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ON AN APPLICATION OF GUTH–KATZ THEOREM

Alex Iosevich, Oliver Roche-Newton and Misha Rudnev

Abstract. We prove that for some universal c, a non-collinear set of N > 1
c

points in

the Euclidean plane determines at least c N
log N

distinct areas of triangles with one vertex

at the origin, as well as at least c N
log N

distinct dot products.

This in particular implies a sum-product bound

|A · A ± A · A| ≥ c
|A|2

log |A|
for a discrete A ⊂ R.

1. Introduction

In 1946 P. Erdős [6] posed what later became known as the Erdős distance problem.
The question was to prove that a plane set of N distinct points determines at least
N1−o(1) distinct distances. Some 65 years later, after a large number of partial results
and insightful ideas, the problem was solved by Katz and Guth [11], who proved that
N > 1

c points in the plane determine more than c N
log(N) distinct distances. See, for

example, [1, 9] and the references contained therein for the previous work on this in-
fluential conjecture and connections with other problems in geometric combinatorics.

The Guth–Katz proof is based to a significant extent on the polynomial method
which was introduced by Dvir [3] in the context of the Kakeya problem over finite
fields, and developed extensively by Guth and Katz [10], Guth [8], Elekes et al. [5]
and others. The key point of the Guth–Katz proof of the Erdős distance conjecture
is the following result based on the aforementioned polynomial method.

Theorem 1.1. A set of N2 straight lines in R
3, such that

(i) no more than O(N) lines are concurrent,
(ii) no more than O(N) lines lie in a single plane,
(iii) no more than O(N) lines lie in a single doubly ruled surface, have

O
(
N3log N

)
pair-wise intersections.

Remark 1.1. It is well known that there are only two doubly ruled non-plane surfaces
in R

3: hyperbolic paraboloid, and single-sheeted hyperboloid, both having degree two
(see, e.g., [14]).

In this paper, we shall see that Theorem 1.1 implies the following results.

Theorem 1.2. There exists a universal c > 0 such that a set of N > 1
c non-collinear

points in R
2 determines at least c N

log N distinct areas of triangles with one vertex at
the origin.
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We also have the following sum-product type inequality.

Corollary 1.1. Let A be a finite subset of reals. Then

(1) |A · A ± A · A| � |A|2
log |A| .

Above and throughout, |A| denotes cardinality of a discrete set A; the notation
X � Y means that there exists c > 0, such that X ≤ cY . Besides, X � Y means
Y � X, and X ≈ Y means X � Y and Y � X.

Counting areas of triangles with one vertex at the origin can be easily converted
to counting dot products. It is an immediate consequence of the forthcoming proof
of Theorem 1.2 that its statement can be generalized as follows.

Theorem 1.3. Let P, P ′ ⊂ R
2 such that |P | = |P ′| = N and that both P and P ′ are

not contained in a single line. Let A(P, P ′) denote the set of areas of triangles with
one endpoint at the origin, one at a point in P , and the other at a point in P ′. Then

|A(P, P ′)| � N

log(N)
.

Theorem 1.3 has an immediate corollary.

Corollary 1.2. Let P ⊂ R
2 with |P | = N . Let

Π(P ) = {v · w : v, w ∈ P}.

be the set of dot products generated by pairs of vectors from P . Then

|Π(P )| � N

log(N)
.

Observe that our results (as well as the Guth–Katz solution of the Erdős conjecture)
are optimal up to logarithmic factors, while Theorem 1.1 is optimal up to constants.

The problems discussed in this paper have been studied quite extensively in recent
years. Pinchasi [13] proved that for a set P of N non-collinear points there exist
two points A, B ∈ P such that the areas of triangles ABC, with C ∈ P have at least
�N−1

2 	 distinct values. However, as far as the triangles with one vertex at the origin are
concerned we are not aware of a result that would claim to guarantee more than cN

2
3

distinct areas, the latter estimate being a direct application of the Szemerédi–Trotter
theorem [15]. One may contrast this with the Erdös distance problem which had
had a series of incremental improvements over the past years, due to more elaborate
applications of the Szemerédi-Trotter theorem and arithmetic combinatorics methods.
See [11] and [1] and the references contained therein.

As for the inequality (1), the estimate with |A| 32 in the right-hand side follows once
again from the Szemerédi–Trotter theorem, (see, e.g., [16]), but we are not aware of
better bounds.

In the continuous setting, both problems are studied in [7]. For finite field versions
of these problems see, for example, [12] and [2]. In all of these instances, the exponents
are not optimal.
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2. Proof of the main results

Proof of Theorems 1.2 and 1.3. Let P ⊂ R
2, be a discrete non-collinear point set,

with the cardinality |P | = N . We can clearly assume that there is no line l containing
more than N

2 points of P (recall that the whole of P cannot be supported on a line),
or there are at least �N

2 	 − 1 triangles with different areas.
Before we begin, let us rotate the point set P around the origin to ensure that

no points of P lie on the coordinate axes and each vertical line x = c supports no
more than one point of P . This is done only in order to be able to specify a generic
projection’ of R

4 onto R
3 in the ensuing argument as the one along the x4-axis.

We now follow the energy approach, looking at the number of quadruples that solve

(2) v1 ∧ v2 = v3 ∧ v4,

where vi, i = 1, . . . , 4 are elements of P , and ∧ denotes the standard oriented vector
product. Let us restrict the equation (2) to the case of non-collinear (v1, v2) and non-
collinear (v1, v3), as well as the case when one rotates from v1 to v2 in the positive
direction.

Under this introductory set of assumptions, let n(s) be the number of occurrences
of the value s > 0 of the wedge product. Then we have

∑

s>0

n(s) � N2.

We are going to show that

(3) E =
∑

s>0

n2(s) � N3log N,

and Theorem 1.2 will follow by the Cauchy–Schwarz inequality.

Remark 2.1. As is noted by Guth and Katz in [11], the idea of using energy followed
by the argument of rotations was initially introduced by Elekes and Sharir in [4].

We shall demonstrate (3) by deducing it from Theorem 1.1. The remainder of this
paper is dedicated to this reduction.

Equation (2) has a solution if and only if there is a linear area-preserving transfor-
mation T , such that T (v1) = v3 and T (v2) = v4. One direction is obvious, and the
only if direction follows from the fact that for any two non-collinear pairs of vectors
there is a linear transformation mapping one pair to the other, and if the areas of the
corresponding triangles are equal, then the transformation is area-preserving.

Consider families Tij of linear area-preserving transformations Tij = Tvi,vj , acting
so that Tij(vi) = vj , for positively oriented pairs of non-collinear vectors vi, vj ∈ P .
Then, given a basis of R

2, Tij is represented by a matrix Aij in SL2(R). Since vi, vj

are non-collinear, they themselves can be considered as a basis, in which case, since
T [(1, 0)] = (0, 1),

(4) Aij = Aij(t) =
(

0 −1
1 t

)
, for t ∈ R.
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In the standard basis, Tij is represented by the matrix Ãij = CijAijC
−1
ij , where Cij

is the transition matrix: given vi = (a, b), vj = (c, d) we have

Ãij =
1

ad − bc

(
a c
b d

) (
0 −1
1 t

)(
d −c
−b a

)

=
1

ad − bc

(
cd + ab − bct −c2 − a2 + act
d2 + b2 − bdt −cd − ab + adt

)
.(5)

Therefore, in the standard basis, the family of transformations Tij corresponds
to a straight line1 inside a quadric hypersurface H ⊂ R

4. The equation for H is
x1x4 − x2x3 = 1.

Remark 2.2. This is the only fact about the group SL2(R) which is used in this
argument. Guth and Katz dealt with the Euclidean group SE2(R). Both are three-
dimensional Lie groups, and in both cases the problem in question enables a simple
incidence parameterisation2. Note that the fact that the two groups have the same
dimension is no longer true in dimension d > 2.

A solution of Equation (2) corresponds to the intersection of a pair of such straight
lines. Let L denote the family of these ≈ N2 lines.

We are now going to implement a generic projection argument in R
4 by projecting

H to R
3 and showing that the conditions of Theorem 1.1 in R

3 are satisfied. In order
to do this rigorously, let us make a few observations about the lines in L.

First, no more than N lines from L can be concurrent. Indeed, otherwise there
would be a vi ∈ P , which by the same linear transformation T would be mapped into
more than one point vj ∈ P .

Second, observe that after the original random rotation none of a, b, c, d equals
zero, and therefore, by (5), no line of L is contained in the section x1 = 0 of H.

This enables us just to consider the projection of H on the (x1, x2, x3)-space, in
the standard basis. This projection is one-to one, as long as we restrict x1 > 0, and
the latter restriction does not lead to a to loss of generality, since by (5) there are no
lines in the x4-direction, nor are there lines contained inside the section x1 = 0 of H.

The lines (5) project to the (x1, x2, x3) into a family L′ of ≈ N2 lines

(6) (x1, x2, x3)(t) =
1

ad − bc
[(−ac − bd,−c2 − d2, a2 + b2) + t(−bc,−cd, ab)].

Let us verify the non-degeneracy conditions (ii), (iii). Let us start with (iii), where
we essentially copy the corresponding part of the proof of Proposition 2.3 in [11].

Let us fix (a, b) and vary (c, d) continuously, under the constraints a, b, c, d, ad−bc �=
0. Let us call La,b the continuous family of these lines. Let S′ be some non-plane
doubly ruled surface. If more than O(1) lines of a single ruling of S′ lies in some La,b,
then all the lines from this ruling must lie in La,b. Besides, for (a, b) �= (a′, b′), the
sets La,b and La′,b′ are disjoint (this is the case for the original lines in H and the

1Geometrically it is easy to see. Let vi = (1, 0), vj = (0, 1), the standard basis unit vectors. A
transformation Tij would rotate (1, 0) into (0, 1), while the image of (0, 1) would be anywhere on the

vertical ray beginning at (−1, 0).
2For some discussion why this is the case see http://terrytao.wordpress.com/2011/03/05/lines-in-

the-euclidean-group-se2/#more-4676.
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projection of L onto L′ is one-to-one). Thus if more than O(1) lines from a ruling of
S′ lie in some La,b, no lines of this ruling lie in any other La′,b′ .

Indeed, consider the space of lines in R
3. By (6), since ab �= 0, we can only look at

the lines that are not contained in planes x3 = const. These lines are defined by their
initial point (x1, x2, 0) ∼= R

2 and the direction vector (d1, d2, 0) ∼= R
2. Thus given

(a, b), equations (6) can be rewritten as P1(x1, x2, d1, d2) = P2(x1, x2, d1, d2) = 0 for
some O(1) degree polynomials P1 and P2. On the other hand, a single ruling of S′

corresponds to a straight line in R
4. If this line intersects the zero set of P1 and P2

more than O(1) times, it is contained in it.
Hence, given S′, since there are only two families of lines, foliating S′, there may

be up to two exceptional points vi = (a, b) ∈ P , such that S′ contains up to N
lines representing the families of transformations Tvi,vj = T(a,b),(c,d) for various vj =
(c, d). For all other vi = (a, b), the surface S′ will contain no more than O(N) lines
representing Tvi,vj . Hence, S′ contains no more than O(N) lies of L′ altogether.

Condition (ii) can be verified directly. Suppose now S′ is a fixed plane with the
equation αx1+βx2+γx3 = δ. Thus the quadruple (α, β, γ, δ) is fixed up to a multiplier.
Fix vi = (a, b). Let vj = (c, d) vary. Let us show that there exists at most one pair
(c, d) = (c, d)[a, b, S′], such that the line in L′, representing T(a,b),(c,d) lies in S′. Note
that by the initial (generic) rotation assumption none of the a, b, c, d equals zero.

The transformations Tij mapping vi into vj are in the standard basis given by
unitary matrices (

x1 x2

x3 x4

)
,

such that

(7)
{

ax1 + bx2 − c = 0,
ax3 + bx4 − d = 0.

Suppose a, b are fixed, while (c, d) vary.
Multiply the second equation by x1 �= 0 and use x1x4 = 1 + x2x3 to eliminate x4

from the second equation and then use the first one. We then have a system of three
linear equations:

(8)

⎧
⎨

⎩

ax1 + bx2 = c,
−dx1 + cx3 = −b,
αx1 + βx2 + γx3 = δ.

The latter system of equations, with fixed (a, b) has a finite number of solutions which
correspond to point intersections of the lines of L′ with the plane S′ and are therefore
of no interest, unless they are degenerate. Suppose the system of equations (8) is
degenerate and has infinitely many solutions. Since b, c �= 0 we cannot have γ, β = 0.
Let us consider two cases: (i) β = 0, γ �= 0 and (ii) β �= 0.

In case (i), we can set γ = 1, which, given S′, will fix α, δ. If the equations are
dependent, we have (α, 1, δ) ∼ (−d, c,−b). This clearly allows for at most one value
of (c, d) = (c, d)[a, b, S′].

In case (ii), we can set β = 1, which, given S′, will fix α, γ, δ. If the equations are
dependent, we have, for some λ1, λ2 �= 0:

λ1b = 1, λ2c = γ, λ1c − λ2b = δ.
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This implies that c satisfies c
b −

bγ
c = δ, which yields no more than two possible values

of c, and hence (since the set P has been initially rotated to ensure that for each c,
there is at most one d, such that (c, d) ∈ P ) there are no more than two values of
(c, d).

Therefore, in either case S′ contains no more than 2N lines from L′.
Thus, the line family L′ satisfies the assumptions of Theorem 1.1 and this completes

the proof of Theorem 1.2. �
The proof of Theorem 1.3 repeats the proof of Theorem 1.2, with the only change

that one restricts equation (2) to v1, v3 ∈ P ; v2, v4 ∈ P ′. In the trivial case when one
does not have � N2 non-collinear pairs involved, unless both P and P ′ are supported
on the same line, there will be a point either in P or P ′, which alone is responsible
for � N triangles with distinct areas, whose other two vertices are the origin and a
point from the counterpart set. �

Proof of Corollaries 1 and 1.2. Corollary 1.1 follows from Theorems 1.2 after taking
P = A × A and noticing that the equation (2) then becomes

(9) a1a2 − a3a4 = a5a6 − a7a8, ai ∈ A, i = 1, . . . , 8,

and the terms can be trivially rearranged to have the plus signs replace the minus
signs. The bulk of the proof of Theorem 1.2 furnishes the bound O(|A|6 log |A|) for
the number of solutions of the equation (9), and the claim (1) of the Corollary then
follows by Cauchy–Schwartz.

To prove Corollary 1.2 from Theorem 1.3, just set P ′ = P⊥ = {w⊥ : w ∈ P}. �
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Series 56 (2011), 161pp.
[10] L. Guth and N. H. Katz, Algebraic methods in discrete analogues of the Kakeya problem, Adv.

Math. 225 (2010), 2828–2839.



APPLICATION OF GUTH–KATZ THEOREM 697

[11] L. Guth and N. H. Katz, On the Erdös distinct distance problem in the plane, Preprint

arXiv:math/1011.4105 (2010).
[12] D. Hart, A. Iosevich, D. Koh and M. Rudnev, Averages over hyperplanes, sum-product theory in

vector spaces over finite fields and the Erdos–Falconer distance conjecture, Trans. Amer. Math.

Soc. 363 (2011), 3255–3275.
[13] R. Pinchasi, The minimum number of distinct areas of triangles determined by a set of n points

in the plane, SIAM J. Discrete Math. 22(2) (2008), 828–831.

[14] G. Salmon, A Treatise on the analytic geometry of three dimensions, 2, 5th ed., Hodges, Figgis
And Co. Ltd. 1915.
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