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A EUCLIDEAN SKOLEM–MAHLER–LECH–CHABAUTY METHOD

Thomas Scanlon

Abstract. Using the theory of o-minimality we show that the p-adic method of Skolem–

Mahler–Lech–Chabauty may be adapted to prove instances of the dynamical Mordell–
Lang conjecture for some real analytic dynamical systems. For example, we show that if
f1, . . . , fn is a finite sequence of real analytic functions fi : (−1, 1) → (−1, 1) for which

fi(0) = 0 and |f ′
i(0)| ≤ 1 (possibly zero), a = (a1, . . . , an) is an n-tuple of real numbers

close enough to the origin and H(x1, . . . , xn) is a real analytic function of n variables,
then the set {m ∈ N : H(f◦m

1 (a1), . . . , f◦m
n (an)) = 0} is either all of N, all of the odd

numbers, all of the even numbers, or is finite.

1. Introduction

Consider the following form of the dynamical Mordell–Lang conjecture enunciated
in [6] generalizing Zhang’s version from [26].

Conjecture 1.1. Let K be a field of characteristic zero, X an algebraic variety over
K, f : X → X a regular self-map of X also defined over K, a ∈ X(K) a K-rational
point and Y ⊆ X a closed subvariety. Then the set {n ∈ N : f◦n(a) ∈ Y (K)} is a
finite union of arithmetic progressions (where we allow the modulus of an arithmetic
progression to be zero so that a singleton is an arithmetic progression).

By adapting Skolem’s p-adic method [19] (attributed to and extended and devel-
oped by, at least, Lech [10], Mahler [11], and Chabauty [3] as well) for analyzing
algebraic relations on cyclic subgroups of algebraic groups to more general algebraic
dynamical systems, one might hope to prove Conjecture 1.1, and, indeed, in [1] exactly
this strategy is employed. Since all of the data are defined over a finitely generated
subfield of K, we may assume that K itself is finitely generated. Under suitable hy-
potheses, we can find some embedding K ↪→ Qp so that there is a p-adic analytic
function F : Zp → X(Qp) interpolating the function n �→ f◦n(a) on N. The set
{x ∈ Zp : F (x) ∈ Y (Qp)} is then defined by the vanishing of a p-adic analytic func-
tion and as such is a finite union of points and cosets of pm

Zp for some m ≥ 0. Hence,
{n ∈ N : f◦n(a) ∈ Y (K)} is also a finite union of points and arithmetic progressions.

On the face of it, it would seem that the argument sketched in the above paragraph
would yield no information if Qp were replaced by R. Indeed, if S ⊆ N were any
set of natural numbers, then we could find a real analytic function which vanishes
exactly on S. However, the point of this note is that in many cases of interest,
including some which are not amenable to the p-adic method due to the presence
of superattracting points, one may find a function F : R+ → X(R) interpolating
n �→ f◦n(a) which is definable in an o-minimal expansion of the field of real numbers.
It then follows directly from o-minimality that if such an orbit has infinite intersection
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with an algebraic variety, then all but finitely many of the points from that orbit lie
in the subvariety.

We recognize that the notions of definability and o-minimality may not be famil-
iar to the reader approaching this note from outside of logic. The recent work on
unlikely intersections [17, 12, 13] which uses an analysis of definability in o-minimal
structures in essential ways may have introduced these ideas to number theorists,
and in Section 4 we speculate about how the estimates of [18] may give useful
information about higher rank dynamical Mordell–Lang problems. In any case, in
Section 2 we recall the basic definitions and results about the specific o-minimal
structures, of the real field considered together with the real exponential function and
restricted analytic functions, that we shall require.

2. O-minimality

The basic theory of o-minimality is exposed in [22] and the proofs that the structure
we shall use, namely the field of real numbers endowed with the exponential function
and bounded analytic functions, is o-minimal can be found in [24, 23]. We recall here
some fundamental definitions and results.

Definition 2.1. A structure (M, <, . . .) which is totally ordered by the relation < is o-
minimal if every definable (with parameters) subset of M is a finite union of singletons
and intervals of the form (−∞, a) := {x ∈ M : x < a}, (a, b) := {x ∈ M : a < x < b}
or (b,∞) := {x ∈ M : b < x} for some a, b ∈ M .

Here structure is understood in the sense of first-order logic. That is, the set M
is endowed not only with an ordering interpreting < but it also interprets the extra
function, relation and constant symbols elided by the ellipses. Likewise, to say that a
set X ⊆ M is definable (with parameters) is to say that there is a first-order formula
φ(x) in one free variable x in the language of M possibly augmented by constant
symbols naming elements of M so that

X = {a ∈ M : the formula φ is true in M when a is substituted for x}
While the theory as a whole is enriched through the study of general o-minimal

structures especially through a kind of nonstandard analysis, our direct application
of o-minimality concerns only the real numbers and the extra structure is specified
by naming some functions. Thus, rather than rehashing the theory of definability in
general structures, we restrict to the case of expansions of the ordered field of real
numbers by families of functions.

Definition 2.2. Suppose that for each n ∈ Z+ that Fn is a set of real valued functions
f : R

n → R of n real variables. By LF we mean the first-order language having
a binary relation symbol ≤, binary function symbols + and ·, constant symbols r
for each r ∈ R, and n-ary function symbols f for each f ∈ Fn. By RF we mean
the LF -structure having universe R on which the nonlogical symbols are interpreted
eponymously.

In the structure RF , sets of the form {a = (a1, . . . , an) ∈ R
n : f(a) ≤ g(a)} are

definable where f, g ∈ Fn or more generally where f and g are obtained from the pro-
jection functions, constant functions, functions in F and addition and
multiplication via appropriate compositions. We obtain the class of quantifier-free
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definable sets by closing off under finite Boolean operations. In general, as first-order
logic permits the application of existential quantifiers or what is the same thing at
the level of the definable sets themselves, images under coordinate projections, there
will be definable sets which cannot be expressed in the simple form of finite Boolean
combinations of sets defined by inequalities between the basic functions. It is a cel-
ebrated theorem of Tarski [20] that when F = ∅, so that we are considering the
set of real numbers simply as an ordered field, every definable set in any number
of variables is quantifier-free definable. In this case, the functions f and g are sim-
ply polynomials over the real numbers and the definable sets are the semi-algebraic
sets, sets of n-tuples of real numbers defined by polynomial inequalities. Specializ-
ing to n = 1, using the fact that nonconstant polynomials have only finitely many
zeros and can change sign only at their zeros, we see that R := R∅ = (R,≤, +, ·)
is o-minimal. Wilkie showed [25] using results of Khovanski on few-nomials [7] that
when F = {exp}, then every definable set may be expressed as a projection of a basic
set and that Rexp := R{exp} = (R,≤, +, ·, exp) is o-minimal.

It should be clear that we cannot take F to consist of all real analytic functions and
hope for RF to be o-minimal, as, for instance, the sine function is globally analytic
but the infinite discrete set {x ∈ R : 0 = sin(x)} is definable in R{sin}. However, if we
consider only restricted analytic functions, then the resulting structure is o-minimal.
That is, we let Fn consist of all function f : R

n → R for which

• there is some neighborhood U ⊇ [−1, 1]n and a real analytic function
g : U → R for which g � [−1, 1]n = f � [−1, 1]n and

• f(x1, . . . , xn) = 0 if |xi| > 1 for any i ≤ n.

Remark 2.1. There is more than one reasonable way to formalize the idea of
including all restricted analytic functions. For example, one might want to allow for
restrictions of analytic functions to other polyhedra or the convention that the func-
tion is extended by zero outside of the box on which it is analytic might be replaced
by the convention that the function is simply undefined in that region. Ultimately,
these variants lead to the same class of definable sets.

Interpreting work of Gabrielov [5] on projections of subanalytic sets, van den
Dries [21] showed that Ran := RF is o-minimal. In parallel with their work on p-adic
analytic function, Denef and van den Dries [4] proved a quantifier elimination theorem
for restricted real analytic functions from which one may deduce that Ran := RF is
o-minimal.

Finally, for us but not in the search for interesting and useful o-minimal structures,
the structure obtained by enriching Ran with the global exponential function, Ran,exp,
is itself o-minimal [24, 23].

With our application to the problem of describing intersections of dynamical orbits
with algebraic varieties, nothing more than the definition of o-minimality and the fact
that Ran,exp is o-minimal will be used. However, deeper consequences of
o-minimality may be relevant to the questions about orbits with respect to higher-rank
monoids of operators which we shall discuss in Section 4.
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3. Main theorem

In this section, we observe that in many cases of interest with weaker hypotheses than
what are required for linearization some dynamical orbits are o-minimally uniformized
from which we deduce these instances of the dynamical Mordell–Lang conjecture.

Let us begin with a lemma on exponentiation in linear groups. Before we do so,
we set some notation.

Notation 3.1. For n ∈ Z+ a positive integer we write GL+
n (R) for the set of invertible

n × n real matrices all of whose eigenvalues are real and positive. We write In ∈
GLn(R) for the identity. We let Jn ∈ GLn(R) be the matrix with 1s along the upper
off diagonal and zeroes everywhere else. That is,

(Jn)i,j =

{
1 if j = i + 1
0 otherwise

For n1, . . . , n� a sequence of positive integers, there is a natural inclusion of groups
GLn1(R) × · · · × GLn�

(R) ↪→ GLn1+···+n�
(R). We denote the image of (g1, . . . , g�) ∈

GLn1(R) × · · · × GLn�
(R) under this map by g1 ⊕ · · · ⊕ g�.

By a partition of a positive integer n we mean a finite nondecreasing sequence
π = (π1, . . . , π�) of positive integers for which n =

∑�
j=1 πi.

Lemma 3.1. For each positive integer n ∈ Z+ there is a unique function En :
R × GL+

n (R) → GL+
n (R) definable in Rexp which satisfies the condition that for g ∈

GL+
n (R) and x ∈ R we have En(1, g) = g and En(x + 1, g) = g · En(x, g).

Proof. Let us prove uniqueness. Suppose that Fn is another function definable in
Rexp which satisfies the stated difference equation. Let g ∈ GL+

n (R). Since the set
S := {x ∈ R : En(x, g) = Fn(x, g)} is definable in the o-minimal structure Rexp, there
must be some B ∈ R+ so that either (B,∞) ⊆ S or (B,∞)∩S = ∅. As the difference
equation implies that En(m, g) = gm = Fn(m, g) for m ∈ Z, we see that (B,∞) ⊆ S.
Applying the difference equation again we see that S = R, as claimed.

Let us now define En.

En(x, g) = y ⇐⇒
∨

(π1,...,π�) a partition of n

(∃h ∈ GLn(R))(∃λ1, . . . , λ� ∈ R+)

∧
πi=πi+1

λi ≥ λi+1&

hgh−1 = (λ1Iπ1 + Jπ1) ⊕ · · · ⊕ (λ�Iπ�
+ Jπ�

)&

hyh−1 = exp(x ln(λ1))
π1−1∑
j=0

(
x

j

)
λ−j

1 Jj
π1

⊕ · · ·

⊕ exp(x ln(λ�))
π�−1∑
j=0

(
x

j

)
λ−j

� Jj
π1

While we have employed standard mathematical abbreviations in the formula defin-
ing E (for example, to speak of ln(λi) we should really quantify over a new variable zi
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and include the defining condition exp(zi) = λi), it should be clear that the expression
on the right may be given by a formula in the language of Rexp and that it defines a
relation between (x, g) and y, the purported value of En(x, g). That y is a function
of (x, g) is a consequence of two facts. First, the Jordan form of a matrix is unique
provided that we normalize (as we have) so that size of the blocks is nonincreasing and
then within the blocks of a given size the eigenvalues are non-increasing. Secondly,
if we were to choose h′ to be another matrix which conjugates g to its Jordan form,
then h′ = kh where k centralizes the Jordan matrix. It then follows that k centralizes
any integer power of the Jordan matrix and consequently, by o-minimality again, any
real power. �

Most everything we discuss will make sense only in some neighborhood of the
point under consideration. However, we do not wish to speak about germs as we
will actually apply these functions. Instead we shall employ expression like “Φ is a
self-map near the origin” or that some compositional identity holds near the origin to
mean, in the former case, that there is some open set U ⊆ R

n with 0 = (0, . . . , 0) ∈ U
for which Φ : U → U and Φ(0) = 0, while in the latter case we mean that the identity
in question holds on a neighborhood of the origin. When the ambient dimension n is
relevant, it will be mentioned explicitly. Likewise, we may speak of some point a being
“close enough to the origin” by which we mean that a belongs to a neighborhood of
the origin with respect to which the mentioned self-maps restrict to self-maps and the
pertinent compositional identities hold.

Definition 3.1. We say that a real analytic self-map Φ near the origin is projectively
linearizable if there is a real analytic function α which fixes the origin and is invertible
near the origin for which α ◦ Φ ◦ α−1 is given by a fractional linear transformation
near the origin. We say that Φ is strongly projectively linearizable if moreover every
eigenvalue of some matrix representing its projective linearization is real and positive.

We say that Φ is monomializable if dΦ0 ≡ 0 and there are a real analytic α as
above, a matrix M ∈ GLn(Q) all of whose entries are positive integers but not having
roots of unity among its eigenvalues, and a tuple λ = (λ1, . . . , λn) ∈ (R×)� so that
near the origin

α ◦ Φ ◦ α−1(x) = λ · xM = (λ1x
M1,1
1 x

M1,2
2 · · ·xM1,n

n , . . . , λnx
Mn,1
1 x

Mn,2
2 · · ·xMn,n

n )

We say that Φ is strongly monomializable if moreover every eigenvalue of M is real
and positive.

Remark 3.1. The restriction that powers of M not have a nontrivial fixed vec-
tor might seem unnatural as, of course, for instance, the polynomial x1 is certainly a
monomial, but since linear maps and higher degree monomials have different
behaviors, we have imposed this condition.

Remark 3.2. One might wish to identify linearizability in which Φ is analytically
conjugate to its differential at the origin as a separate case from projective lineariz-
ability. However, for purposes of our arguments there is nothing to be gained from
such a separation.
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Lemma 3.2. If Φ is monomializable, then one may choose the vector λ = (λ1, . . . , λn)
to consist entirely of ±1.

Proof. By hypothesis, we have conjugated Φ to λ · xM for some λ ∈ (R×)n and
M ∈ GLn(R) ∩ Matn×n(N). Let us consider the result of conjugating by the action
of a linear map x �→ μ · x where μ = (μ1, . . . , μn) ∈ (R×)n. We compute that

μ−1 · (λ · (μ · x)M = μM−1 · λ · xM

Since 1 is not an eigenvalue of M , the matrix M − 1 has full rank. Hence, the map
x �→ xM−1 is a bijective self-map of (R+)n and in particular we can find μ so that
μM−1 = (1/|λ1|, . . . , 1/|λn|). �

Proposition 3.1. Given a dimension m there is another number B = B(m) so that
for any strongly monomializable Φ in m variables and any point a close enough to the
origin and in its Φ-attracting basin there is a function F : [0,∞) → R

m definable in
Ran,exp satisfying F (0) = a and the functional equation F (x + 1) = Φ◦B(F (x)).

Proof. The number B(m) is simply the least common multiple of the lengths of the
periodic cycles of the maps x �→ xM on (±1)n as M ranges through GLn(Q) ∩
Matn×n(N).

The function α which conjugates Φ to a monomial map λ · xM is definable in Ran,
at least when restricted to some neighborhood of the origin, by the very definition of
Ran. Using Lemma 3.2 we may assume that each component of λ is ±1 and from our
choice of B we then have that λMB

= λ. Hence, for a close enough to the origin we
have

Φ◦Bn(a) = α−1(λ · (α(a))MBn

)
We define

F (x) := α−1(λ · (α(a))Em(x,MB))

where Em is the function of Lemma 3.1. We need to say a little about how to compute
(α(a))(M

B)x

. Write (α(a)) = (b1, . . . , bn), then by our choice of B we know that the
sign of bi is the same as that of the ith component of (α(a))MB

. Thus, we may
compute (α(a))MBx

as⎛
⎝ b1

|b1| exp

⎛
⎝ n∑

j=1

(Em(x, MB))1,j ln |bj |
⎞
⎠ , . . . ,

bn

|bn| exp

⎛
⎝ n∑

j=1

(Em(x, MB))n,j ln |bj |
⎞
⎠

⎞
⎠

as long as bi �= 0 for all i ≤ n. If some bi = 0, then each term in which bi appears will
be zero and the remaining terms may expressed in the requisite form. �

Corollary 3.1. If Φ is expressible as a Cartesian product of a strongly projectively
linearizable function and a strongly monomializable function and a is close enough to
the origin, then possibly after replacing Φ by a compositional power there is a function
G : [0,∞) → R

n definable in Ran,exp satisfying G(0) = a and G(x + 1) = Φ(G(x)).

Proof. Write Φ = Ψ × Θ where Ψ is strongly monomializable and Θ is strongly
projectively linearizable. Write a = (b, c) relative to the decomposition of Φ.
Conjugating by an analytic function, we may assume that Θ is actually projectively
linear. By Proposition 3.1, there is a definable function F so that F (0) = b and
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F (x + 1) = Ψ(F (x)). Using F and Lemma 3.1 we may write G(x) = (F (x),
En(x + 1, Θ)c) where n is the dimension of the linear part. �

Let us observe that Corollary 3.1 applies to functions expressed as products of
univariate functions near their fixed points.

Fact 3.1. If Φ is a real analytic function in one variable near the origin which fixes
the origin, then Φ◦2 is strongly projectively linearizable or strongly monomializable.

Proof. We must break into the following cases:

• Φ ≡ 0,
• Φ′(0) = 0 but Φ �≡ 0,
• |Φ′(0)| �= 1, and
• |Φ′(0)| = 1.

In the first case, Φ is obviously linear already. The second case is an instance of
Böttcher’s theorem [2] (see Chapter 9 of [16]). The proof presented in [16] applies to
complex analytic functions and the conclusion is stronger, namely that Φ is analyti-
cally conjugate to xN for where N is its order of vanishing. However, to conjugate Φ
to xN it might be necessary to take an (N − 1)th root which might not be possible
over R. The third case is a theorem of Kœnigs [8] (see Chapter 8 of [16]). The final
case, of the so-called indifferent fixed points, is in general the most complicated case
to study, but as we are dealing with real analytic functions of a single variable the
only possibilities for Φ′(0) are ±1 and in this case 0 is a parabolic fixed point for
Φ◦2 and we may apply Leau’s linearization theorem [9] (Theorem 10.9 in [16]) Φ◦2 is
conjugate to x + 1 at ∞ which when conjugated back to the origin is a projectively
linear map.

In this one-dimensional case, the monomializable functions are automatically
strongly monomializable while the linearizable functions might not be strongly
linearizable, but their compositional squares always are. �

Theorem 3.1. If Φ is a real analytic function for which some positive compositional
power is expressible as a product of a strongly projectively linearizable function and
a strongly monomializable function and a is close enough to the origin, then for any
closed real analytic variety X the set {n ∈ N : Φ◦n(a) ∈ X} is a finite union of points
and arithmetic progressions. In particular, this result holds for Φ expressible as a
product of univariate functions.

Proof. Let N ∈ Z+ so that Φ◦N is a product of a strongly projectively linearizable
function by a strongly monomializable function. By Corollary 3.1, we find Ran,exp

definable functions G0, . . . , GN−1 so that Gj(m) = Φ◦(Nm+j)(a) for m ∈ N. Each of
the sets {x ∈ R : Gj(x) ∈ X} is definable in Ran,exp and as such is a finite union
of points and intervals. Thus, the set of m ∈ N with Φ◦m(a) ∈ X is a finite union
of points and arithmetic progressions with modulus N . �

4. Concluding speculations

We end this note with two observations about possible extensions of these
methods.
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First, it might seem that by interpreting C as R
2 and complex analytic func-

tions, via their real and imaginary parts, as real analytic functions in more variables,
we could in a similar manner parametrize the orbits of complex analytic dynamical
systems by Ran,exp definable functions near their fixed points. However, we needed
to restrict to strongly projectively linearizable or strongly monomializable functions.
Even if Φ is linearizable, if its eigenvalues are not real, then the orbits do not admit
definable parametrizations. However, they do admit reasonably concrete complex an-
alytic parametrizations and it might be reasonable to hope that a direct analytic ar-
gument not dependent on the theory of o-minimality could be employed. On the other
hand, it will happen in some cases that the orbit will not be globally parametrized, but
it will be contained in the image of a definable function. In this case, the o-minimal
argument applies. For example, this can happen near an irrationally indifferent point
at which the self-map is linearizable and all of the eigenvalues of the corresponding
linear map share a positive real period.

Miller has studied [14] the model theory of an expansion of an o-minimal structure
on the real field by a trajectory for a definable vector field on the plane and has
proven a kind of dichotomy theorem between tame behavior (d-minimality, every one
variable definable set is a finite union of discrete sets and intervals) and wild behavior
in which the integers are definable. Some of the curves enveloping orbits in the
complex analytic situation fall into his tame framework. In related work, Miller and
Tyne [15] have shown that the structure obtained by naming an orbit of a definable
unary function under the hypothesis that the orbit escapes to infinity and that the
iterates of the function in question are cofinal in the set of all definable functions is
also d-minimal. These tameness theorems should generalize to functions of several
variables and they should yield arithmetic information in the cases not amenable to
the o-minimal analysis.

Secondly, we have used the o-minimality of Ran,exp rather crudely merely invoking
its definition so as to say something about definable sets in one variable. We might
wish to study finitely many self-maps Φ1, . . . ,Φn, points a1, . . . , an and analytic sets
X (in the appropriate number of variables) and then look at the set

S := {(m1, . . . , mn) ∈ N
n : (Φ◦m1

1 (a1), . . . , Φ◦mn
n (an)) ∈ X}

If the orbits of ai under Φi admit Ran,exp definable parametrizations Fi : [0,∞) →
R

mi , then S may be seen as the integer points on the Ran,exp definable set

S̃ := {(x1, . . . , xn) ∈ [0,∞)n : (F1(x1), . . . , Fn(xn)) ∈ X}

In all generality, the set S might contain several infinite families, but the theorems
of Pila and Wilkie [18] on counting rational points in sets definable in o-minimal
structures limit the number integer points in S̃ of small height. More precisely, one
must first compute the algebraic part, S̃alg, of S̃ by which we mean the union of all
infinite, connected, semialgebraic subsets of S̃. In practice, one expects that S̃alg will
be defined by some linear conditions, but the actual determination is a subtle problem.
Then one knows that for each ε > 0 there is a constant C(ε) so that for B ≥ 1

#{(m1, . . . , mn) ∈ S � S̃alg : |mi| ≤ B all i ≤ n} ≤ C(ε)Bε
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These bounds are much weaker than what one expects to be true, but bounds of any
kind are notoriously difficult to obtain for the higher-rank dynamical Mordell–Lang
problem.
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