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POINCARÉ SERIES OF EMBEDDED FILTRATIONS

Ann Lemahieu

Abstract. In this article, we define a Poincaré series on a subspace of a complex analytic

germ, induced by a multi-index filtration on the ambient space. This Poincaré series
differs from Poincaré series studied before in the sense that there is no notion of fibre that
corresponds to our Poincaré series. We compute this Poincaré series for subspaces defined

by principal ideals. For plane curve singularities and nondegenerate singularities this
Poincaré series yields topological and geometric information. We compare this Poincaré
series with the one introduced in [E,G-Z2]. In few cases, they are equal and we show
that the Poincaré series we consider in this paper in general yields more information.

0. Introduction

In [C,D,K], one introduced a Poincaré series induced by a filtration on the ring of
germs of a complex variety. This Poincaré series has been studied for several kinds of
singularities, see for example [C,D,G-Z1], [C,D,G-Z2], [C,D,G-Z3], [E,G-Z1], [C,H,R],
[L], [GP,H] and [N]. In some cases, this Poincaré series determines the topology of
the singularity and is related to its zeta function of monodromy.

In these works, one considers multi-index filtrations defined by valuations on the
local ring at the singularity and in [E,G-Z1] and recently in [E,G-Z2] one considers
valuations on an ambient smooth space of the singularity that correspond to facets
of the Newton polyhedron. Here, we study Poincaré series induced by multi-index
filtrations coming from arbitrary valuations on the ambient space where at least one
of them is centred at the maximal ideal of the local ring of the singularity considered
in the ambient space. In an upcoming paper, we study this Poincaré series also for
valuations where none of them is centred at the maximal ideal.

The Poincaré series we introduce here is defined in an algebraic way and differs
from Poincaré series studied before in the sense that there is no notion of fibre that
corresponds to our Poincaré series. We go into this in Section 1. We compute this
Poincaré series for a subspace corresponding to a principal ideal. A nice A’Campo
type formula shows up. In Section 2, we compare our Poincaré series with the one
defined in [E,G-Z2]. The Poincaré series in [E,G-Z2] is consistent with a notion of
geometric fibre but the price to pay is that this filtration is less richer than the one we
consider here. This follows also from the formulas they computed for their Poincaré
series. When the Newton polytope is bi-stellar, we show that both Poincaré series
coincide. The property of bi-stellar generalizes the notion of stellar introduced in
[E,G-Z2]. In Section 3, we study this Poincaré series for a plane curve singularity
that is a general element in an ideal in C{x, y} where the embedded filtration comes
from the Rees valuations of the ideal. Using the result in [C,D,G-Z4], we show that the
Poincaré series determines and is determined by the embedded topology of the plane
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curve singularity. In Section 4, we compare different Poincaré series for affine toric
varieties. In Section 5, we study the Poincaré series for nondegenerate singularities
where the embedded filtration is now induced from the Newton polyhedron. We show
that one can recover the Newton polyhedron from the Poincaré series and thus, in
particular, that the zeta function of monodromy can be deduced from the Poincaré
series.

1. Poincaré series associated to embedded filtrations

Let (X, o) be a germ of a complex analytic space and let OX,o be the local ring of
germs of functions on (X, o). Let ν = {ν1, . . . , νr} be a set of order functions from
OX,o to Z ∪ {∞}, i.e. functions νj that satisfy νj(f + g) ≥ min {νj(f), νj(g)} and
νj(fg) ≥ νj(f), for all f, g ∈ OX,o, 1 ≤ j ≤ r. An order function νj is called
a valuation if moreover it satisfies νj(fg) = νj(f) + νj(g), for all f, g ∈ OX,o. In
particular, when (X, o) is irreducible, ν can be a set of discrete valuations of the
function field C(X) whose valuation rings contain OX,o. The set ν defines a multi-
index filtration on OX,o by the ideals

M(v) := {g ∈ OX,o | νj(g) ≥ vj , 1 ≤ j ≤ r}, v ∈ Z
r.

If the dimensions of the complex vector spaces M(v)/M(v+1) are finite for all v ∈ Z
r,

then originally (see [C,D,K] and [C,D,G-Z2]) the Poincaré series associated to this
multi-index filtration was defined as

P
ν
X(t1, . . . , tr) :=

∏r
j=1(tj − 1)

(t1 · · · tr − 1)

∑

v∈Zr

dim(M(v)/M(v + 1))tv.

Let us now consider an ideal I in OX,o. We will define a Poincaré series associated
to an embedded filtration on OX,o/I. Let V be the analytic subspace of X determined
by the ideal I and let the map ϕ : OX,o → OX,o/I define the embedding of V in X.
We set I(v) := ϕ(M(v)+I). In general, the ideals I(v) define a multi-index filtration
on OV,o which is not induced by a set of order functions on V , i.e., there do not have
to exist order functions μ1, . . . , μr on V such that I(v) = {g ∈ OV,o | μj(g) ≥ vj , 1 ≤
j ≤ r}. The existence of such functions for {I(v)} is equivalent with the condition
that

I(v1) ∩ I(v2) = I(v),(1.1)

where v1 and v2 are arbitrary tuples in Z
r and v is the tuple of the componentwise

maxima of v1 and v2. Indeed, if Condition (1.1) holds, then one has order functions
μj on V with μj(g) = vj if and only if g ∈ I(0, . . . , 0, vj , 0, . . . , 0) \ I(0, . . . , 0, vj +
1, 0, . . . , 0).

Definition 1.1. The Poincaré series associated to the embedded multi-index filtration
given by the ideals I(v) is the series

Pν
V (t1, . . . , tr) :=

∏r
j=1(tj − 1)

(t1 · · · tr − 1)

∑

v∈Zr

dim(I(v)/I(v + 1))tv.

It is useful to notice that dim(I(v)/I(v + 1)) = dim (J(v)/J(v + 1)), where J(v) :=
M(v) + I. If {I(v)} is defined by order functions μ1, . . . , μr, then one has a notion
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of fibre because to every g ∈ OV,o can attach a value μ(g) = (μ1(g), . . . , μr(g)).
Concretely, consider the projection map

jv : I(v) −→ D1(v) × · · · × Dr(v)

g 	−→ (a1(g), . . . , ar(g)),

where for 1 ≤ j ≤ r the space Dj(v) = I(v)/I(v + ej) where ej is the r-tuple with j th
component equal to 1 and the other components equal to 0, and aj(g) is the class of
g in Dj(v), 1 ≤ j ≤ r. As Condition (1.1) then holds, the following expressions

Fv := Imjv ∩ (D∗
1(v) × · · · × D∗

r (v)),(1.2)

Fv := (I(v)/I(v + 1)) \
r⋃

i=1

(I(v + ei)/I(v + 1))(1.3)

coincide and one has that μ(g) = v if and only if g + I(v + 1) ∈ Fv. The space Fv

is invariant with respect to multiplication by nonzero constants; let PFv = Fv/C
∗ be

the projectivization of Fv. We then have

Pν
V (t) =

∑

v∈Zr

χ(PFv)tv,

where χ(·) denotes the Euler characteristic. If such functions μ1, . . . , μr do not exist
for {I(v)}, then (1.2) and (1.3) are possible generalizations of the notion of fibre but
we then lose some geometric meaning.

In this paper we will investigate the Poincaré series as in Definition 1.1 and we will
see in Example 1.1 that this Poincaré series is different from the two possible ones
induced by the “fibres” (1.2) and (1.3).

We now compute this Poincaré series for I = (h) a principal ideal.

Theorem 1.1. Let (X, o) be irreducible, I = (h) a principal ideal in OX,o and V the
analytic subspace of (X, o) determined by the ideal I. Let ν = {ν1, . . . , νr} be a set of
discrete valuations of C(X) centred at the maximal ideal of OX,o. We write q = ν(h).
Then

Pν
V (t) = (1 − tq)P ν

X(t).(1.4)

Proof. For a set A ⊂ {1, . . . , r}, let 1A be the r-tuple with jth component equal to 1
if j ∈ A and else equal to 0, 1 ≤ j ≤ r. The coefficient of tv in the left-hand side of
(1.4) is

(−1)r+1
∑

A⊂{1,...,r}
(−1)#Adim

OX,o

J(v − 1A + 1)
.

The coefficient of tv in the right-hand side of (1.4) is equal to

(−1)r+1
∑

A⊂{1,...,r}
(−1)#Adim

OX,o

M(v − 1A + 1)

− (−1)r+1
∑

A⊂{1,...,r}
(−1)#Adim

OX,o

M(v − 1A − q + 1)
.
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These sums can be rewritten such that for A ⊂ {1, . . . , r}, it is enough to prove for
some j ∈ A that

dim
J(v − 1A + 1)

J(v − 1A\{j} + 1)
= dim

M(v − 1A + 1)
M(v − 1A\{j} + 1)

− dim
M(v − 1A − q + 1)

M(v − 1A\{j} − q + 1)
.

This follows immediately from the fact that the kernel of the projection map:

M(v − 1A + 1)
M(v − 1A\{j} + 1)

−→ J(v − 1A + 1)
J(v − 1A\{j} + 1)

is equal to
(h)M(v − 1A − q + 1)

(h)M(v − 1A\{j} − q + 1)
.

�

Example 1.1. Let X = C
2 and h(x, y) = x6y2 +y8. We choose monomial valuations

ν1 and ν2 on OX,o given by ν1(xayb) = 2a + 3b and ν2(xayb) = 4a + 3b. One can
compute that the coefficient of t201 t282 in (1−tq)P ν

X(t) is 0 although both fibres F(20,28)

as defined in (1.2) and (1.3) contain the monomial x4y4.

2. Geometric embedded filtrations versus algebraic embedded filtrations.

Let h : (Cd, o) → (C, o) be a germ of a holomorphic function. Recently in [E,G-Z2]
one considered a Poincaré series on OV,o = OCd,o/(h), induced by a Newton filtration.
We write h(x) =

∑
k∈Z

d
≥0

akxk, where k = (k1, . . . , kd) and xk = xk1
1 · · · · · xkd

d . The

support of h is supp h := {k ∈ Z
d
≥0 | ak �= 0}. The Newton polyhedron of h at the

origin is the convex hull in R
d
≥0 of

⋃
k∈supp h k + R

d
≥0 and the Newton polytope of h

at the origin is the compact boundary of the Newton polyhedron of h at the origin.
Let ν1, . . . , νr be the monomial valuations on OCd,o corresponding to the facets of

the Newton polytope of h, i.e. for a compact facet τ with the affine space through
τ given by the equation a1x1 + · · · + adxd = Nτ , the corresponding valuation ν acts
as follows: ν(xm1

1 . . . xmd

d ) = a1m1 + · · · + admd. Ebeling and Gusein-Zade study the
Poincaré series P{ωi}(t) on V induced by the order functions

ωi(g) := max {νi(g′) | g′ − g ∈ (h)}.
On the other hand, we can consider the Poincaré series as defined in Definition 1.1,
with I = (h). The Poincaré series in [E,G-Z2] has a more geometric meaning because
one has fibres Fv and P{ωi}(t) =

∑
v∈Zr χ(PFv)tv. However, our Poincaré series —

which is rather algebraic — contains more information about the singularity (V, o).
In general, the embedded filtration we introduce in this article is richer because I(v)
is not necessarily determined by I(v1, 0, . . . , 0), I(0, v2, 0 , . . . , 0), . . . , I(0, . . . , 0, vd),
whereas the ideals that appear in the Poincaré series P{ωi}(t) are. We comment
further on this in this section.

In [E,G-Z2] a Newton polytope is called stellar if all its facets have a common
vertex. If the Newton polytope of h is stellar, then they show [E,G-Z2, Theorem 2]
that

P{ωi}(t) = (1 − tν(h))P ν
X(t).
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However, if the Newton polytope is not stellar, the information on (V, o) can be lost
in the Poincaré series P{ωi}(t). Indeed, for h a germ of a holomorphic function on
(C2, o) with o an isolated critical point of h, they prove [E,G-Z2, Theorem 1] that

P{ωi}(t) = P
ν
X(t).

Proposition 2.1. If the ideals I(v) satisfy Condition (1.1), then P{ωi}(t) = Pν
V (t).

Proof. It is sufficient to verify that then

I(0, . . . , 0, vi, 0, . . . , 0) = {g ∈ OV,o | ωi(g) ≥ vi}.
�

We will now characterize the germs h of holomorphic functions on C
d for which

Condition (1.1) is satisfied, and thus for which these geometric and algebraic Poincaré
series coincide. Obviously this will depend on the Newton polytope of h. We will use
the following lemma to give the characterization.

Lemma 2.1. Let {M(v)} be ideals in a local ring R that satisfy Condition (1.1) and
consider an ideal I in R. Then for v1, v2 ∈ Z

r, the following conditions are equivalent:

(1) (M(v1)+I)∩(M(v2)+I) = M(v)+I where v is the tuple of the componentwise
maxima of v1 and v2;

(2) (M(v1) + M(v2)) ∩ I = (M(v1) ∩ I) + (M(v2) ∩ I).

Proof. Suppose that the first equation of sets holds. Take f ∈ (M(v1) + M(v2)) ∩ I.
Then f = f1 + f2 with f ∈ I, f1 ∈ M(v1) and f2 ∈ M(v2). Thus f1 ∈ (M(v1) + I)∩
(M(v2) + I). By the hypothesis it then follows that f1 ∈ M(v) + I and so we can
write f1 = g + k with g ∈ M(v) and k ∈ I. We have f = (f1 − g) + (f2 + g) and
f1 − g ∈ M(v1) ∩ I and f2 + g ∈ M(v2) ∩ I. Hence f ∈ (M(v1) ∩ I) + (M(v2) ∩ I).

We now suppose that the second equation of sets holds. We consider the following
exact sequences:

0 → (M(v1) ∩ I)/(M(v) ∩ I) → M(v1)/M(v) → (M(v1) + I)/(M(v) + I) → 0
(2.1)

0 → (M(v2) ∩ I)/(M(v) ∩ I) → M(v2)/M(v) → (M(v2) + I)/(M(v) + I) → 0.

(2.2)

We take a set B′
i of elements in M(vi)∩I that give rise to a basis of the vector space

(M(vi) ∩ I)/(M(v) ∩ I) , i ∈ {1, 2}. For i ∈ {1, 2}, we use the exact sequences (2.1)
and (2.2) to add to B′

i a set of elements B′′
i of M(vi) whose images are a basis of the

quotient (M(vi) + I)/(M(v) + I). So the classes of the elements of Bi := B′
i ∪ B′′

i

form a basis of M(vi)/M(v), i = 1, 2. We also have that the classes of the elements
in B1 ∪B2 form a system of generators for the vector space (M(v1) + M(v2))/M(v).
Analogously, the classes of the elements in B′

1 ∪B′
2 are a system of generators for the

vector space [(M(v1) ∩ I) + (M(v2) ∩ I)]/(M(v) ∩ I).
Condition (1.1) implies that the set B1∪B2 consists of elements of M(v1)+M(v2)

whose classes module M(v) are linearly independent and hence the classes of the
elements in B1 ∪ B2 are a basis of (M(v1) + M(v2))/M(v). Indeed, if x is a linear
combination of elements in B1 and y is a linear combination of elements of B2 and
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if x + y = z with z ∈ M(v), then x = z − y ∈ M(v1) ∩ M(v2). Condition (1.1) then
implies that x, y ∈ M(v).

Let us now take an element f ∈ (M(v1)+I)∩(M(v2)+I), so f = f1+k1 = f2+k2,
fi ∈ M(vi) and ki ∈ I, i = 1, 2. For i = 1, 2, we can write fi = f ′

i + f ′′
i + mi with

f ′
i a linear combination of elements in B′

i, f ′′
i a linear combination of elements in

B′′
i and mi ∈ M(v). Then g := k2 − k1 = f1 − f2 ∈ (M(v1) + M(v2)) ∩ I =

(M(v1)∩I)+ (M(v2)∩I) by the hypothesis. Hence g = g′1 + g′2 +m, with g′i a linear
combination of elements of B′

i, i = 1, 2, and m ∈ M(v) ∩ I. We obtain

(g′1 − f ′
1) − f ′′

1 + (g′2 + f ′
2) + f ′′

2 = m1 − m2 − m.

The right-hand side of this equality is contained in M(v). The left-hand side is a sum
of four terms that are linear combinations of elements, respectively, from B′

1, B
′′
1 , B′

2

and B′′
2 . As the classes of the elements in B1∪B2 are a basis of (M(v1)+M(v2))/M(v),

we get in particular f ′′
1 = 0. Hence f = m1 + (f ′

1 + k1) ∈ M(v) + I. �

Definition 2.1. A Newton polytope is called bi-stellar if every two facets of the
Newton polytope have a nonempty intersection.

Proposition 2.2. The Newton polytope of h is bi-stellar if and only if the ideals
M(v) + (h) satisfy Condition (1.1).

Proof. Say the Newton polytope of h has r compact facets inducing the monomial
valuations ν1, . . . , νr on C

d. Suppose that the Newton polytope of h is bi-stellar. By
Lemma 2.1, it suffices to show that for all v1, v2 ∈ Z

r one has that

(I(v1) ∩ (h)) + (I(v2) ∩ (h)) = (I(v1) + I(v2)) ∩ (h).

Let gh ∈ I(v1) + I(v2)) and q := ν(h). We write g = g1 + g2 with g1 =
∑

λaxa

and xa /∈ I(v1 − q) + I(v2 − q), for all xa in supp g1, and g2 =
∑

λbx
b with xb ∈

I(v1 − q)+ I(v2 − q), for all xb in supp g2. Suppose that g1 �= 0. We take a monomial
xa in supp g1. Then there exist i, j ∈ {1, . . . , r} such that νi(xa) < v1,i − qi and
νj(xa) < v2,j − qj .

We first consider the case where i �= j. Let N be the set of the monomials in supp
g1 that are minimal for the pair (νi, νj), i.e. xc ∈ N if and only if there does not
exist a monomial xd in supp g1 for which νi(xd) < νi(xc) and νj(xd) < νj(xc). Let
M be the set of monomials xm in supp h for which νi(xm) = qi and νj(xm) = qj .
As the Newton polytope is bi-stellar, M is not empty. For the monomials xmxc with
xm ∈ M and xc ∈ N , we thus have that νi(xmxc) < v1,i and νj(xmxc) < v2,j . As
such monomials do not appear in the support of gh they should be cancelled. It
follows that at least one such monomial xmxc has to be equal to a monomial xhxa′

with xh ∈ supp h \ M and xa′
in supp g1. Say νi(xh) > qi. We then find that

νi(xa′
) < νi(xc) and νj(xa′

) ≤ νj(xc) which contradicts the fact that xc ∈ N and
thus g1 = 0.

Suppose now that i = j. Let N be the set of monomials with support in g1 that
are minimal for the valuation νi, i.e. xc ∈ N if and only if there does not exist a
monomial xd in supp g1 for which νi(xd) < νi(xc). Let M be the set of monomials
xm in the support of h for which νi(xm) = qi. Analogously, there then has to be a
monomial xmxc with xm ∈ M and xc ∈ N that is equal to a monomial xhxa′

, with
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xh ∈ supp h \ M and xa′ ∈ supp g1. Again we get a contradiction because xc would
not be minimal for νi.

We now suppose that the ideals M(v) + (h) satisfy Condition (1.1). If the Newton
polytope of h would not be bi-stellar, then there would exist two valuations νi, νj with
i, j ∈ {1, . . . , r} for which the sets of monomials Mi = {xm ∈ supp(h) | νi(xm) = qi}
and Mj = {xm ∈ supp(h) | νj(xm) = qj} would be disjoint. Let hi be the part of h
with support in Mi, so νi(hi) = qi and νi(h − hi) > qi. Then h = hi + (h − hi) with
νi(hi) < νi(h − hi), νj(h − hi) < νj(hi) and ν(h) ≤ ν(hi) and ν(h) ≤ ν(h − hi). By
Lemma 2.1 it follows that h would be contained in (M(ν(hi)) + M(ν(h − hi))) ∩ (h)
but not in (M(ν(hi))∩(h))+(M(ν(h−hi)))∩(h)), contradicting Condition (1.1). �

3. Embedded filtrations for plane curve singularities

Let X = C
2 and let I be a primary ideal in OX,o. If φ : Z → C

2 is a principilization
of I, then φ is realized by blowing up a constellation of points {Qσ}σ∈G. The map φ

factorizes through the normalized blowing up of I which we will denote by BlI(C2).
Let σ be the morphism Z → BlI(C2) in this factorization. For σ ∈ G, we denote
the exceptional divisor of the blowing-up in Qσ by Eσ, as well as its strict transform
under following blowing-ups, and D := ∪σ∈GEσ. Blowing up a point Qσ induces a
discrete valuation νσ on C(X) \ {0}: for g ∈ C(X) \ {0}, the value νσ(g) is the order
of the pullback of g along Eσ. The valuation νσ is called Rees for I if its centre in
BlI(X) is a divisor. We have that νσ is Rees for I if and only if the strict transform
of the curve given by a general element in I intersects Eσ (see for example [L,VP,
Lemma 8]). Say that E1, . . . , Er are the exceptional components that give rise to
Rees valuations ν1, . . . , νr.

Let us now consider a general element h in the ideal I and let V be the hypersurface
given by {h = 0}. In [C,D,G-Z2], one studied the Poincaré series P

ν
V (t) that is defined

by the filtration on OV,o induced by the essential valuations ν of the minimal resolution
of the plane curve V . One showed that Poincaré series contained the same information
as the embedded topology of the curve and that P

ν
V (t, . . . , t) equals the zeta function

of monodromy.
We will now study the Poincaré series of the embedded filtration on OV,o induced

by the Rees valuations ν = (ν1, . . . , νr). For 1 ≤ j ≤ r, suppose that Ej is intersected
nj times by the strict transform of {h = 0}. Let E•

σ be Eσ without the intersection
points with the other components of D and let E◦

σ be Eσ without the intersection
points of the other components of φ−1(h−1{o}). Let I be the intersection matrix of
the {Eσ}σ∈G and let M = −I−1. Let Cσ be a curvette through Eσ (i.e., the projection
by φ of a smooth curve transversal to Eσ and not intersecting other components of
D). The entry mσ,τ in M is then also equal to ντ (Cσ).

Theorem 3.1. The Poincaré series Pν
V (t) determines and is determined by the em-

bedded topology of {h = 0}.
Proof. By Theorem 1.1, Pν

V (t1, . . . , tr) = (1− tq1
1 · · · tqr

r )P ν
X(t1, . . . , tr), with q = ν(h).

The Poincaré series P
ν
X(t) induced by plane divisorial valuations is computed in

[D,G-Z]. For σ ∈ G, let mσ = (mσ,1, . . . , mσ,r). Then one has

P
ν
X(t1, . . . , tr) =

∏

σ∈G

(1 − tm
σ

)−χ(E•
σ).
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As Ej is intersected nj times by the strict transform of {h = 0}, 1 ≤ j ≤ r, we get
qi =

∑r
j=1 njmi,j , for 1 ≤ i ≤ r. If the curve is irreducible (i.e. r = 1) and if E1 is

intersected by the strict transform then n1 = 1 and q1 = m1,1. We then have

Pν
V (t) = (1 − tm1,1)

∏

σ∈G

(1 − tmσ,1)−χ(E•
σ) =

∏

σ∈G

(1 − tqσ )−χ(E◦
σ).

Hence, it follows that Pν
V (t) is then equal to the zeta function of monodromy ζV (t)

[A’C].
Suppose now that the curve is reducible. We will show that the factor (1− tq) can

not be cancelled by a factor (1− tm
σ

)−χ(E•
σ) of P

ν
X(t). As qi =

∑r
j=1 njmi,j , we have

that qi > mi,j for all j ∈ {1, . . . , r}. If νσ is not a Rees valuation, then there exists
always a valuation νj which is Rees and such that Qj lies above Qσ. Then mσ,j < mj,j

and thus qi > mσ,i, for all σ ∈ G. Thus q is the biggest exponent in the cyclotomic
factors in Pν

V (t). This makes that we can extract the value q and the Poincaré series
P

ν
X(t) from the Poincaré series Pν

V (t). In [C,D,G-Z4], it has been shown that P
ν
X(t)

determines the dual graph of the divisors {Eσ}σ∈G and thus the matrix M . As M is
invertible, it follows that we can now compute the numbers nj , 1 ≤ j ≤ r. Hence the
dual resolution graph of {h = 0} is known and the Poincaré series Pν

V (t) determines
the embedded topology of {h = 0}. �
For the Poincaré series we study here, we get that the zeta function of monodromy

ζV (t) =
Pν

V (tn1 , . . . , tnr )
∏r

j=1(1 − tqj )nj

(1 − t
∑ r

j=1 njqj )
.

Remark 3.1. If V = {h = 0} is a reduced plane curve singularity and Z → C
2 is

a concrete embedded resolution of singularities for V , then the function h becomes a
general element for some convenient primary ideal I such that IOZ is locally principal.
Hence Theorem 3.1 can be applied to any reduced curve singularity and a chosen
embedded resolution for it and, in particular, for the minimal one.

4. Poincaré series for toric varieties

We now consider the particular case where V is an affine toric variety. Let S be a
semigroup in M ∼= Z

d such that S + (−S) = M and S ∩ (−S) = 0 and let V = Spec
C[S] be the associated affine toric variety. Let σ̌ be the cone generated by S and let
{s1, . . . , sd+p} be a system of generators of S = σ̌ ∩M . Suppose that the embedding
of V in C

d+p is given by the map

ε : C[x1, . . . , xd+p] → C[S]

xk 	→ χsk .

We set deg(xk) = sk, 1 ≤ k ≤ d + p. The toric variety V is given by an ideal
generated by binomials hi = xαi − xβi ∈ C[x1, . . . , xd+p], 1 ≤ i ≤ p. Moreover
deg(xαi

) = deg(xβi

) and supp(xαi

) ∩ supp(xβi

) = ∅. The Newton polytope of each
toric hypersurface hi is a segment τ i, connecting αi and βi. Let τ∗i be the dual
space in R

∗d+p
≥0 to this segment and let H∗i be the hyperplane passing through τ∗i.

The equation of H∗i is
∑d+p

k=1(α
i
k − βi

k)xk = 0. Set τ∗ := τ∗1 ∩ · · · ∩ τ∗p and H∗ :=
H∗1 ∩ · · · ∩ H∗p. Let N be the dual space to M and let σ be the dual cone to σ̌.
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A primitive element n in σ ∩ N defines a discrete valuation ν of C(V ) by setting
ν(

∑
m∈F amχm) = min{〈m, n〉 | m ∈ F, am �= 0}.

A finite set of valuations ν in σ induces a Poincaré series P
ν
V for V . On the other

hand, valuations μ in τ∗ give rise to ambient ideals M(v) ⊂ X = C
d+p and hence to

a Poincaré series Pμ

V for V . We now show how both Poincaré series are related.

Theorem 4.1. The cones σ and τ∗ are isomorphic and under this isomorphism one
has P

ν
V (t) = Pμ

V (t).

Proof. We show that there is an isomorphism θ : R
d → H∗ that maps σ to τ∗. Let

ν ∈ R
d and let μ = (μ1, . . . , μd+p) be the vector such that μk = 〈sk, ν〉, 1 ≤ k ≤ d+p.

Then obviously
∑d+p

k=1(α
i
k − βi

k)μk = 0 for 1 ≤ i ≤ p and this implies that μ ∈ H∗.
For the opposite direction, take μ ∈ H∗. The equality

∑d+p
k=1(α

i
k − βi

k)μk = 0 implies
that there exists a ν ∈ R

d such that μk = 〈sk, ν〉, 1 ≤ k ≤ d + p. This ν is then
unique. As σ is the dual cone to σ̌, it follows that σ maps to τ∗.

The Poincaré series Pμ

V with respect to the valuations μ1, . . . , μr ∈ τ∗ is induced
by the ideals

J(v) = (xλ | 〈λ, μj〉 ≥ vj , 1 ≤ j ≤ r) + (h1, . . . , hp).

As 〈λ, μj〉 = 〈s, νj〉, where s =
∑d+p

k=1 λksk, it follows that xλ ∈ J(v) if and only if
ε(xλ) = χs, with 〈s, νj〉 ≥ vj , 1 ≤ j ≤ r.

The Poincaré series P
ν
V with respect to the corresponding valuations νj is induced

by the ideals
(χs | 〈s, νj〉 ≥ vj , 1 ≤ j ≤ r).

It now follows that both Poincaré series coincide. �

5. Embedded filtrations for nondegenerate singularities

Let h be the germ of a holomorphic function on C
d defining a hypersurface singularity

(V, o). Let ν = {ν1, . . . , νr} be the monomial valuations corresponding to the facets
of the Newton polyhedron of h, including the noncompact facets. The centre of the
valuations νi could then be a prime ideal different from the maximal ideal of OCd,o.
We suppose that there is at least one compact facet such that there is at least one
valuation with centre in the maximal ideal. The definition of Poincaré series for affine
toric varieties can be extended for a set of valuations which contains at least one
valuation with centre in the maximal ideal. Indeed, notice that the χ(PFv) are then
finite numbers (see also [GP,H] for an equivalent definition using graded rings) such
that the Poincaré series

∑
v∈Zr χ(PFv)tv is well defined.

Theorem 5.1. Suppose that h is nondegenerate with respect to its Newton polyhedron
N in the origin and that N has at least one compact facet. Let ν = {ν1, . . . , νr} be
the monomial valuations on C

d induced by the facets of N . Then the Poincaré series
Pν

V (t) contains the same information as the Newton polyhedron of h and in particular
determines the zeta function of monodromy of h.

Proof. Let ν1 be a valuation in ν with centre in the maximal ideal. The coefficient of
tv in the series

(5.1)
(1 − tq1

1 · · · tqr
r )

(1 − t
ν1,1
1 · · · tνr,1

r ) · · · (1 − t
ν1,d

1 · · · tνr,d
r )
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with q = ν(h), can also be written as
∑

A⊂{2,...,r}
(−1)#Adim

M(v − 1A + 1)
M(v − 1A + e1 + 1)

−
∑

A⊂{2,...,r}
(−1)#Adim

M(v − q − 1A + 1)
M(v − q − 1A + e1 + 1)

.

Notice that these dimensions are finite because ν1 has centre in the maximal ideal.
One can now argue in the same way as in the proof of Theorem 1.1 to obtain that

Pν
V (t) = (1 − tq)P ν

Cd(t).

We show that no factors cancel in (5.1). Indeed, from the fact that ν contains the
valuations (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) and at least one valuation where none of the
entries is equal to 0, one can deduce that some variable, let us say x1, should divide h
and that the monomial x1 should be contained in the support of h. This contradicts
the hypothesis that the Newton polyhedron of h contains at least one compact facet.
Picturing the hyperplanes

νj,1x1 + · · · + νj,dxd = qj , 1 ≤ j ≤ r,

the Newton polyhedron of h is completely determined. In particular, for nondegener-
ate polynomials, one can compute the zeta function of monodromy from the Newton
polyhedron by the formula of Varchenko (see [Va]). �
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[N] A. Némethi, Poincaré series associated with surface singularities, in ‘Singularities I’,

Contemp. Math. 474, Amer. Math. Soc., Providence, RI, 2008, 271–297.

[Va] A. N. Varchenko, Zeta-function of monodromy and Newton’s diagram, Inv. Math. 37
(1976), 253–262.
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