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ON TYPE III1 FACTORS ARISING AS FREE PRODUCTS

Yoshimichi Ueda

Dedicated to Mariko, Rio, Mimi, and our baby — Mao

Abstract. Type III1 factors arising as (direct summands of) von Neumann algebraic
free products are investigated. In particular we compute Connes’ Sd- and τ -invariants

for those type III1 factors without any extra assumption.

1. Introduction

Let M1 and M2 be σ-finite von Neumann algebras equipped with faithful normal
states ϕ1 and ϕ2, respectively. The von Neumann algebraic free product (M,ϕ) of
(M1, ϕ1) and (M2, ϕ2) has been investigated so far by many hands. The questions
of factoriality, Murray–von Neumann–Connes type classification and fullness for M
are fundamental, but it is quite recent that they are solved completely. The complete
solution [25] is as follows. When M1 �= C �= M2, the resulting free product von
Neumann algebra M is always of the form Md ⊕Mc of multi-matrix algebra Md and
diffuse von Neumann algebra Mc possibly with M = Mc or equivalently Md = 0. The
center of M and the structure of (Md, ϕ|Md

) are described explicitly. If dim(M1) =
2 = dim(M2), then Mc

∼= L∞[0, 1] ⊗M2(C) and the free product state ϕ is tracial;
otherwise Mc is always a factor of type II1 or IIIλ (λ �= 0) with the T-set formula
T (Mc) = {t ∈ R |σϕ1

t = Id = σϕ2
t } and M ′

c ∩Mω
c = C.

Many fundamental questions on Mc still remain unsolved, and some of them were
stated in [25, Section 5]. The main purpose of the present notes is to study some of
those, and thus this means that the present work may be regarded as a continuation
of [25]. The most interesting question is roughly how the free product von Neumann
algebra M ‘remembers’ the given states ϕi, i = 1, 2. In view of this we are interested
in when ((Mc)ϕ|Mc )

′∩Mω
c becomes trivial. It was already established, see [25, Remark

4.2 (4)], that this is the case at least when both M1 and M2 are of type I with discrete
center. In the present notes we show that this is always the case if the given ϕ1 and ϕ2

are almost periodic. This in particular shows that the Sd-invariant Sd(Mc) is exactly
the multiplicative group algebraically generated by the point spectra of the modular
operators Δϕi , i = 1, 2, under the same hypothesis on ϕ1 and ϕ2 as above together
with the separability of preduals. We also give an opposite fact, that is, any finite
von Neumann algebra (allowed to be any multi-matrix algebra) can be the centralizer
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of the free product state on a certain free product type III1 factor (which depends on
a given finite von Neumann algebra). Remark that the modular operator associated
with the free product state that we construct has no eigenvalue except 1. Therefore
the next task should be to clarify when Mc has an almost periodic state. In fact, there
may a priori exist an almost periodic state onMc that is different from the free product
state ϕ|Mc . For the question we compute the τ -invariant τ(Mc) introduced by Connes
[4] in terms of given data without any extra assumption (except the separability of
preduals). This is nothing but a final result in the direction, generalizing all the
previously known results due to Shlyakhtenko [18, Corollary 8.4] (based on Barnett’s
work [1, Theorem 11]) and Vaes [26, Appendix 4]. Our result on τ(Mc) implies, under
the separability assumption of preduals again, that Mc possesses an almost periodic
state or weight if and only if the given ϕ1 and ϕ2 are almost periodic, or equivalently
so is ϕ.

The notations we employ in the present notes entirely follow our previous paper
[25]. Basics on von Neumann algebraic free products and ultraproducts of von Neu-
mann algebras are summarized in [25, Section 2]. We refer to [22] for standard theory
on von Neumann algebras including modular theory, and to Connes’ paper [4] (and
also Shlyakhtenko [19]) for general scheme of analysis on full factors of type III1.

2. Relative commutant ((Mc)ϕ|Mc
)′ ∩ Mω

c and Sd-invariant Sd(Mc)

Firstly we establish that any free product state of almost periodic ones satisfies a very
strong ergodicity property. We begin with the next lemma. It should be a folklore,
but we give a proof for the sake of completeness.

Lemma 2.1. Let N be a σ-finite von Neumann algebra equipped with an almost
periodic state ψ. If N is diffuse, then the centralizer Nψ must be diffuse.

Proof. On contrary, suppose that there is a minimal non-zero e ∈ Np
ψ. By the charac-

terization of modular automorphisms [22, Theorem VIII.1.2] we have σψ|eNet = σψ|eNe,
t ∈ R, so that (eNe)ψ|eNe = eNψe = Ce. By [2, Lemma 3.7.5.(c)] ψ|eNe is al-
most periodic again, and thus Δψ|eNe =

∑
λ>0 λEΔψ|eNe

({λ}). Since N is diffuse,
eNe � Ce = (eNe)ψ|eNe and thus EΔψ|eNe

({λ0}) �= 0 for some λ0 �= 1 (otherwise
Δψ|eNe must be 1; implying eNe = (eNe)ψ|eNe = Ce, a contradiction). By [21,
Lemma 1.12] there is a non-zero partial isometry v ∈ eNe so that σψ|eNet (v) = λit0 v.
Since v∗v, vv∗ ∈ (eNe)ψ|eNe = Ce, the partial isometry v is actually a unitary in
eNe. However, by e.g. [21, Lemma 1.6] one has ψ(e) = ψ|eNe(vv∗) = λ0ψ|eNe(v∗v) =
λ0ψ(e), which is impossible due to ψ(e) �= 0 and λ0 �= 1. Hence we are done. �

The above lemma with the proof of [25, Theorem 4.1] enables us to show the next
theorem.

Theorem 2.1. Let M1 and M2 be non-trivial σ-finite von Neumann algebras equipped
with faithful normal states ϕ1 and ϕ2, respectively. Denote by (M,ϕ) their free prod-
uct, and assume that dim(M1) + dim(M2) ≥ 5. Then, if both ϕ1 and ϕ2 are almost
periodic, then the restriction of ϕ to the diffuse factor part Mc (see Section 1) must
be almost periodic and satisfy the very strong ergodicity ((Mc)ϕ|Mc )

′ ∩Mω
c = C.
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Proof. The first assertion follows from [8, Proposition 4.2] (together with
[2, Lemma 3.7.5.(c)] when M �= Mc). In fact, the explicit description of the modular
operator Δϕ associated with ϕ (which is explained in [7, Section 1]) enables us to find
a total subset consisting of its eigenvectors in the GNS Hilbert space associated with
ϕ. Thus it suffices to show the latter assertion, i.e., ((Mc)ϕ|Mc )

′ ∩Mω
c = C.

Decompose Mi = Mid ⊕Mic into the ‘type I with discrete center’ part and the
diffuse part, i = 1, 2. We already confirmed, in [25, Remark 4.2 (4)], that ((Mc)ϕ|Mc )

′∩
Mω
c = C at least when both Mi = Mid, i = 1, 2, hold. In the case that either

M1 = M1c or M2 = M2c the desired (Mϕ)′ ∩Mω = C holds by the latter assertion of
[25, Theorem 3.7] since one free component has the diffuse centralizer and the other
does the non-trivial one by Lemma 2.1. Thus it suffices to consider the following three
cases:

(i) M1 = M1d ⊕M1c and M2 = M2d,
(ii) M1 = M1d and M2 = M2d ⊕M2c,
(iii) M1 = M1d ⊕M1c and M2 = M2d ⊕M2c.

Firstly, we deal with the cases (i), (ii), but it suffices to consider only (i) by symme-
try. Set N := (M1d⊕C1M1c)∨M2 inside M , which is the free product von Neumann
algebra of two type I von Neumann algebras with discrete center. Write p := 1M1c

for short. By Dykema’s free etymology technique (see e.g. [25, Lemma 2.2]) we have

(pMp, (1/ϕ1(p))ϕ|pMp) = (M1c, (1/ϕ1(p))ϕ1|M1c) � (pNp, (1/ϕ1(p))ϕ|pNp)

with cM (p) = cN (p). By [25, Theorem 4.1 and Remark 4.2 (4)] (or the structure
theorem for two freely independent projections, see [27, Example 3.6.7] and [6, The-
orem 1.1]) N = Nd ⊕Nc, the ‘type I with discrete center’ part and the diffuse part,
so that (Nc)ϕ|Nc is diffuse, and moreover p = pd ⊕ pc ∈ (Nd ⊕ Nc) ∩ Nϕ|N satisfies
that c(Nc)ϕ|Nc

(pc) = 1Nc and either pd = 0, pd = 1Nd , or pd is minimal and central
in Nd. In particular, (pNp)ϕ|pNp �= Cp. By Lemma 2.1 (M1c)ϕ1|M1c

is diffuse. There-
fore the latter assertion of [25, Theorem 3.7] shows that (p((Mc)ϕ|Mc )p)

′ ∩ (pMω
c p) =

((pMp)ϕ|pMp)
′ ∩ (pMp)ω = Cp (n.b. p ∈ Mc by [25, Theorem 4.1]). Consequently, if

c(Mc)ϕ|Mc
(p) = 1Mc was once confirmed, then ((Mc)ϕ|Mc )

′ ∩Mω
c = C would immedi-

ately follow (see the beginning of the proof of [25, Theorem 4.1]). When pd = 0, then
[25, Theorem 4.1] (the explicit description of multi-matrix part) shows that Md = Nd
(i.e., 1Nc = 1Mc) and Z(Mc) = C1Mc , implying c(Mc)ϕ|Mc

(p) ≥ c(Nc)ϕ|Nc
(p) =

1Nc = 1Mc = cMc(p) so that c(Mc)ϕ|Mc
(p) = 1Mc . For the other cases we firstly

observe that cNϕ|N
(p) = c(Nd)ϕ|Nd

(pd) ⊕ c(Nc)ϕ|Nc
(pc) = c(Nd)ϕ|Nd

(pd) ⊕ 1Nc . When
pd = 1Nd , one has cNϕ|N

(p) = 1, implying cMϕ(p) = 1 (n.b. M = Mc in this case).
When pd is minimal and central, [25, Theorem 4.1] says that Md = Nd(1 − pd), and
cMc(p) = pd ⊕ 1Nc = cNϕ(p) = cCpd⊕(Nc)ϕ|Nc

(p) by the above. Since Cpd ⊕ (Nc)ϕ|Nc
sits in (Mc)ϕ|Mc , we get c(Mc)ϕ|Mc

(p) = pd ⊕ 1Nc = 1Mc . Hence, we are done in the
cases (i),(ii).

The exactly same argument as in the cases (i), (ii) with replacing [25, Theorem 4.1,
Remark 4.2 (4)] by the case (ii) (or (i)) shows that ((Mc)ϕ|Mc )

′ ∩Mω
c = C in the case

(iii) too. The details are left to the reader. �
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If M1 and M2 are assumed to have separable preduals, then automorphism anal-
ysis in [4, Section 4] is available, and the above theorem together with the explicit
description of the modular operator associated with ϕ implies the next corollary.

Corollary 2.1. Let M1 and M2 be non-trivial von Neumann algebras with separable
preduals, equipped with faithful normal states ϕ1 and ϕ2, respectively. Denote by
(M,ϕ) their free product, and assume that dim(M1) + dim(M2) ≥ 5. If both ϕ1 and
ϕ2 are almost periodic, then the Sd-invariant Sd(Mc) of the diffuse factor part Mc

is exactly the multiplicative group algebraically generated by the point spectra of Δϕi ,
i = 1, 2.

Proof. We have known that Mc is full and (Mc)ϕ|Mc a factor. Hence Sd(Mc) is exactly
the point spectrum of the modular operator Δϕ|Mc associated with ϕ|Mc thanks to
[4, Lemma 4.8]. It is plain to see, by the explicit description of Δϕ, that the point
spectrum of Δϕ is the multiplicative group algebraically generated by those of Δϕi ,
i = 1, 2, see [8, Proposition 4.2]. Thus the desired assertion follows if M = Mc. For
the general case (i.e., M = Md ⊕Mc with Md �= 0) we need an exact relationship
between Δϕ and Δϕ|Mc .

By the characterization of modular automorphisms [22, Theorem VIII.1.2] one has
σ
ϕ|Mc
t = σϕt |Mc , t ∈ R. Let (M � Hϕ,Λϕ) be the GNS representation associated

with ϕ. Set H0 := Λϕ(Mc) and Λ0 := Λϕ|Mc : Mc → H0. It is easy to see that
the representation Mc � H0 with Λ0 : Mc → H0 can be identified with the GNS
representation associated with ϕ|Mc so that we write Hϕ|Mc := H0 and Λϕ|Mc := Λ0.
Denote by P the projection from Hϕ onto Hϕ|Mc . As in (b) ⇒ (a) of the proof of [20,
Theorem 7.1] one has (1 − 2P )Δϕ(1 − 2P ) = Δϕ so that Δϕ is affiliated with {P}′,
i.e., Δϕη{P}′ on Hϕ. In particular, the spectral projection EΔϕ(−) of Δϕ and Δit

ϕ

(t ∈ R) commute with P , and thus the restrictions EΔϕ(−)|Hϕ|Mc
and Δit

ϕ |Hϕ|Mc
to

Hϕ|Mc are well defined. Moreover the restriction Δϕ|Hϕ|Mc
to Hϕ|Mc is well defined in

the following sense: Domain(Δϕ|Hϕ|Mc
) = Domain(Δϕ) ∩ Hϕ|Mc = P (Domain(Δϕ))

and (Δϕ|Hϕ|Mc
)ξ = Δϕξ, ξ ∈ Domain(Δϕ|Hϕ|Mc

). In fact, ξ ∈ Domain(Δϕ|Hϕ|Mc
)

if and only if ξ ∈ Hϕ|Mc and
∑
λ>0 λ

2‖EΔϕ({λ})ξ‖2
Hϕ

< +∞. Moreover, Δϕη{P}′
implies PΔϕ ⊆ ΔϕP , and

((Δϕ|Mc)ξ|ζ)ϕ|Mc = (Δϕξ|ζ)ϕ =
∑

λ>0

λ(EΔϕ({λ})ξ|ζ)ϕ

=
∑

λ>0

λ ((EΔϕ({λ})|HϕMc
)ξ|ζ)ϕ|Mc

for ξ ∈ Domain(Δϕ|Hϕ|Mc
), ζ ∈ Hϕ|Mc . Those show that Δϕ|Hϕ|Mc

= (Δϕ|Hϕ|Mc
)∗

and the spectral projection of Δϕ|Hϕ|Mc
is given by the restriction EΔϕ(−)|HϕMc

.
Hence, for every x ∈Mc and every t ∈ R we have

(Δϕ|Hϕ|Mc
)itΛϕ|Mc (x) = Δit

ϕΛϕ(x) = Λϕ(σϕt (x))

= Λϕ|Mc (σ
ϕ|Mc
t (x)) = (Δϕ|Mc )

itΛϕ|Mc (x)

implying Δϕ|Mc = Δϕ|Hϕ|Mc
and EΔϕ|Mc

(−) = EΔϕ(−)|Hϕ|Mc
by the uniqueness part

of Stone’s theorem.
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From the above fact it immediately follows that the point spectrum of Δϕ|Mc is
contained in that of Δϕ, and we want to prove that they are exactly same. We
have known that the point spectrum of Δϕ is the multiplicative group algebraically
generated by those of Δϕi , i = 1, 2, and also that the point spectrum of Δϕ|Mc is
Sd(Mc) being a multiplicative group. Thus, it suffices to prove that any eigenvalue
of Δϕi , i = 1, 2, becomes an eigenvalue of Δϕ|Mc . Let us choose an eigenvalue λ �= 1
of Δϕi , i = 1, 2. By [21, Lemma 1.12] we can choose a corresponding eigenvector of
the form Λϕi(x), x ∈ Mi. It is plain to see that σϕit (x) = λitx, x ∈ R, and by using
e.g. [21, Lemma 1.6] together with the formula ‘σϕt = σϕ1

t � σϕ2
t ’, t ∈ R, we see that

x is an analytic element with respect to σϕ (indeed z ∈ C �→ λzx ∈ M is its unique
analytic extension), and thus ΔϕΛϕ(x) = Λϕ(σϕ−i(x)) = λΛϕ(x) (see around [22,
Lemma VIII.2.4]); saying that Λϕ(x) is an eigenvector of Δϕ corresponding to λ. By
the explicit description of the multi-matrix partMd in [25, Theorem 4.1] one can easily
see that x = xd⊕xc ∈Md⊕Mc satisfies xc �= 0. Then PΛϕ(x) = Λϕ(xc) = Λϕ|Mc (xc)
gives a non-zero vector in Hϕ|Mc , and Δϕ|McΛϕ|Mc (xc) = ΔϕPΛϕ(x) = PΔϕΛϕ(x) =
λPΛϕ(x) = λΛϕ|Mc (xc). Thus λ is an eigenvalue of Δϕ|Mc . �

Or more less related to the above we are interested in the question: “Which finite
von Neumann algebra can be the centralizer of a faithful normal state of a factor?”
In the direction Herman and Takesaki [11] constructed the first example of the triv-
ial centralizer. Connes [3] showed that L∞[0, 1] can be the centralizer of an almost
periodic state of an arbitrary Krieger factor (actually he proved that this phenome-
non characterizes Krieger factors, or equivalently hyperfinite (diffuse) factors due to
Connes–Haagerup classification theory for injective or hyperfinite factors). Connes
and Størmer [5] showed that any non-type I factor with separable predual always
has a faithful normal state whose centralizer is of type II1. Haagerup and Størmer
[10, Theorem 11.1] strengthened Connes–Stømer’s result, especially proved the same
result for any σ-finite von Neumann algebra without type I component. It follows
from Ozawa’s solidity of L(F∞) [17] that a non-injective type III1 factor in the class
of free Araki–Woods factors admits only injective centralizers. (See [13] for related
results around this.) However it seems, to the best of our knowledge, that the ques-
tion is not yet explicitly answered. Probably many specialists believe that any finite
von Neumann algebra can be. We would like to point out the next fact, which in
particular shows that ((Mc)ϕ|Mc )

′ ∩Mω
c = C may fail to hold in general.

Proposition 2.1. For a given finite von Neumann algebra N with a faithful normal
tracial state τ there is a free product type III1 factor M with a faithful normal state
ϕ such that the centralizer Mϕ with ϕ|Mϕ is exactly N with τ .

Proof. Let R∞ be the unique hyperfinite type III1 factor. It is known (see [11,
Section 3] and also [15, p. 246–247]) that there is a faithful normal state ψ on R∞
such that the modular operator Δψ has no eigenvalue on the orthogonal complement
of the representing vector ξψ of ψ in L2(R∞, ψ). Let (M,ϕ) be the free product
of (N, τ) and (R∞, ψ). By [25, Theorem 3.4] the free product von Neumann al-
gebra M is a factor of type III1. Moreover we can prove, see [1, Lemma 7], that
the centralizer Mϕ is exactly N by using the simple fact that any tensor product
Ut ⊗ Vt of 1-parameter unitary group Ut without eigenvector and arbitrary one Vt



914 YOSHIMICHI UEDA

(even possibly to be the trivial one) has no eigenvector (which can easily be seen by
using e.g. [14, Theorem VI.2.9 p. 138]). �

It is easy to see that the modular operator associated with the free product state
ϕ constructed in Proposition 2.1 has no eigenvalue except 1. However, an almost
periodic state may still exist on M , but it is likely that M always has no such state.
Hence it is desirable to find a necessary and sufficient condition for the existence of
almost periodic states on the diffuse factor part Mc of arbitrary free product von
Neumann algebra M . This question will be answered in the next section.

3. τ -invariant τ (Mc)

Throughout this section let us assume thatM1 andM2 are von Neumann algebras with
separable preduals, since automorphism analysis will play a key rôle in this section,
and also ϕ1 and ϕ2 are arbitrary faithful normal states on M1 and M2, respectively.
Denote by (M,ϕ) the free product of (M1, ϕ1) and (M2, ϕ2). The main purpose of
this section is to compute the τ -invariant τ(Mc) of the diffuse factor part Mc and to
clarify when the diffuse factor part Mc possesses an almost periodic state or weight.

Let us begin by recalling some definitions. For a given factor N with sepa-
rable predual, N is said to be full if Int(N) is closed in Aut(N) endowed with
the so-called u-topology, see [4, Section III] (or [23, Ch.XIV, Section 3]), and the
τ -invariant τ(N) of a full factor N is defined to be the weakest topology on R that
makes the so-called modular homomorphism t ∈ R �→ δN (t) ∈ Out(N) be continuous,
see [4, Section V]. Here Out(N) := Aut(N)/Int(N) (with the quotient map εN ) be-
comes a Polish (= separable metrizable complete) group with the quotient topology
induced from the u-topology and define δN (t) := εN (σψt ) ∈ Out(N) with an arbitrary
fixed faithful normal state or semifinite weight ψ on N .

The next proposition is most technically involved in the present notes.

Proposition 3.1. If either M1 or M2 is diffuse, then for any sequence (tm)m of real
numbers, δM (tm) −→ εM (Id) in Out(M) as m → ∞ if and only if both σϕitm −→ Id
in Aut(Mi), i = 1, 2, or equivalently σϕtm −→ Id in Aut(M), as m→ ∞.

Proof. We will borrow several facts and arguments from [25, Subsection 2.2 and
Section 3] in what follows.

It suffices to show the ‘only if’ part. Take a sequence (tm)m of real numbers such
that δM (tm) −→ εM (Id) in Out(M) as m → ∞. Then there is a sequence (u(m))m
in Mu such that Adu(m) ◦ σϕtm −→ Id in Aut(M) as m → ∞. Let us choose and fix
an arbitrary free ultrafilter ω ∈ β(N) \ N.

By symmetry we may and do assume that M1 is diffuse. As in [25, Theorem 3.4]
there is a faithful normal state ψ on M1 so that (M1)ψ is diffuse, and thus one can
choose two unitaries a, b ∈ (M1)ψ in such a way that ϕ1(an) = δn0 = ψ(bn), see
e.g. the proof of [25, Theorem 3.7]. Denote by E1 : M → M1 the ϕ-preserving
conditional expectation; see [25, Lemma 2.1].

Since Adu(m)◦σϕtm −→ Id in Aut(M) as m→ ∞, one has ‖ϕ−ϕ ◦ Adu(m)‖M∗ =
‖ϕ◦Adu(m)∗−ϕ‖M∗ = ‖ϕ ◦ σϕ−tm◦Adu(m)∗−ϕ‖M∗ = ‖ϕ−ϕ◦Adu(m)◦σϕtm‖M∗ −→ 0
as m → ∞. Hence, for any bounded sequence (x(m))m of M with x(m) −→ 0 in
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σ-strong* topology as m→ ω we have

‖x(m)∗u(m)∗‖2
ϕ = ϕ(u(m)x(m)x(m)∗u(m)∗)

≤ |(ϕ ◦ Adu(m) − ϕ)(x(m)x(m)∗)| + ϕ(x(m)x(m)∗)

≤ sup
m

‖x(m)‖2
∞‖ϕ ◦ Adu(m) − ϕ‖M∗ + ‖x(m)∗‖2

ϕ −→
m→ω

0,

‖x(m)u(m)‖2
ϕ = ψ(u(m)∗x(m)∗x(m)u(m))

≤ |(ϕ ◦ Adu(m)∗ − ϕ)(x(m)∗x(m))| + ϕ(x(m)∗x(m))

≤ sup
m

‖x(m)‖2
∞‖ϕ ◦ Adu(m)∗ − ϕ‖M∗ + ‖x(m)‖2

ϕ −→
m→ω

0

so that (u(m))m represents a unitary u in the ultraproduct Mω. Note that

Ad(u(m)[Dϕ1 : Dψ]tm) ◦ σψ◦E1
tm = Adu(m) ◦ σϕtm −→ Id

in Aut(M) as m → ∞. Write v(m) := [Dϕ1 : Dψ]tm ∈ Mu
1 for simplicity, and

set w(m) := u(m)v(m). We apply the same argument as above to the pair w(m)
and ψ ◦ E1, and consequently we see that (w(m))m represents a unitary w ∈ Mω.
We have v := u∗w = [(u(m)∗w(m))m] = [(v(m))m] so that (v(m))m also repre-
sents a unitary v ∈ Mω

1 . Let y ∈ Mω be an arbitrary element with representa-
tive (y(m))m, and χ be an arbitrary faithful normal state on M . For any bounded
sequence (x(m))m of M with x(m) −→ 0 in σ-strong* topology as m → ω one
has ‖σχ∓tm(x(m))‖χ = ‖x(m)‖χ −→ 0 and ‖σχ∓tm(x(m)∗)‖χ = ‖x(m)∗‖χ −→ 0 as
m → ω so that σχ∓tm(x(m)) −→ 0 in σ-strong* topology as m → ω. Therefore we
get ‖x(m)σχ±tm(y(m))‖χ = ‖σψ∓tm(x(m))y(m)‖χ −→ 0 and ‖x(m)∗σχ±tm(y(m)∗)‖χ =
‖σψ∓tm(x(m)∗)y(m)∗‖χ −→ 0 as m → ω. These establish that (σχ±tm(y(m)))m repre-
sents an element in Mω, which we denote by yχ(±) in what follows. (This indeed shows
that (σχ±tm)m is ‘semiliftable’ in the sense of Ocneanu in [16, Section 5.2].)

Let us prove that w = Eω1 (w) ∈Mω
1 . For any x ∈ (M1)ψ one has

wxw∗ = [(w(m)xw(m)∗)m] = [(w(m)σψ◦E1
tm (x)w(m)∗)n] = [(x)m] = x

inside Mω, since Adw(m) ◦ σψ◦E1
tm −→ Id in Aut(M) as m → ∞ (and thus the same

holds true when m→ ω). Hence, we get w ∈ ((M1)ψ)′∩Mω ⊆ {a, b}′∩Mω. One can
choose an invertible y ∈ M◦

2 (n.b. M2 �= C), see the proof of [25, Theorem 3.7]. As
seen in the previous paragraph the sequence (σψ◦E1

tm (y)))m gives yψ◦E1
(+) ∈ Mω. Then

we compute wyψ◦E1
(+) w∗ = [(w(m)σψ◦E1

tm (y)w(m)∗)m] = [(y)m] = y inside Mω thanks

to Adw(m) ◦ σψ◦E1
tm −→ Id in Aut(M) as m → ∞ again. Hence y(w − Eω1 (w)) +

(yEω1 (w) − Eω1 (w)yψ◦E1
(+) ) + (Eω1 (w) − w)yψ◦E1

(+) = yw − wyψ◦E1
(+) = 0 inside Mω. For

the purpose here we will prove, by the same technique as in [25, Proposition 3.5],
that y(w−Eω1 (w)) is orthogonal to the others in L2(Mω, (ψ ◦E1)ω) in what follows.
As in [25, Proposition 3.5] we write M�

1 := Ker(ψ), and denote by P1, P2, P3, P4 the
projections from H := L2(M,ψ ◦ E1) onto the closed subspaces spanned (via Λψ◦E1)
by the following sets of words

M◦
1M

◦
2 · · ·M�

1 , M◦
1 · · ·M◦

2 , M◦
2 · · ·M�

1 , M◦
2 · · ·M◦

2 ,

respectively. We also denote by Ē1 the projection from H onto the closure of M1

(as a subspace of H via Λψ◦E1) induced by E1, see the proof of [25, Lemma 2.1].
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Remark (see the proof of [25, Proposition 3.5]) that IH = Ē1 +P1 +P2 +P3 +P4 (and
Ē1, P1, P2, P3, P4 are mutually orthogonal). With replacing u, v there by the above
unitaries a, b the exactly same argument as in the proof of [25, Proposition 3.5] shows
that for each δ > 0 there is a neighborhood Wδ in β(N) at ω such that

(3.1) ‖(P2 + P3 + P4)Λψ◦E1(w(m))‖ψ◦E1 < δ

as long as m ∈ Wδ ∩ N. We then regard L2(Mω, (ψ ◦ E1)ω) as a closed subspace of
the ultraproduct Hω. One can see, by using (3.1), that

Λ(ψ◦E1)ω (y(w − Eω1 (w))) = [(yP1Λψ◦E1(w(m)))m]

in Hω with H = L2(M,ψ ◦ E1). See the estimate (3.2) below or the proof of [25,
Proposition 3.5] for its detailed derivation. Also it is trivial that

Λ(ψ◦E1)ω (yEω1 (w) − Eω1 (w)yψ◦E1
(+) ) = [(Λψ◦E1(yE1(w(m)) − E1(w(m))σψ◦E1

tm (y)))m]

in Hω. Consider a smoothing element yn (n ∈ N) of y with respect to σψ◦E1 defined
to be

yn :=
1√
nπ

∫ ∞

−∞
e−t

2/nσψ◦E1
t (y) dt,

which falls into the σ-strong closure of the linear span of M1M
◦
2M1 and converges to

y in σ-weak topology as n → ∞ (see e.g. the proof of [25, Proposition 3.5]). Note
that σψ◦E1

−i/2 (σψ◦E1
tm (yn)) = σψ◦E1

tm (σψ◦E1
−i/2 (yn)), and thus for each n we have, by (3.1),

‖Λ(ψ◦E1)ω ((w − Eω1 (w))yψ◦E1
n (+) )(3.2)

− [(Jσψ◦E1
tm (σψ◦E1

−i/2 (yn))∗JP1Λψ◦E1(w(m)))m]‖(ψ◦E1)ω

= lim
m→ω

‖Jσψ◦E1
tm (σψ◦E1

−i/2 (yn))∗J(Λψ◦E1(w(m) − E1(w(m)))

− P1Λψ◦E1(w(m)))‖ψ◦E1

≤ ‖σψ◦E1
−i/2 (yn)‖∞ sup

m∈Wδ∩N

‖(P2 + P3 + P4)Λψ◦E1(w(m))‖ψ◦E1

< ‖σψ◦E1
−i/2 (yn)‖∞δ,

where J is the modular conjugation of M � H = L2(M,ψ ◦ E1). Since δ > 0 is
arbitrary, we get

Λ(ψ◦E1)ω ((w − Eω1 (w))yψ◦E1
n (+) ) = [(Jσψ◦E1

−i/2 (σψ◦E1
tm (yn))∗JP1Λψ◦E1(w(m)))m]

in Hω for each n. Since σψ◦E1
tm (yn) = v(m)∗σϕtm(yn)v(m) still falls in the σ-strong

closure of M1M
◦
2M1 (n.b. v(m) = [Dϕ1 : Dψ]tm ∈ M1), the same argument as in

the proof of [25, Proposition 3.5] shows that Λ(ψ◦E1)ω (y(w − Eω1 (w))) is orthogonal
to Λ(ψ◦E1)ω (yEω1 (w) − Eω1 (w)yψ◦E1

(+) ) and also to all Λ(ψ◦E1)ω ((w − Eω1 (w))yψ◦E1
n (+) )’s.



TYPE III1 FACTORS ARISING AS FREE PRODUCTS 917

Notice here that (σψ◦E1
−tm (w(m)))m, (σ

ψ◦E1
−tm (y))m represent wψ◦E1

(−) , yψ◦E1
(−) ∈ Mω, re-

spectively, as seen before. We have, for z = y or yn,

(ψ ◦ E1)ω((w − Eω1 (w))∗y∗(w − Eω1 (w))zψ◦E1
(+) )

= lim
m→ω

ψ ◦ E1((w(m)∗ − E1(w(m)∗))y∗(w(m) − E1(w(m)))σψ◦E1
tm (z))

= lim
m→ω

ψ ◦ E1((σ
ψ◦E1
−tm (w(m))∗ − E1(σ

ψ◦E1
−tm (w(m))∗))

× σψ◦E1
−tm (y∗)(σψ◦E1

−tm (w(m)) − E1(σ
ψ◦E1
−tm (w(m))))z)

= (ψ ◦ E1)ω((wψ◦E1
(−) − Eω1 (wψ◦E1

(−) ))∗yψ◦E1
(−)

∗(wψ◦E1
(−) − Eω1 (wψ◦E1

(−) ))z),

and hence

(Λ(ψ◦E1)ω ((w − Eω1 (w))yψ◦E1
(+) |Λ(ψ◦E1)ω (y(w − Eω1 (w))))(ψ◦E1)ω

= (ψ ◦ E1)ω((wψ◦E1
(−) − Eω1 (wψ◦E1

(−) ))∗yψ◦E1
(−)

∗(wψ◦E1
(−) − Eω1 (wψ◦E1

(−) ))y)

= lim
n→∞(ψ ◦ E1)ω((wψ◦E1

(−) − Eω1 (wψ◦E1
(−) ))∗yψ◦E1

(−)
∗(wψ◦E1

(−) − Eω1 (wψ◦E1
(−) ))yn)

= lim
n→∞(Λ(ψ◦E1)ω ((w − Eω1 (w))yψ◦E1

n (+) |Λ(ψ◦E1)ω (y(w − Eω1 (w))))(ψ◦E1)ω = 0.

Consequently y(w−Eω1 (w)) is orthogonal to (w−Eω1 (w))yψ◦E1
(+) too. Therefore we get

‖y(w − Eω1 (w))‖(ψ◦E1)ω ≤ ‖yw − wyψ◦E1
(+) ‖(ψ◦E1)ω = 0, implying w = Eω1 (w) ∈ Mω

1

since y is invertible.
Since w ∈Mω

1 we have u = wv∗ ∈Mω
1 . For the above y ∈M◦

2 we have uyϕ(+)u
∗ =

[(Adu(m) ◦ σϕtm(y))m] = [(y)m] = y, since Adu(m) ◦ σϕtm −→ Id in Aut(M) m → ∞.
Thus (u − ϕω(u)1)yϕ(+) + ϕω(u)yϕ(+) = uyϕ(+) = yu = ϕω(u)y + y(u − ϕω(u)1). Since
Mω

1 and Mω
2 are free in (Mω, ϕω) (see e.g. [24, Proposition 4]), we have ‖y‖ϕω‖u −

ϕω(u)1‖ϕω = ‖y(u − ϕω(u)1)‖ϕω = 0 so that limm→ω ‖u(m) − ϕ(u(m))1‖ϕ = ‖u −
ϕω(u)1‖ϕω = 0 thanks to y �= 0. Since our choice of ω ∈ β(N) \N is arbitrary, we get
limm→∞ ‖u(m)−ϕ(u(m))1‖ϕ = 0. Hence we conclude that σϕtm −→ Id in Aut(M) as
m→ ∞ in the exactly same way as in the proof of [4, Theorem 5.2]. �

Here is the main theorem of the present notes.

Theorem 3.1. Assume that M1 �= C �= M2 and dim(M1) + dim(M2) ≥ 5. Then the
τ -invariant τ(Mc) of the diffuse factor part Mc of the free product von Neumann
algebra M is the weakest topology on R that makes the both mappings t ∈ R �→ σϕit ∈
Aut(Mi), i = 1, 2, be continuous.

Proof. We may assume that Mc is of type III, that is, either ϕ1 or ϕ2 is non-tracial.
Let us decompose Mi = Mid ⊕Mic into the ‘type I with discrete center’ part and
the diffuse part, i = 1, 2. We may and do further assume that either M1c �= 0 or
M2c �= 0. (Otherwise ((Mc)ϕ|Mc )

′ ∩Mω
c = C by Theorem 2.1 (or [25, Remark 4.2

(4)]), which immediately implies the desired assertion, see the proof of Proposition 3.1.
In fact, if Adu(m) ◦ σϕtm −→ εMc(Id) in Aut(Mc), then (u(m))m represents a unitary
in ((Mc)ϕ|Mc )

′ ∩Mω
c = C, implying limm→ω ‖u(m)− (1/ϕ(1Mc))ϕ(u(m))1Mc‖ϕ = 0.)

In what follows we may and do assume that M1c �= 0. By [25, Theorem 4.1] the
compressed algebra 1M1cM1M1c is isomorphic to Mc since Mc is assumed to be of
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type III. Thus τ(Mc) = τ(1M1cM1M1c) holds, and write p := 1M1c for simplicity. By
Dykema’s free etymology technique (see e.g. [25, Lemma 2.2]) one has

(pMp, (1/ϕ1(p))ϕ|pMp) = (M1c, (1/ϕ1(p))ϕ1|M1c) � (pNp, (1/ϕ1(p))ϕ|1pNp),
where N = (M1d ⊕ Cp) ∨ M2. Suppose that tm → 0 in τ(Mc) = τ(pMp). By
Proposition 3.1 σϕ1|M1c

tm −→ Id in Aut(M1c) and σ
ϕ|pNp
tm −→ Id in Aut(pNp). Note

that N is the free product von Neumann algebra of M1d ⊕ Cp and M2 with respect
to ϕ1|M1d⊕Cp and ϕ2. Any eigenvector x ∈ M2d of the modular action σϕ2|M2d =
σϕ2 |M2d , i.e., σϕ2

t (x) = λitx for some λ > 0, satisfies pxp �= 0. It follows that
σ
ϕ2|M2d
tm −→ Id in Aut(M2d) since the restrictions ϕ2|M2d are almost periodic. When
M2c = 0, i.e., M2 = M2d �= C, one can choose an eigenvector y ∈ M◦

2d of σϕ2|M2d =
σϕ2 |M2d , and then any non-trivial eigenvector x ∈M1d of σϕ1|M1d = σϕ1 |M1d satisfies
pyxy∗p �= 0, and thus σ

ϕ1|M1d
tm −→ Id in Aut(M1d) as above. When M2c �= 0, we also

have, by symmetry, σϕ2|M2c
tm −→ Id in Aut(M2c) and σ

ϕ1|M1d
tm −→ Id in Aut(M1d).

Consequently the desired assertion follows. �

Corollary 3.1. Assume that M1 �= C �= M2 and dim(M1) + dim(M2) ≥ 5. Then a
necessary and sufficient condition for the existence of almost periodic state or weight
on the diffuse factor part Mc of the free product von Neumann algebra M is that both
the given ϕ1 and ϕ2 are almost periodic.

Proof. We may and do assume that Mc is of type III1. Suppose that Mc has an almost
periodic state. By [4, Theorem 4.7] there is an almost periodic weight ψ on Mc such
that the point spectrum of Δψ is exactly Sd := Sd(Mc). Then by [4, Proposition 1.1]
t ∈ R �→ σψt can continuously be extended to the dual group Ŝd (Sd is equipped
with its discrete topology), where R is continuously, faithfully ([4, Corollary 4.11])
embedded into Ŝd whose range is dense. Note that σψtm → Id in Aut(Mc) implies
δMc(tm) −→ εMc(Id) in Out(Mc), and hence by Theorem 3.1 σϕitm → Id in Aut(Mi),
i = 1, 2. Thus t ∈ R �→ σϕit ∈ Aut(Mi) can continuously be extended to the whole Ŝd,
i = 1, 2. Hence, both ϕi, i = 1, 2, must be almost periodic by [4, Proposition 1.1]. �

4. Concluding remarks

The previous paper [25] and the present notes solve the questions of
• its factoriality ([25, Theorem 4.1]),
• determining its Murray–von Neumann–Connes type ([25, Theorem 4.1]),
• its fullness ([25, Theorem 4.1]),
• computing its Sd-invariant (Corollary 2.1 of the present notes),
• computing its τ -invariant (Theorem 3.1 of the present notes)

for arbitrary free product von Neumann algebra. Those results in particular show
that the resulting free product von Neumann algebra certainly ‘remembers’ the given
states, that is, the free product state is ‘special’ in some sense.

One more algebraic invariant related to full type III1 factors was introduced by
Shlyakhtenko [19]. However, we cannot yet deal with it. Also Connes’ bicentral-
izer problem should be examined for free product von Neumann algebras. In fact,
Houdayer [12] showed that any type III1 free Araki–Woods factor has the trivial
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bicentralizer. In the direction we can confirm, by [25, Corollary 3.2, Theorem 4.1]
together with Haagerup’s solution [9], that the bicentralizer problem is affirmative
for any type III1 factor arising as (a direct summand of) free product of hyperfinite
von Neumann algebras. However we do not know whether or not the problem is
affirmative in general.

Acknowledgments

We thank the referee for pointing out a typo and giving a comment related to Propo-
sition 2.1. This work was supported by Grant-in-Aid for Scientific Research (C)
20540213.

References

[1] L. Barnett, Free product von Neumann algebras of type III, Proc. Amer. Math. Soc. 123 (1995),

543–553.
[2] A. Connes, Une classification des facteurs de type III, Ann. Sci. École Norm. Sup. 6(4) (1973),
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