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COMPLEMENTS AND HIGHER RESONANCE VARIETIES
OF HYPERPLANE ARRANGEMENTS

Nero Budur

Abstract. Hyperplane arrangements form the geometric counterpart of combinatorial
objects such as matroids. The shape of the sequence of Betti numbers of the complement
of a hyperplane arrangement is of particular interest in combinatorics, where they are

known, up to a sign, as Whitney numbers of the first kind, and appear as the coefficients
of chromatic, or characteristic, polynomials. We show that certain combinations, some
non-linear, of these Betti numbers satisfy Schur positivity. At the same time, we study

the higher degree resonance varieties of the arrangement. We draw some consequences,
using homological algebra results and vector bundles techniques, of the fact that all
resonance varieties are determinantal.

1. Introduction

Hyperplane arrangements form the geometric counterpart of combinatorial objects
such as matroids. The shape of the sequence of Betti numbers of the complement
of a hyperplane arrangement is of particular interest in combinatorics, where they
are known, up to a sign, as Whitney numbers of the first kind, and appear as the
coefficients of chromatic, or characteristic, polynomials. Using this equivalent ter-
minology, lower bounds have been determined by Dowling–Wilson [9] and improved
for connected matroids by Brylawski [1]. Recently, using singularity theory, Huh [19]
proved that the sequence of Betti numbers is log concave. A more general question
is what other polynomials in the Betti numbers satisfy positivity. We show that
certain combinations, some nonlinear, of Betti numbers satisfy Schur positivity; see
Theorem 1.3.

At the same time, we study the higher degree resonance varieties Ri
j of the

arrangement. These combinatorial invariants were first introduced by Falk [14] and
are related to the cohomology of local systems on the complement [22] and, conjec-
turally, to the lower central series and Chen ranks of the fundamental group of the
complement [30]. Resonance varieties are also connected with the critical points of
master functions [3, 4], with the Bethe ansatz equations for Gaudin models of com-
plex simple Lie algebras [32], and are key objects in the conjectured combinatorial
invariance of characteristic varieties and of Milnor fiber cohomology of hyperplane
arrangements, e.g. [23]. The varieties R1

j have been studied in detail by many people,
e.g. Libgober–Yuzvinsky [24], Falk–Yuzvinsky [15], etc. In contrast, our knowledge
of the higher degree Ri

j is very limited. We derive from the fact that all Ri
j are

determinantal some results complementing the existing ones on resonance varieties.
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Thus the main contribution of this note is to point out the usefulness to the, already
diverse, hyperplane arrangement theory of some homological algebra and vector bun-
dles results. That Ri

1 admit equations in terms of minors of matrices is also contained
in Denham–Schenck [7], an unpublished preprint that was brought to our attention
by the authors. See also loc. cit. for an interpretation of Ri

1 in terms of Ext modules
and for the role played by the double Ext spectral sequence.

To present the results, let D be a hyperplane arrangement of degree d in C
n. We

assume that D is central, essential, and indecomposable; see 2.1 for definitions. Let
U = P

n−1 − P(D). We denote by Hi(U) the complex cohomology group Hi(U, C).
The cohomology ring of U is a combinatorial invariant of the hyperplane arrangement
D [28]. Let

bi : = bi(U) = dimC Hi(U),

βi : = bi − bi−1 + · · · + (−1)ib0.

Thus βn−1 = χ(U) is the Crapo invariant of the matroid of D, and βi is the Crapo
invariant of a truncation this matroid. Corollary 2.1 gives lower bounds on bi and βi

following [9, 1]. In Proposition 3.2, although we show bounds in general weaker than
the ones of Corollary 2.1 as long as d is not too small compared with n, we derive
them from general algebraic results.

Let P = P(H1(U)). By [12], we have a linear locally free resolution

0 −→ OP(−n + 1) ⊗ H0(U)
φ0−→OP(−n + 2) ⊗ H1(U)

φ1−→· · ·(1)

· · · φn−2−→ OP ⊗ Hn−1(U) −→ F −→ 0.

Here F is the sheaf version of the singular module of the arrangement as defined by
Eisenbud–Popescu–Yuzvinksy using the BGG-correspondence [12].

An element v ∈ H1(U) defines a complex (H•(U), v∪.) via the cup product. Define
the resonance varieties of U to be

Ri
j(U) := {v ∈ H1(U) | dim Hi(H•(U), v ∪ .) ≥ j}.

The resonance varieties of U are combinatorial invariants of the hyperplane arrange-
ment D. We will use the notation Ri(U) for Ri

1(U). We have Ri(U) = Ri
1(U) ⊃

Ri
2(U) ⊃ Ri

3(U) ⊃ · · · . It is known that Ri(U) are union of vector subspaces of
H1(U); see [6, 5, 12].

Define the Fitting ideal Ik(φi) to be the ideal generated by the k-minors of the
matrix of linear forms representing φi in (1). Matei–Suciu [26] have shown that R1

j (U)
admit equations in terms of minors of the linearized Alexander matrix, which is the
same as φ1. This can be generalized; see also Denham–Schenck [7] — Proposition 2.9
for Ri

1(U).

Theorem 1.1. P(Ri
j(U)) is the support of the ideal Iβi+1−j(φi).

Corollary 1.1. codim Ri
j(U) ≤ min{d − 1, (βi−1 + j)(βi+1 + j)}.

When the above inequality on the codimension of Ri
j(U) is useful, we can say

something stronger about Ri
j(U). Note that in contrast with the conclusion of the

next result, it is known that the irreducible components of P(R1
j (U)) are mutually

disjoint [24]; see also [8].
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Corollary 1.2. If (βi−1 + j)(βi+1 + j) < d − 2, then P(Ri
j(U)) is connected.

It is known that resonance propagates, that is, Ri(U) ⊂ Ri+1(U), [12]. We show
that a deeper propagation holds:

Corollary 1.3. We have:

• Ri(U) ⊂ R i+1
2 (U) (i ≤ n − 2),

• Ri(U) ⊂ R i+1
j (U) (i < n − 2 and j ≤ 1 + n−3

i+1 ).

Corollary 1.1 can be improved when j = 1. Define from now

qi := codim Ri(U) = d − 1 − dim Ri(U)

for 0 ≤ i ≤ n − 1.

Theorem 1.2.

n − 1 − i ≤ qi ≤ min{d − 1, (βi−1 + 1)(βi+1 + 1), βi+1 + i + 1}.
The computational complexity of the resonance varieties is discussed briefly in

Section 5.1; see for example, Proposition 5.1.
Regarding the shape of the Betti numbers of the complement, using a vector bundle

method of Popa–Lazarsfeld [20, 25] we obtain Schur positivity of certain combinations
of the Betti numbers of U . Define for j > 0

c
(j)
t :=

j+1∏

k=1

(1 − kt)(−1)kbj+1−k .

Let c
(j)
i denote the coefficient of ti in c

(j)
t .

Theorem 1.3. Let 0 < j < n − 1. If j = n − 2, assume that qn−2 > 1. Then:
(a) Any Schur polynomial of weight < qj in c

(j)
1 , . . . , c

(j)
qj−1 is non-negative. In partic-

ular, c
(j)
i ≥ 0 for 1 ≤ i < qj, and

(2) c
(j)
1 =

j+1∑

k=1

(−1)k+1 · k · bj+1−k ≥ 0.

(b) c
(j)
i = 0 for i > min{βj+1, qj − 1}.

(c) qj > max{i | c
(j)
i 
= 0}.

(d) The coefficients c
(j)
i of the polynomial c

(j)
t form a log concave sequence.

Recall that the first few Schur polynomials are: c1; c2, c2
1 − c2; c3, c1c2 − c3, c3

1 −
2c1c2 + c3. Other lower bounds on bi, in terms of b1, . . . , bi−1 can determined from
Theorem 1.3, see 4.3.

The outline of the article is the following. In the second section we recall the basic
definitions and lower bounds on Betti numbers of U from [9, 1]. The third section
is the core of the article, where we prove the statements from this Introduction.
Next section is a brief discussion of Theorem 1.3. We end the article with a section
containing some remarks about resonance varieties.
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2. Preliminaries

2.1. Hyperplane arrangements. Let us recall the basic terminology. An affine
(resp. projective) hyperplane arrangement in C

n (resp. P
n−1) is a finite set of

hyperplanes. We will abuse notation and identify the hyperplane arrangement with
the corresponding reduced divisor. An arrangement is essential if the intersection of
all hyperplanes has dimension at most zero. An arrangement is central if the intersec-
tion of all hyperplanes is non-empty. Non-essential implies central. An arrangement
is indecomposable if it is not the product of two distinct hyperplane arrangements. In
other words, there is no choice of coordinates for which the equation of the arrange-
ment is a product of two non-constant polynomials in two disjoint sets of variables.

An affine central arrangement D will tacitly be assumed to contain the origin in
any of its hyperplanes. For a hyperplane arrangement D and a linear subspace S of
the ambient space, we will denote by D|S the hyperplane arrangement D ∩ S in S.

For every affine hyperplane arrangement D in C
n we will consider, initially, the

following sets of numbers: hi, bi, βi. These are as follows:

hi = dimHi(Cn − D, C),

bi = hi − hi−1 + · · · + (−1)ih0,

βi = bi − bi−1 + · · · + (−1)ib0

= hi − 2hi−1 + 3hi−2 − · · · + (−1)ih0.

When D is central, the numbers hi are also known as the absolute values of the
Whitney numbers of the first kind, and the number βn−1 is commonly called the
Crapo invariant.

2.2. Central affine arrangements. Define

PDW (d, n, i) :=
(

n

i

)
+ (d − n)

(
n − 1
i − 1

)
,

and

PB(d, n, i) :=
(

n

i

)
+ (d − n)

(
n

i − 1

)
− δi,n−1.

Theorem 2.1 (Dowling–Wilson [9]). Let D be a central essential hyperplane
arrangement in C

n of degree d. Then

hi ≥ PDW(d, n, i).

In the indecomposable case, we have the following improvement. Let

Ω := {(x, y) ∈ N
2 | x − y ≥ 2, (x, y) 
= (7, 4)}.

Theorem 2.2 (Brylawski [1]). Let D be an indecomposable central essential hyper-
plane arrangement in C

n of degree d. If (d, n) ∈ Ω then

hi ≥ PB(d, n, i)

if i < n, and
βn−1 ≥ max{1, d + 2 − 2n}.
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For examples, when the bounds are achieved see loc. cit.
Let D be a central hyperplane arrangement in C

n. Then

bi = Hi(Pn−1 − P(D), C).

Indeed,
π(D, t) = (1 + t)π(P(D), t),

where we denote by π(Z, t) the Poincaré polynomial of the complement of Z, [27].
Note:

hi = bi + bi−1,

βi = bi − bi−1 + · · · + (−1)ib0,

bi = hi − hi−1 + · · · + (−1)ih0 = βi + βi−1.

Let S be a generic subvector space of C
n of dimension s + 1. Then

bi(D) = bi(D|S)

for 0 ≤ i ≤ s, by the combinatorial invariance of bi, [28]. Hence also

hi(D) = hi(D|S),

βi(D) = βi(D|S),

for 0 ≤ i ≤ s. If D is indecomposable, then so is D|S by Corollary 3.1. If D is
essential, so is D|S . Applying Theorem 2.2, we obtain:

Corollary 2.1. Let D be a central essential indecomposable hyperplane arrangement
in C

n of degree d. For 0 < i < n,

hi ≥ max{PB(d, s + 1, i) | i ≤ s ≤ n − 1, (d, s + 1) ∈ Ω};
if (d, i + 1) ∈ Ω, then

βi ≥ max{1, d − 2i};
and if in addition (d, i) ∈ Ω, then

bi ≥ 2(d − 2i − 1).

Remark 2.1. Lower bounds on hi = bi + bi−1 do not automatically translate into
lower bounds for bi, unless the following is true: the Betti numbers of the complement
of an affine arrangement of degree d − 1 in C

n−1 are the first n − 1 Betti numbers
of the complement of a central affine arrangement of degree d − 1 in some C

n′
with

n′ ≥ n. Here n′ = n iff the hyperplane at infinity is in general position.

3. Proofs

3.1. Lower bounds. Let us point out how homological algebra results about linear
free resolutions imply lower bounds on hi, bi, βi. These bounds are in general weaker
than the lower bounds of Corollary 2.1, as long as d is not too small compared with n.

We start with a different proof of the following result. Note that it is well-known
that the positivity of the Crapo invariant βn−1 is equivalent to the indecomposability
of the central arrangement.

Proposition 3.1. Let D be a central essential indecomposable hyperplane arrange-
ment in C

n. Then βi > 0 for 0 ≤ i < n.
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Proof. We can assume 0 < i < n. Let F and φi be as in (1). Then βi = rank φi.
So βi ≥ 0 since the rank is a non-negative number. If βi = 0 then φi = 0. This is
a contradiction. Indeed, by the definition of φi in [12], the condition that φi = 0
implies that Hk(U) = 0 for k > i. In particular, βn−1 = 0, which contradicts the
indecomposability of the arrangement. Note that since the entries of the matrix
representing φi are linear forms and not all vanishing, a Nakayama Lemma argument
implies that (1) is the minimal locally free resolution of F ; see [11] — Lemma 19.4. �

Proposition 3.2.

(a) bi ≥
(
n−1

i

)
, hence hi ≥

(
n
i

)
.

(b) βi ≥ n − 1 − i for i > 0.

Proof. By the proof of Proposition 3.1, the projective dimension of F is pd(F) = n−1.
A conjecture of Buchsbaum–Eisenbud and Horrocks about Betti numbers of minimal
free resolutions implies that bi ≥ (pd(F)

i

)
. This conjecture is proved for graded

modules with a linear minimal free resolution, which is our case, by Herzog–Kühl
[18]. This is part (a). Part (b) is the lower bound for syzygy modules of a module
with projective dimension n − 1 due to Evans–Griffith [13]. �

3.2. Resonance, singular modules, and truncations. Let D be a central inde-
composable hyperplane arrangement in C

n. Consider the locally free resolution (1)
of the singular module F of D. Denote by Ki the cokernel of φi:

OP(−n + 1 + i) ⊗ Hi(U)
φi−→OP(−n + 2 + i) ⊗ Hi+1(U) −→ Ki −→ 0.

Proposition 3.3. The complex (1), without the last term F , is the complex of sheaves
on P obtained from the complexes of vector spaces (H•(U), v∪.) when v varies along P.

Proof. Let S = C[x1, . . . , xb1 ]. The complex of sheaves on P obtained by varying
v ∈ P comes from the complex of free S-modules with maps

S ⊗ Hi(U) −→ S ⊗ Hi+1(U)

given by 1⊗w �→ ∑
xi⊗ (ei∪w), where ei is a basis of H1(U) and xi is the dual basis

of H1(U)∨. These are exactly the maps of the complex of S-modules corresponding
to (1) by [12]-3. �

Let S be a generic subvector space of C
n of dimension s+1. By Proposition 3.1, the

hyperplane arrangement D|S is also indecomposable. Since Hi(U) = Hi(U ∩ P(S))
for 0 ≤ i ≤ s, the resonance varieties also agree up to degree s:

Ri(U) = Ri(U ∩ P(S)), for 0 ≤ i ≤ s.

The singular modules of D and D|S are related as follows. To denote the depen-
dance on D, we will briefly use the notation FD for F .

Lemma 3.1. The singular module of D|S is FD|S = OP(n − 1 − s) ⊗Ks−1.

Proof. The locally free resolution (1) of FD is minimal, as in the proof of Proposi-
tion 3.1. Thus the complex

0 → OP(−s) ⊗ H0(U) → · · · → OP ⊗ Hs(U),
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formed from the truncation of the complex (1) after twisting by OP(n− 1− s), is the
minimal locally free resolution of OP(n− 1− s)⊗Ks−1. However, by Proposition 3.3,
the minimal locally free resolution of FD|S has the same shape due to the invariance
of the cup product maps up to degree s. Hence FD|S = OP(n − 1 − s) ⊗Ks−1. �

3.3. The resonance varieties Ri(U). Before discussing the refined resonance
varieties R i

j (U), we focus on the case j = 1. Let I(φ) denote the ideal Iβi(φi)
given by the βi-minors of φi. We prove first a particular case of Theorem 1.1.

Proposition 3.4. P(Ri(U)) is the support of the Fitting ideal I(φi).

Proof. Let Ki := coker φi. We need to show that P(Ri(U)) is the locus of points
where Ki fails to be locally free. Indeed, by [11] — 20.6, the non-locally free locus of
Ki is the support of the Fitting ideal I(φi).

Let v ∈ P = P(H1(U)) and let κ(v) be the residue field of v. By [12] —
Theorem 4.1 (a),

Hn−1−i(H•(U), v ∪ .) = TorOP,v

i (κ(v),Fv).

In particular, we have Hn−2(H•(U), v∪.) = TorOP,v

1 (κ(v),Fv). By [11] — Ex. 6.2 (a),
the space on the right is zero iff Fv is free. Hence v ∈ P(Rn−2(U)) iff Kn−2 = Fv is
not free.

To prove the claim for i < n − 2, we reduce to the above case by truncating and
using Lemma 3.1. In this case we have

(3) Hi(H•(U), v ∪ .) = TorOP,v

1 (κ(v), (Ki)v).

Hence, as above, P(Ri(U)) is the locus of points where Ki fails to be locally free. �

Remark 3.1. Note that propagation of resonance, i.e. the fact that Ri(U) ⊂
Ri+1(U), follows from [11] — 20.12 where it is shown that the support of I(φi)
is included the support of I(φi+1).

Proof of Theorem 1.2. Let us prove the first inequality. By Eisenbud [11] — 20.9, we
have that depth I(φi) ≥ n−1− i. Since S = C[x1, . . . , xb1 ] is Cohen-Macaulay, depth
equals codimension. Now the claim follows by Proposition 3.4.

It is known that the depth of Fitting ideals is bounded above by that of generic
determinantal varieties. More precisely, for a map f : P → Q of projective modules,
we have by [10] that

(4) depth Ik(f) ≤ (rank(P ) − k + 1)(rank(Q) − k + 1),

where Ik(f) is the ideal generated by the k-minors of the matrix representing f . In
our case,

qi = depth I(φi) ≤ (bi − βi + 1)(bi+1 − βi + 1)

= (βi−1 + 1)(βi+1 + 1).

The remaining inequality qi ≤ βi+1 + i − 1 is part (d) of Theorem 3.1 below. �

Theorem 1.3 consists of the parts (a)–(c) and (e) in:
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Theorem 3.1. Let 0 < j < n − 1. If j = n − 2, assume that qn−2 > 1. Then:
(a) Any Schur polynomial of weight < qj in c

(j)
1 , . . . , c

(j)
qj−1 is non-negative.

(b) c
(j)
i = 0 if βj+1 < i < qj.

(c) qj > max{i | c
(j)
i 
= 0}.

(d) βj+1 ≥ qj − j − 1 .

(e) The coefficients c
(j)
i of the polynomial c

(j)
t form a log concave sequence.

Proof. The proof is a combination of [12, 20]. Let us prove first the case when
j = n − 2. Denote qn−2 by q, and βn−1 by β.

Let W be a vector subspace of H1(U) that is transversal to Rn−2
1 (U). Then

P
′ := P(W ) has dimension q − 1 ≥ 1. Restrict the linear locally free resolution of F

to P
′. Then we have a linear locally free resolution

0 → OP′(−n + 1) ⊗ H0(U) → OP′(−n + 2) ⊗ H1(U) → · · ·(5)

· · · → OP′ ⊗ Hn−1(U) → F ′ → 0,

where F ′ is a vector bundle on P
′.

It follows that c
(n−2)
t is the Chern polynomial of F ′. Since F ′ is globally generated,

the Chern classes ci(F ′), which equal c
(n−2)
i , and the Schur polynomials in these, are

non-negative, [16] — 12.1.7-(a). This proves (a).
As in [20], the parts (b) and (c) follow from the fact that rank(F ′) = β, that

ci(F ′) = 0 for i > max{rank(F ′), q−1}, and that there exist an i such that ci(F ′) 
= 0.
The proof of part (d) is essentially the same as the one in [20]. Since β > 0, we can

assume q > n−1. If q = n then we need to show that F ′ 
= 0. If F ′ = 0 then (5) cannot
be an exact sequence, as the alternating product of Chern polynomials cannot be 1.
So we can assume that q > n. Chasing through (5) we have that Hj(P′,F ′(k)) = 0
for all k and 0 < j < q − n + 1. The splitting criterion of Evans–Griffith, see [21] —
3.2.12, implies, if rank(F ′) ≤ q −n + 1, that F ′ splits as a direct sum of line bundles.
This cannot happen for the same reason as before. Hence rank(F ′) > q − n + 1.

Now we prove the case j < n − 2. Consider the complex obtained from (1) by
truncation:

0 −→ OP(−n + 1)⊕b0 −→ OP(−n + 2)⊕b1

· · · −→ OP(−n + 1 + j)⊕bj −→ OP(−n + j + 2)⊕bj+1 −→ Kj −→ 0.

We tensor this complex with OP(n − j − 2) to obtain a linear locally free resolution

0 −→ OP(−1 − j)⊕b0 −→ OP(−j)⊕b1

· · · −→ OP(−1)⊕bj −→ O⊕bj+1
P

−→ Kj(n − j − 2) −→ 0.

Now Kj(n− j − 2) is globally generated, and the rest of the proof goes as for the case
j = n − 2.

By part (c), c
(j)
t is a polynomial which has all coefficients and all roots real. An

old theorem of Newton; see [29] — Theorem 2, implies that the coefficients must form
a log concave sequence. This shows part (e). �
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Question 3.1. Is qn−2 > 1 always true ?

We note that this is true for n = 3: the non-local components of R1(U) have small
dimension [33], and the local components have codimension ≥ 2 by the indecompos-
ability of D, cf. [15]. We give an algebraic reformulation of this question and a partial
answer in Section 5.2.

3.4. The refined resonance varieties Ri
j(U). We prove now the remaining state-

ments from Introduction.

Proof of Theorem 1.1. By (3) and Lemma 3.1, it is enough to prove the case i = n−2.
Hence, we need to show that the locus of points v such that dim TorOP,v

1 (κ(v),Fv) ≥ j
is the support of Iβn−2+1−j(φn−2). This ideal is actually an invariant of F , by [11] —
Corollary/Definition 20.4. In the notation of loc. cit.,

Iβn−2+1−j(φn−2) = Fittβn−1−1+j(F),

since rankF = βn−1. By [11] — Proposition 20.6, the support of the Fitting ideal
Fittβn−1−1+j(F) is the locus of points v where Fv cannot be generated by βn−1−1+j
elements.

To summarize, it is enough to show: if (R, P ) is a local noetherian domain, and
M is an R-module minimally generated by k elements, then

k − rank(M) ≥ dimTorR
1 (R/P, M).

Here rank(M) is the dimension of the K-vector space M⊗RK, where K is the quotient
field of R.

To prove this claim, consider a minimal set of generators of M and the short exact
sequence attached to them:

(6) 0 → N → Rk → M → 0.

Since the operation . ⊗R K is exact, we have

k − rank(M) = rank(N).

By a similar reasoning, rank(N) ≥ k′, where k′ is the minimal number of generators
of N . Tensoring (6) with R/P we have an exact sequence of R/P -vector spaces

0 → TorR
1 (R/P, M) → N ⊗R R/P → (R/P )k → M ⊗R R/P → 0.

By Nakayama lemma and the minimality of k, the two vector spaces on the right
are isomorphic. Hence, also the two vector spaces on the left are isomorphic, and
k′ = dim TorR

1 (R/P, M). �

Proof of Corollary 1.1. It follows from Theorem 1.1 and (4). �

Proof of Corollary 1.2. By a theorem of Fulton–Lazarsfeld [21] — 7.2, the support of
the ideal sheaf Ik+1(φ) is connected if φ : E → E ′ is a vector bundle map on a variety
X such that E∨ ⊗ E ′ is ample and dim(X) > (rank(E) − k)(rank(E ′) − k). We apply
this to Iβi+1−j(φi) and X = P

d−2. Note that

(OP(−n + 1 + i)⊕bi)∨ ⊗O(−n + 2 + i)⊕bi+1 = OP(1)⊕bibi+1

is an ample vector bundle since it is the direct sum of ample line bundles. �
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Proof of Corollary 1.3. Because of Theorem 1.1, we can apply to the refined resonance
varieties facts about minors of matrices in a finite free resolution. For example, the
second claim follows directly from Buchsbaum–Eisenbud [2] — Corollary 6.2 together
with [2] — Theorem 3.1, part (b). The first claim follows from [2] — (10.5) if the
Conjecture 10.1 in [2] holds. This conjecture is proven by Tchernev–Weyman [31]. �

4. Dissection of Theorem 1.3

4.1. Linear combinations. We note that

c
(i)
1 = βi − βi−1 + βi−2 − · · ·

= bi − 2bi−1 + 3bi−2 − · · ·
= hi − (1 + 2)hi−1 + (1 + 2 + 3)hi−2 − (1 + 2 + 3 + 4)hi−3 + · · · .

Since βi = c
(i)
1 + c

(i−1)
1 , lower bounds on the numbers c

(i)
1 give lower bounds on βi.

4.2. Non-linear combinations. The numbers c
(i)
j for i ≥ 2, and the higher degree

Schur polynomials, are non-linear combinations of hi, bi, βi, c
(i)
1 . Denote for simplicity

ai = c
(i)
1 .

We have for example:

c
(2)
2 ≥ 0 ⇐⇒ a2

2 + 2a0 − 2a1 + a2 ≥ 0,

[c(2)
1 ]2 − c

(2)
2 ≥ 0 ⇐⇒ a2

2 − 2a0 + 2a1 − a2 ≥ 0,

c
(3)
2 ≥ 0 ⇐⇒ a2

3 − 2a0 + 2a1 − 2a2 + a3 ≥ 0,

c
(3)
3 ≥ 0 ⇐⇒ a2

3 + 6(a1a3 − a0a3 + a2a3)

+ 3a2
3 − 36a0 + 24a1 − 12a2 + 2a3 ≥ 0,

c
(3)
1 c

(3)
2 − c

(3)
3 ≥ 0 ⇐⇒ a3

3 + 18a0 − 12a1 + 6a2 − a3 ≥ 0,

[c(3)
1 ]3 − 2c

(3)
1 c

(3)
2 + c

(3)
3 ≥ 0 ⇐⇒ a3

3 + 6(a0a3 − a1a3 + a2a3) − 3a2
3

− 36a0 + 24a1 − 12a2 + 2a3 ≥ 0.

4.3. Lower bounds on bi. Although we regard the positivity properties from
Theorem 1.3 on various combinations of the numbers bi as mainly telling us something
about the shape of the sequence bi, we can also use these inequalities to derive lower
bounds for bi. Let us do so for the first few ones.

For n = 4 we note that if q2 > 1 then c
(2)
1 ≥ 0 gives

b2 ≥ 2d − 5.

If q2 > 2, then solving the quadratic equation c
(2)
2 ≥ 0, as in [20] — 3.4, we deduce

the stronger inequality

(7) b2 ≥ 2d +
√

8d − 31
2

− 11
2

.

We note that expression under the square root is always positive, since d ≥ 5 by the
irreducibility assumption on D. We have an equality in (7) when c

(2)
2 = 0, which by
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Theorem 1.3-(b) is guaranteed when β3 = 1. This is the case of a generic arrangement
with d = 5.

For n = 5 we note that c
(2)
1 ≥ 0 gives

b2 ≥ 2d − 5.

If q2 > 2, then solving the quadratic equation c
(2)
2 ≥ 0 we deduce the stronger

inequality

b2 ≥ 2d +
√

8d − 31
2

− 11
2

.

Note that these are the same inequalities as in n = 4 case. The inequality c
(3)
1 ≥ 0

gives, if q3 > 1,
b3 > 2b2 − 3d + 7.

Solving for the quadratic equation c
(3)
2 ≥ 0 gives as in [20], if q3 > 2, the stronger

inequality

(8) b3 ≥ 13
2

− 3d + 2b2 +
√

73 − 24d + 8b2

2
.

This is available as long as the expression under the square root is non-negative,
that is if b2 ≥ 3d − 9. We note that we get an equality in (8) if c

(3)
2 = 0, which

by Theorem 1.3 — (b) is guaranteed when β4 = 1. This is the case of the generic
arrangement with d = 6.

Remark 4.1. From the above computations we note the following trend: the
inequality c

(j)
i+1 ≥ 0 is better than c

(j)
i ≥ 0.

Example 4.1. Let D be a generic central hyperplane arrangement of degree d in C
n,

with d > n. Then

bi =
(

d − 1
i

)
, βi =

(
d − 2

i

)
, c

(i)
1 =

(
d − 3

i

)
,

if 0 ≤ i ≤ n − 1, otherwise all three numbers are zero. Also, c
(i)
2 = 0 when d = j + 3

and n = j + 2.

5. Remarks on resonance varieties

5.1. Explicit equations for R1. There are well-known explicit bases for the vector
spaces Hi(U) such as the “no broken circuits” sets, [27]. Hence the matrices repre-
senting φi, and thus by Theorem 1.1, the equations for the resonance varieties Ri

j(U)
are very explicit.

Example 5.1. Let us spell out how to obtain R1 for the case when the hyperplane
arrangement D is the cone over a planar line arrangement {H1, . . . , Hd} with at most
triple points. Each line Hj with j 
= d defines a basis element of H1(U), and of its
dual, i.e. a generator xj of the symmetric algebra S = C[x1, . . . , xd−1]. For each
intersection point P of two lines from {H1, . . . , Hd−1}, define

iP := max{i < d | P ∈ Hi}.
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Consider the pairs (i, iP ) with i < iP and P ∈ Hi. These pairs index a basis of
H2(U). The b2 × b1 matrix M = (M(i,iP ),j) representing the map φ1 has entries

M(i,iP ),j =

⎧
⎪⎨

⎪⎩

0, if j 
∈ {i, iP },
−xiP

, if j = i,

xi, if j = iP ,

if P is a multiplicity-two point of {H1, . . . , Hd−1}, and

M(i,iP ),j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if j 
∈ {i, k, iP },
xi, if j = iP ,

−xiP
− xk, if j = i,

−xiP
+ xi, if j = k,

if P is a multiplicity-three point of {H1, . . . , Hd−1} and {Hi, Hk, HiP
} are the three

lines passing through P . The equations of R1 in S are the (d − 2)-minors of the
matrix M .

Coming back to the general case, note that R1(U) is the common zero locus of(
b1
β1

) · (b2
β1

)
polynomials, the β1-minors of φ1. Next proposition states that only

(
b2
β1

)
of

these polynomials are necessary. To our knowledge this is currently the best reduction
of the computational complexity of R1(U).

Proposition 5.1. Let 1 ≤ i ≤ b1. Then R1(U) is the common zero locus of x−1
i m,

where m ranges over the maximal minors of the b2 × β1-matrix obtained from φ1 by
removing the i-th column.

Proof. By [2] — Theorem 3.1, the map
∧β1 φ∗

1 factors through the map φ0. The map
φ0 is represented by the matrix [x1 . . . xb1 ]

t. Let A be the 1 × (
b2
β1

)
-matrix such that

[x1 . . . xb1 ]
t · A represents the map

∧β1 φ∗
1. Then the entries of A are the elements

x−1
i m, with m as above. By loc. cit., part (b), the common vanishing locus of the

entries of A is the same as the support of the Fitting ideal I(φ1). By Corollary 3.4,
the support of I(φ1) is R1(U). �

A similar reduction of the number of necessary polynomials to define the higher
resonance varieties Ri(U) is available following [2].

5.2. Reformulation of Question 3.1. Let I = I(φn−2) ⊂ S be the homogeneous
ideal of Rn−2 from Corollary 3.4. That is I is the ideal generated by the βn−2-minors
of φn−2. Let q = qn−2 be the codimension of I. The following gives an algebraic
reformulation of Question 3.1.

Proposition 5.2. q > 1 iff for every linear form f and homogeneous element m ∈ S,
fm ∈ I implies m ∈ I.

Proof. We have that q > 1 iff every associated prime ideal P of I has codimension > 1.
Since I is homogeneous, every associated prime ideals of I is also homogeneous. By
definition, P is an associated prime ideal of I if it annihilates a non-zero element
m+ I of S/I. This is equivalent to annihilating a homogeneous element, [11] — 3.12.
Since S is a polynomial ring, a homogeneous prime ideal P has codimension 1 iff P
is generated by a linear form f . �
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We note that Question 3.1 has a positive answer if D is itself the generic central
hyperplane section of an indecomposable central essential hyperplane arrangement in
a higher number of variables, by Lemma 3.1 and the first inequality of Theorem 1.2.

5.3. Structure of Ri
j. It is known that the refined resonance varieties Ri

j(U) are
supported on finitely many linear subspaces: [5, 6] using Hodge theory, [22] using
deformations, [24] using linear algebra. Let us mention a few facts that follow from
Theorem 1.1.

The refined resonance varieties Ri
j are finite intersections of varieties swept by

vector spaces of particular type. More precisely, for a p × q matrix of linear forms
with p ≤ q, the support of the locus defined by the vanishing of the p-minors is swept
by the linear spaces determined by the simultaneous vanishing of the coefficients of a
linear combination of rows (or of columns), [11] — Exercise A2.19.

On a different note, let us see next what it means to prove, using only linear algebra,
that R1

j are supported on linear subspaces. Fix a basis e1, . . . , ep of C
p. Let M(x)

be a matrix of size q × p, p ≤ q, with entries linear in C[x1, . . . , xp] = C[x], such that
M(a)b = −M(a)b for any complex vectors a and b of size p, and rank(M(a)) = p−1
for generic vectors a. Define R1

j to be the common zero locus of the (p − j)-minors
of M(x). For example, if M(x) is the matrix representing φ1 in (1), then R1

j is the
refined resonance variety by Theorem 1.1.

Lemma 5.1. Let a ∈ R1
j −R1

j+1. Let N be a submatrix of M(a) of size (p−j−1)×p
that contains a (p − j − 1) × (p − j − 1) submatrix N0 with non-zero determinant.
Let b1, . . . ,bj+1 be the vectors obtained as the (p − j)-minors, containing N0, of the
(p−j)×p matrix obtained from concatenating vertically the matrix (e1 . . . ep) with N .
Then ker M(a) is a dimension j + 1 linear subspace with basis b1, . . . ,bj+1.

Proof. We prove first that b1, . . . ,bj+1 are non-zero and linearly independent. Let
k ∈ {1, . . . , j + 1}. Since the minor corresponding to N0 is non-zero, there exists a
coordinate eik

with nonzero entry in bk. The set {ik′ | k′ ∈ {1, . . . , j+1}} corresponds
to the columns of N not contributing to the minor N0. Hence, the ik′ -th coordinate
of bk, with k′ 
= k, is zero. This shows that b1, . . . ,bj+1 are linearly independent.

Since a ∈ R1
j − R1

j+1, the codimension of kerM(a) is p − j − 1. Thus, we only
need to show now that M(a)bk = 0 for all k ∈ {1, . . . , j +1}. Consider the i-th entry
(M(a)bk)i of M(a)bk. This entry is, by the definition of bk, either a (p− j)-minor of
M(a), or the determinant of the vertical concatenation of a (p−j−1)×(p−j) subma-
trix of N containing N0 with one of its rows. While in the second case (M(a)bk)i van-
ishes because of the repeated row, in the first case it vanishes because the rank of M(a)
is p − j − 1. �

Given the explicit description of generators of the spaces kerM(a), one would like
then to prove, via linear algebra, that there are only finitely many such kerM(a)
for a ∈ R1

j − R1
j+1, and they form the support of R1

j − R1
j+1. This is done for

hyperplane arrangements in [24] — Corollary 3.7. Outside this case, it is not clear
how to characterize the class of matrices M(x) having these properties.

5.4. Other possible bounds. As in [20], one can try to obtain bounds on Betti
numbers of U by displaying certain subspaces of Hi(U) and counting their dimension.
Note that ΛiH1(U) → Hi(U) is not injective on decomposable forms, as it is known
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that there are monomials that vanish in the Orlik–Solomon algebra. However, we
can ask the following. For each 0 ≤ i < n − 1 let Wi be a vector subspace of H1(U)
transversal to Ri(U), such that H1(U) = W0 ⊃ · · · ⊃ Wn−2. Define for 0 < i < n

Σi := {v1 ∧ · · · ∧ vi ∈ ΛiH1(U) | dim Span(v1, . . . , vi) = i and vj ∈ Wj−1}.
Question 5.1. Is the natural map Σi → Hi(U) an injection ?

We note that this is true for i = 2 and that a converse holds, in a certain sense,
see [14] — 2.13 and 3.1. The numerical counterpart of this is:

Proposition 5.3. If Question 5.1 is true then, for 0 < i < n,

q0 + · · · + qi−1 < bi +
i(i + 1)

2
.

Proof. Consider the Grassmanian G(i, b1) of dimension i subspaces of H1(U), with
the Plücker embedding in P. Then P(Σi) is the subvariety of G(i, b1) consisting of
subspaces L such that dim(L ∩ Wj) ≥ i − j for 0 ≤ j ≤ i − 1. Noting that dim
Wj = qj , the codimension of this Schubert variety in G(i, b1) can be computed by a
standard formula, see for example [17], and equals

codim Σi = (b1 − i)i +
i(i + 1)

2
− (q0 + · · · + qi−1).

Since the dimension of G(i, b1) is i(b1 − 1), we have

dim Σi = (q0 + · · · + qi−1) − i(i + 1)
2

.

The claim now follows from a positive answer to Question 5.1. �
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