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AN EXAMPLE OF NON-HOMEOMORPHIC
CONJUGATE VARIETIES

C. S. Rajan

Abstract. We give examples of smooth projective varieties over complex numbers, in
the context of connected Shimura varieties, which are not homeomorphic to a conjugate
of itself by an automorphism of the complex numbers.

1. Introduction

Let X be a quasi-projective variety defined over C. Suppose σ is an automorphism
of C. Denote by Xσ := X ×σ C, the conjugate of X by the automorphism σ of
C, obtained by applying the automorphism σ to the coefficients of the polynomials
defining X. It is known that the varieties X and Xσ have the same Betti numbers.
In [10], Serre gave an example where the topological spaces X(C) and Xσ(C) are not
homeomorphic.

Recently, Milne and Suh [6] gave further examples in the context of connected
Shimura varieties. Their method is to find a conjugate such that the reductive group
underlying the Shimura datum is different, and then apply the super-rigidity results
of Margulis.

Our examples are in the same context as that of Milne and Suh, but we work with
Shimura’s construction of canonical models [12]. Shimura’s construction allows us to
identify the adelic congruence subgroup defining the conjugate variety as a conjugate
by an element of the adjoint group. We then appeal to Mostow rigidity and the failure
of strong approximation (or non-triviality of class number) for the adjoint group to get
at the desired examples. In our example, the congruent lattices defining the variety
and its conjugate are commensurable. Earlier in [9], we observed using Shimura’s
construction coupled with the theorems of Labesse and Langlands on the mulitplicity
of cusp forms for SL(1, D), that a Galois twist of these spaces attached to SL(1, D)
over the reflex field preserves the spectrum of the Laplacian; this provides examples
of locally symmetric spaces attached to a quaternion division algebra over a number
field, which are isospectral but not isometric.

Apart from the work of Milne and Suh, many other constructions of non-
homeomorphic conjugate varieties have been constructed by different methods. We
refer to [1, 2, 4, 5, 11] and references cited in these papers for different facets of this
problem. For example, in [2, 5], the construction of such examples is motivated by
the problem of knowing whether the Galois group acts faithfully on the components
of the moduli space of surfaces.
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2. The example

Let F be a totally real number field of degree at least two over Q. Let D be an
indefinite quaternion division algebra defined over F . We assume that D is split at
exactly one real place, say τ1 of F . This assumption allows us to assume that the
reflex field of (F, τ1) to be F itself. Let V be a vector space of rank n ≥ 2 over D,
equipped with a hermitian inner product with respect to the standard involution on
D. We assume that the inner product is definite on the spaces V ⊗τ R, for all real
embeddings τ of F different from τ1. In particular, since we have assumed that the
degree of F is at least two, the form h is anisotropic. Let G be the group of unitary
similitudes of h. We consider G as an algebraic group defined over F , and let Gd be
the derived group of G. Denote by PG the adjoint group attached to G, the group
obtained by taking the quotient of G modulo its centre. For an algebraic group H
defined over a number field F , we let H∞ = H(F ⊗R) be the real Lie group consisting
of the real points of H. Under our assumptions, it follows that

Gd,∞ � Sp(2n, R) × a compact group, n ≥ 2.

Let K∞ be a maximal compact subgroup of Gd,∞ and let X = Gd,∞/K∞ be the
non-compact symmetric space associated to Gd. By our assumptions, X is isomorphic
to the Siegel upper half-space Hn of dimension n. We also have a natural action of
G∞ on X. Denote by A the adele ring of F , and by Af the subring of finite adeles.
Let K be a compact open subgroup of G(Af ), and let Kd = K ∩Gd(Af ). Denote by

ΓK = G∞K ∩ G(F ) and Γd,K = Gd,∞Kd ∩ Gd(F ),

the corresponding arithmetic lattices in G(F ⊗ R) and Gd(F ⊗ R), respectively. We
assume that K is such that Γd,K is torsion-free, and the natural inclusion Γd,K ⊂ ΓK

is an isomorphism modulo the centre of ΓK . By a congruence subgroup we will either
mean a compact open subgroup contained in the group of finite adele points of the
algebraic group, or the corresponding arithmetic lattice contained in the real points
of the algebraic group.

By a theorem of Baily–Borel, the quotient space XK = ΓK\X is a connected,
smooth, projective variety. The fundamental group ΓK of the variety XK can be
identified with the projection of ΓK to PG∞, and also with the lattice Γd,K contained
in Gd,∞.

For an element x ∈ G(Af ), denote by Kx the conjugate lattice x−1Kx, and by x
its image in PG(Af ) (a bar on top will indicate the image in the adjoint group PG).
Further, let N(Kd) denote the normalizer of Kd in PG(Af ), where Kd is the image
of Kd in PG(Af ). The desired example is provided by the following theorem.

Theorem 2.1. With notation and assumptions as above, suppose x does not belong to
the set N(Kd)PG(F ). Then XK and XKx are conjugate by an automorphism σ of C,
but the respective fundamental groups ΓK and ΓKx are not isomorphic. In particular,
XK and XKx are not homeomorphic.

Proof. We first show that the varieties XK and XKx are conjugate by an automor-
phism of C. For this, we recall Shimura’s theory of canonical models [12]. Let
ν : G → Gm be the reduced norm. By class field theory, the subgroup F ∗ν(K) of the
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idele group A∗ defines an abelian extension FK of F . The reciprocity morphism of
class field theory,

rec : A∗/F ∗ → Gal(F ab/F ),

defines an element σ(x) ∈ Gal(F ab/F ) by the prescription

σ(x) = rec(ν(x)−1).

As a consequence of the main theorem of canonical models in [12, Theorem 2.5, p. 159,
Section 2.6], the variety XK has a model defined over the field FK , and

(2.1) X
σ(x)
K � XKx .

Thus, the varieties XK and XKx are conjugate.
Suppose on the contrary, that XK and XKx have isomorphic fundamental groups.

Since these spaces are Eilenberg–Maclane spaces, there exists a homotopy equivalence

φ : XK → XKx .

Since the lattices are irreducible in PG∞ and the real rank of PG is at least two, by
Mostow rigidity [7], the spaces XK and XKx are isometric.

Hence, there exists g ∈ PG∞ such that

g−1ΓKxg = ΓK .

Since the lattices ΓK and ΓKx are arithmetic and commensurable, it follows by a
theorem of Borel [3], that g ∈ PG(F ). Hence, there is an element g ∈ G(F ) satisfying,

g−1Γd,Kxg = Γd,K .

Consider now Gd(F ) embedded diagonally in Gd(Af ). By the strong approximation
theorem for Gd, the closure of Γd,K in Gd(Af ) can be identified with Kd. Further,
the closure of Γd,Kx in Gd(Af ) can be identified with g−1Kx

d g, where we now consider
g ∈ G(F ) as diagonally embedded in G(Af ). Hence, we have

g−1Kx
d g = g−1x−1Kd x g = Kd.

Projecting to PG, we obtain

g−1x−1Kd x g = Kd,

where Kd denotes the image of Kd in PG(Af ). This implies that x ∈ N(Kd)PG(F ),
contradicting our choice of x. �

2.1. Congruence subgroups with small normalizers. One way of producing
congruence lattices K and an element x ∈ G(Af ) satisfying the hypothesis of the
Theorem, is to impose an additional arithmetical condition on the field F . Let S be
a finite set of places of F containing the archimedean places and the finite places of
F at which D is ramified. Let Sf denote the subset of S which are non-Archimedean,
and S′ the complement of S in the collection of places of F .

We assume that the group CF,S/C2n
F,S is non-trivial, where CF,S is the S-class

group of F obtained by considering ideals without any S-component. Here C2n
F,S is

the subgroup consisting of the 2n-multiples of elements in CF,S . In particular, for
example, if S-class number of F is divisible by 2, then the above condition holds.



940 C. S. RAJAN

Since we are working with groups of type Cn, for v not in S, the group Gv :=
G×Spec F Spec Fv is split. We can assume that the groups Gd, PG extend to Chevalley
group schemes over the local ring Ov for v ∈ S′. Thus, we have an exact sequence
over Ov, v ∈ S′ of group schemes,

1 → Gm → G → PG → 1.

By Hilbert Theorem 90 for étale cohomology, we have a surjection G(Ov) →
PG(Ov) for v ∈ S′. Further, from Bruhat–Tits theory, we know that the groups
PG(Ov) are maximal compact and also maximal subgroups of PG(Fv). We can also
assume that the adele groups associated to G and PG are formed with respect to
these classes of compact open subgroups.

Now let KS
m =

∏
v∈S′ G(Ov) be a maximal compact subgroup of the group of S-

adeles G(AS), the subgroup of the adele group G(A) having no S-component. Here
by AS , we mean the subgroup of adeles of F having no S-component. We choose a
compact open subgroup of the form K = KSKS satisfying the following:

• The group KS is a compact open subgroup in GSf
:=

∏
v∈Sf

G(Fv).
• The group KS is a compact open subgroup of KS

m.
• The subgroup KS

d := KS ∩ Gd(AS) is normal in KS
m.

• The arithmetic lattice Γd,K is torsion-free.
This can be achieved by considering principal congruence subgroups at a finite col-
lection of places not in S of F .

Since KS
m =

∏
v∈S′ PG(Ov) is maximal in PG(AS), it follows from the maximality

of PG(Ov) and the fact that the groups PG(Fv) are simple, that the normalizer
N(KS

d ) of Kd in PG(AS) is precisely KS
m.

Thus, to produce an element x ∈ G(Af ) such that x does not belong to the
double coset N(Kd)PG(F ), it is enough to show that x does not belong to the set
Z(Af )GSf

KS
mG(F ). For this, it is enough to work with the S-adele component

xS ∈ G(AS) of x.
The reduced norm map ν : G → Gm induces a surjection ν : G(Af ) → A∗

f .
Hence, we need to show that the image group

ν
(
Z(Af )GSf

KS
mG(F ) ∩ G(AS)

)

is a proper subgroup of (AS)∗. Since the image lands in the subgroup (AS)∗2nν(KS
m)

F ∗, we need to know that the group

(AS)∗/(AS)∗2nF ∗ν(KS
m)

is non-trivial. Its image in the S-class group CF,S of F lies in the subgroup C2n
F,S .

Hence, if CF,S/C2n
F,S is non-trivial, we can find an element x ∈ G(Af ) such that x

does not lie in the coset N(Kd)G(F ).

Remark. The above construction is similar to and can be compared with the con-
struction given by Vignéras in [13], where she works with fields with class numbers
divisible by 2.

Remark. It is of interest to produce examples of congruence subgroups K such that
N(Kd)PG(F ) is not equal to PG(Af ) over an arbitrary field F without imposing
any arithmetical restrictions on F . This certainly seems plausible. For instance, if we
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are working with an arithmetical Riemann surface associated to an adelic congruence
subgroup K ⊂ SL1(D)(Af ), where D is a quaternion division algebra defined over
F , then N(K)/K gives raise to automorphisms of the Riemann surface. As K varies,
generically one expects that this automorphism group is small. However, it seems to
be quite delicate to produce such examples.

Let S be a sufficiently large set of places of F containing the archimedean places
and also the places at which the group Gd(Fv) is compact. The failure of strong
approximation for the adjoint group PG [8, Proposition 7.13] implies that the set
PGSPG(F ) is not dense in PG(A), where PGS =

∏
v∈S PG(Fv). Thus, there exists

a sufficiently small compact open subgroup M ⊂ PG(AS) such that MPGSPG(F ) is
not equal to the full adele group PG(A), where PG(AS) is the adele group associated
to PG without a S-component.

The problem can thus be reduced to the following question: given a non-
Archimedean local field F , a reductive, non-anisotropic group G defined over F , and
a congruence subgroup L ⊂ G(F ), to show that there exists a congruence subgroup
K such that its normalizer in G(F ) is contained in L. D. Prasad has shown me how
to construct such candidates of congruence subgroups with small normalizers: the
details, however, are not only somewhat complicated but also have to be worked out.
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Paris 258 (1964), 4194–4196.



942 C. S. RAJAN

[11] I. Shimada, Non-homeomorphic conjugate complex varieties, in ‘Singularities-Niigata–Toyama

2007’, 56, Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, 2009, 285–301.
[12] G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann.

Math. 91(2) (1970), 144–222.
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