : W ��� W ′ in two
equivalent ways.

Recall that S ⊂ X is a subvariety. Let pS : Z = W ×X S → S be the restriction
of p : W → X to S. Then Z = P(FS ⊕ OS) with FS the restriction of F to S. We
denote Y = Z ∩W∞ = P(FS ⊕ 0), and q : Y → S the restriction of pS to Y . Since Y
is a projective bundle over S, we let OY/S(−1) be the tautological line bundle over
Y . The normal bundle of Y in Z is NY/Z = OY/S(1).

We start with the first construction of g. Let π1 : W̃ → W be the blowup of W
along Y . Since the normal bundle NY/W is equal to NY/Z⊕NY/W∞ = OY/S(1)⊕q∗N ,
the exceptional divisor of π1 is

E′ = P(OY/S(1)⊕ q∗N).

Let Z̃ be the proper transform of Z and Ỹ = Z̃ ∩ E′. The normal bundle of Z̃ in W̃
is Ñ = p∗SN ⊗OZ̃(−Ỹ ).

Because Z ′ ∼= Z is a Pr-bundle over S, and the restriction of Ñ to each Pr-fiber of
Z̃ is isomorphic to O(−1)⊕r+1, we have an ordinary Pr-flop f : W̃ ��� W̃f along Z̃.
It can be verified that W̃f = W ′ after decomposing f as a blowup and a blowdown.
Finally we simply define g as the composite fπ−1

1 : W ��� W ′.
We describe the second construction of g, from which it is easy to see the relation

W̃f = W ′.
We let ρ1 : W1 → W be the blowup of W along Z whose exceptional divisor is

denoted by E1. Because the normal bundle of Z in W is q∗N for q : Z → S, we know

E1 = P(q∗N) ∼= Z ×S P(N) = Z ×S E.

Indeed, W1 is isomorphic to the Pr-bundle P(F1 ⊕OX̃) over X̃ with F1 = π∗F . Let
Y1 be the inverse image of Y . Now we let ρ2 : W2 →W1 be the blowup of W1 along Y1

with exceptional divisor E2. Let E′
1 be the proper transform of E1 and Y2 = E′

1∩E2.
Notice that E′

1
∼= E1, and the normal bundle of E1 is N1 = q∗N � OE/S(−1), we

know the normal bundle of E′
1 is N ′

1 = N1 ⊗OE′
1
(−Y2).
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Since E′
1
∼= Z ×S E is a Pr × Pr-bundle over S, composed with the projection

Z ×S E → E, we see that E′
1 → E is a Pr-bundle. Because the restriction of N ′

1

to the Pr-fiber of E′
1 → E is isomorphic to O(−1)⊕r+1, we can blowdown W2 along

these fibers of E′
1 to get π3 : W2 →W3 = W̃f . From this description it is easy to see

that W3 = W ′.
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