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AN IMPROVEMENT TO LAGUTINSKII–PEREIRA
INTEGRABILITY THEOREM

J. R. Mauŕıcio Corrêa

Dedicated to my mother, In memoriam

Abstract. We give an improvement of an integrability theorem due to J. V. Pereira

for holomorphic foliations of dimension one on complex manifolds. We give bounds
for the degree and number of invariant reduced divisors contained in linear systems
of projective manifolds. We construct examples of foliations on projective spaces with

the maximum number of invariant hyperplanes. Also, in the appendix of this work
we prove a Jouanolou–Ghys type theorem for one-dimensional foliations on compact
complex manifolds.

1. Introduction

Darboux presented in [10], a theory on the existence of first integrals for polynomial
differential equations based on the existence of sufficiently many invariant algebraic
curves. Concomitantly Poincaré, in [22], considered the problem of algebraic inte-
gration of polynomial differential equations in the plane. He observed that, in this
case, it would be sufficient to bound the degree of algebraic solutions. Nowadays this
problem is known as Poincaré’s Problem. Many authors have been working on these
problems and on some of its generalizations, see for instance the papers Cerveau and
Lins Neto [7], Carnicer [5], Soares [23], Pereira [20], Brunella and Mendes [3], Esteves
and Kleiman [12], Cavalier and Lehmann [6], and Zamora [27].

The improvement and generalization of the Darboux theory of integrability was
given by Jouanolou in [17] characterizing the existence of rational first integrals for
Pfaff equations on P

n
k , where k is an algebraically closed field of characteristic zero.

More generally, Jouanolou proved in [46] that on a complex compact manifold X sat-
isfying certain conditions on its Hodge-to-de Rham spectral sequence, a Pfaff equation
ω ∈ PH0(M, Ω1

M ⊗ L), where L is a line bundle, admits a meromorphic first integral
if and only if possesses an infinite number of invariant irreducible divisors.

Ghys in [13] showed that the Jouanolou’s result is valid for all compact complex
manifold M . More precisely, if ω does not admit a meromorphic first integral, then
the number of invariant irreducible divisors is at most

dimC(H1(M, Ω1
f )) + dimC(H0(M, Ω2

M ⊗ L)/ω ∧ H0(M, Ω1
f )) + 2,

where Ω1
f denotes the sheaf of closed holomorphic 1-forms on M .
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A discrete dynamical version of Jouanolou–Ghys theorem was recently proved by
Cantat. In [4], he proved that if a holomorphic endomorphism ϕ : M � does not pre-
serve a non-trivial meromorphic fibration, then the number of ϕ-invariant irreducible
hypersurfaces is at most

dimC(H1(M, Ω1
M )) + dim(M).

In the appendix (see Section 6) of this work, we prove a Jouanolou–Ghys type
theorem for one-dimensional foliations. That is, a one-dimensional foliation F without
meromorphic first integral on a compact complex manifold M admits only a finite
number of invariant irreducible divisors. Moreover, the number of invariant irreducible
divisors is at most

dimC(H1(M, Ω1
f )) + dimC(H0(M, KF )/iXF (H0(M, Ω1

f ))) + dim(M),

where KF is the canonical bundle of F and iXF denotes the linear map given by con-
traction of holomorphic 1-forms on M on the direction of vector field XF defining F .

Now, let V ⊂ H0(M,O(D)) a linear system, with dimC(V ) > 1, where D is an
effective divisor on M . We can raise the following question:

Given a linear system V ⊂ H0(M,O(D)), where D is an effective divisor on M . Let
F be an one-dimensional foliation without meromorphic first integral. What is the
maximum number of F-invariant divisors contained in V?

Pereira in [21] showed, using the concept of extactic section, that a foliation on P
2, of

degree d > 1, that does not admit rational first integral of degree ≤ k, has at most

(1.1)
(d − 1)

k
·
((k+2

k

)
2

)
+
(

k + 2
k

)
.

invariant curves of degree k.
The zero locus of extactic section is the inflection locus of linear systems with

respect to the vector field inducing the foliation, see Section 2. The extactic section
for polynomial differential equations in the plane was already known to Lagutinskii
[11] and was rediscovered independently by Pereira [21].

Denote by ε(F , V ) the extactic section of F with respect to V . We recall that a
holomorphic (or meromorphic) first integral for F is a holomorphic (resp. meromor-
phic) map Θ : M −→ Y , where Y is a complex manifold with dim(Y ) < dim(M),
such that the fibers of Θ are invariants by F . Pereira showed in [21] the following
theorem:

Theorem 1.1. Let F be a one-dimensional holomorphic foliation on a complex man-
ifold M . If V is a finite-dimensional linear system such that ε(F , V ) vanishes identi-
cally, then there exits an open and dense set U , possibly intersecting the singular set
of F , where F|U admits a holomorphic first integral. Moreover, if M is a projective
variety, then F admits a meromorphic first integral.
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In the non-algebraic and non-compact cases Theorem 1.1 does not guarantee that
the vanishing of extactic section ε(F , V ) implies in the existence of a meromorphic
first integral for F . We provide the following improvement for Pereira’s theorem.

Theorem 1.2. Let F be a one-dimensional holomorphic foliation on a complex man-
ifold M and V a finite-dimensional linear system. If ε(F , V ) vanishes identically then
F admits a meromorphic first integral.

Let (M, L) be a polarized projective variety; denote by N (F , V ) the number of F-
invariant reduced divisors contained in the linear system V ⊂ H0(M,O(D)). We use
Theorem 1.2 to show the following generalization of Pereira bound (1.1) on projective
manifolds.

Theorem 1.3. Let F be a one-dimensional foliation on a polarized projective man-
ifold (M, L) and V ⊂ H0(M,O(D)) a linear system, where D is an effective divisor
on M . Suppose that F does not admit a rational first integral. Then

N (F , V ) ≤ (degL(F) − degL(M))
degL(D)

·
(

h0(V )
2

)
+ h0(V ),

where h0(V ) = dimC V . In particular, if N (F , V ) ≥
(

h0(V )
2

)
+ h0(V ), then

degL(D) ≤ degL(F) − degL(M).

Theorem 1.3 implies (1.1). In fact, let F be a holomorphic foliation on P
n, of

degree d > 1, without rational first integral. Consider the complete linear system
|OPn(k)|, with k ≥ 1. Since h0(|OPn(k)|) =

(
k+n

k

)
, it follows Theorem 1.3 that

N (F , |OPn(k)|) ≤ (d − 1)
k

·
((k+n

k

)
2

)
+
(

k + n

k

)
.

In Section 4, we give some optimal examples for hyperplanes invariant by a foliation
of dimension one on projective spaces.

A generic one-dimensional singular holomorphic foliation F on a projective man-
ifold leaves no algebraic set invariant, except for its singular locus [9]. When the
extactic divisor E(F , V ) is irreducible we obtain an obstruction for existence of
F-invariant divisors contained in the linear system V . More precisely, if E(F , V )
is irreducible then F does not admit invariant divisors contained in the linear system
V , see Proposition 3.3.

This paper is organized as follows. First, in order to make this presentation as
self-contained as possible, in Section 2, we define the extactic divisors of a foliation
with respect to linear systems and their main properties and we prove Theorem 1.2.
In Section 3, we define the natural notion of degree of foliations with respect to a
polarization on projective manifolds and we prove Theorem 1.3. In Section 4, we give
some optimal examples for hyperplanes invariant by a one-dimensional foliation on
projective spaces. Finally, in Appendix A of this work we prove a Jouanolou–Ghys
type theorem for one-dimensional foliations on compact complex manifolds.
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2. The extactic divisor

In this section, we digress on extactic divisors and their main properties developed
in [21].

Definition 2.1. Let M be a connected complex manifold. A one-dimensional holo-
morphic foliation is given by the following data:

(i) an open covering U = {Uα} of M ;
(ii) for each Uα an holomorphic vector field Xα;
(iii) for every non-empty intersection, Uα ∩ Uβ 
= ∅, a holomorphic function

fαβ ∈ O∗
M (Uα ∩ Uβ);

such that Xα = fαβXβ in Uα ∩ Uβ and fαβfβγ = fαγ in Uα ∩ Uβ ∩ Uγ .

We denote by KF the line bundle defined by the cocycle {fαβ} ∈ H1(M,O∗).
Thus, a one-dimensional holomorphic foliation F on M induces a global holomorphic
section XF ∈ H0(M, TM ⊗ KF ). The line bundle KF is called the canonical bundle
of F .

Two sections XF and YF of H0(M, TM ⊗KF ) are equivalent, if there exits a never
vanishing holomorphic function ϕ ∈ H0(M,O∗), such that XF = ϕ · YF . It is clear
that XF and YF define the same foliation. Thus, a holomorphic foliation F on M is
an equivalence of sections of TM ⊗ KF .

Let H be a holomorphic line bundle on M . Consider a finite-dimensional linear
system V ⊂ H0(M, H) and take an open covering {Uα} of M which trivializes H and
KF . In the open set Uα, we can consider the Taylor expansion of a section s ∈ V
with respect to the vector field Xα defining a morphism

T (k)
α : V ⊗OUα → O⊕k

Uα

given by

T (k)
α (sα) = (sα, Xα(sα), X2

α(sα), . . . , X(k−1)
α (sα)),

where sα and Xα are local representations, respectively, of a section s ∈ V ⊂
H0(M, H) and the section XF ∈ H0(M, TM ⊗ KF ) inducing F . If Uα ∩ Uβ 
= ∅
then sα = gαβsβ and Xα = fαβXα, where gαβ , fαβ ∈ O∗(Uα) are the cocycles which
define, respectively, the line bundles H and KF . Using the compatibility described
above and Leibniz’s rule we obtain

sα = gαβsβ

Xα(sα) = fαβXβ(gαβ) · sβ + gαβfαβ · Xβ(sβ).

Following this process up to order k = dimC V > 1, we obtain

T (k)
α (sα) = Θαβ(F , V ) · T (k)

β (sβ),
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where

Θαβ(F , V ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gαβ 0 0 0 0

Xβ(gαβ) · fαβ gαβ · fαβ 0 0 0

. . . . . . gαβ · f2
αβ 0 0

. . . . . . . . . . . . 0

. . . . . . . . . . . . gαβ · fk−1
αβ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

is a k × k matrix such that det(Θαβ(F , V )) 
= 0. We see that{
Θαβ(F , V )(p) · Θβα(F , V )(p) = I, for all p ∈ Uα ∩ Uβ ,

Θαβ(F , V )(p) · Θβγ(F , V )(p) · Θγα(F , V )(p) = I, for all p ∈ Uα ∩ Uβ ∩ Uγ .

That is, the family of matrices {Θαβ(F , V )} defines a cocycle of a vector bundle of
rank k on M that we denote by Jk−1

F H. The vector bundle Jk−1
F H can be understood

as a Jet bundle, with respect to F , of holomorphic sections of H.
Now, using the trivializations {Θαβ(F , V )} we get the morphisms

T (k) : V ⊗OM → Jk−1
F H.

Taking the determinant of T (k) we have the morphism

det(T (k)) :
k∧

V ⊗OM →
k∧

Jk−1
F H,

and tensorizing by (
∧k

V )∗ we obtain a global section of
∧k

Jk−1
F H ⊗ (

∧k
V )∗ given

by

ε(F , V ) : OM →
k∧

Jk−1
F H ⊗

(
k∧

V

)∗

.

Definition 2.2. The section ε(F , V ) is called the extactic section of F with respect
to V and XF . If ε(F , V ) is not identically zero, the extactic divisor of F with respect
to V is the divisor E(F , V ) = (ε(F , V )) given by the zeros of the extactic section.

Remark 1. The extactic section ε(F , V ) depends on the choice of the section

XF ∈ H0(M, TM ⊗ KF ),

but the extactic divisor E(F , V ) does not depend. In fact, suppose that XF = ϕ ·YF ,
with ϕ ∈ H0(M,O∗) and YF ∈ H0(M, TM ⊗ KF ). A straightforward calculation
shows that

ε(XF , V ) = ϕ(h0(V )
2 ) · ε(YF , V ).

Then (ε(XF , V )) = (ε(YF , V )).

Remark 2. Note that the cocycle of
∧k

Jk−1
F H is given by

det(Θαβ(F , V )) = gk
αβ · f(k

2)
αβ ,

where gαβ and fαβ are, respectively, the trivializations of H and KF . Therefore, we
obtain the isomorphism

∧k
Jk−1
F H � H⊗k ⊗ (KF )⊗(k

2).



650 J. R. MAURÍCIO CORRÊA

Pereira [21] obtained the following result, which elucidate the role of the extactic
divisor:

Proposition 2.1 ([21, Proposition 5]). Let F be a one-dimensional holomorphic fo-
liation on a complex manifold M . If V is a finite-dimensional linear system, then
every F-invariant divisor of V must be contained in the extactic divisor E(F , V ).

Proof. Let {s1, . . . , sk} be a basis for V ⊂ H0(M, H). On the open Uα the extactic
section is given by

(2.1) ε(F , V )α = det

⎛
⎜⎜⎜⎜⎜⎝

sα
1 sα

2 · · · sα
k

Xα(sα
1 ) Xα(sα

2 ) · · · Xα(sα
k )

...
...

. . .
...

Xk−1
α (sα

1 ) Xk−1
α (s2) · · · Xk−1

α (sα
k )

⎞
⎟⎟⎟⎟⎟⎠

,

where Xα is a vector field that induces F on Uα and sα
i is local representation of

the section si, i = 1, . . . , k. Let fα be the local equation defining an element on V
and suppose that (fα = 0) is F-invariant. Change basis so that V is generated by
fα, v2, . . . , v�. It follows from the F-invariance of (fα = 0) that there exist analytic
functions h1

α, . . . , hk−1
α on Uα such that

(2.2) Xj
α(fα) = hj

αfα.

Substituting (2.2) on (2.1) we conclude that fα is a factor of ε(F , V )α, thus (fα =
0) ⊂ E(F , V )|Uα

. �

2.1. Proof of Theorem 1.2.

Proof. Suppose that the foliation F is given by the collections

({Uα}, {Xα}, {fαβ ∈ O∗(Uα ∩ Uβ)}).

We will show the existence of a local meromorphic first integral on each open Uα.
That is, there exists a meromorphic function θα such that Xα(θα) = 0, where Xα

is the vector field defining F on Uα. After this, we must prove that θα = θβ on
Uαβ := Uα ∩ Uβ 
= ∅, thus we shall obtain a global meromorphic function defining a
first integral for F . For the existence of θβ on Uα, we will use similar arguments given
in the proof of Theorem 4.3 of [8] for the case of polynomial vector fields on C

2.
Let {s1, . . . , sk} be a C-base for V . Suppose that ε(V,F) vanishes identically. Then

on the open Uα we have that

ε(F , V )α = det

⎛
⎜⎜⎜⎜⎜⎝

sα
1 sα

2 · · · sα
k

Xα(sα
1 ) Xα(sα

2 ) · · · Xα(sα
k )

...
...

. . .
...

Xk−1
α (sα

1 ) Xk−1
α (s2) · · · Xk−1

α (sα
k )

⎞
⎟⎟⎟⎟⎟⎠

≡ 0,

where Xα is a vector field that induces F on Uα and sα
i is the local representation of

the section si, i = 1, . . . , k.
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To say that ε(F , V )α ≡ 0 means that the columns of the above matrix are depen-
dent over the field of meromorphic functions M (Uα). Hence, there are meromorphic
functions θα

1 , . . . , θα
k on Uα, such that

(2.3) Mα
i :=

k∑
j=1

θα
j Xi

α(sα
j ) = 0, 0 ≤ i ≤ k − 1.

Now, let r(α) be the smallest integer with the property that there exist meromorphic
functions θα

1 , . . . , θα
r(α) and sα

1 , . . . , sα
r(α) ∈ V , linearly independent over C, such that

(2.3) holds. We clearly have 1 < r(α) ≤ k and we may assume θα
r(α) = 1. Applying

the derivation Xα to both sides of (2.3) we obtain

(2.4)

Xα(θα
1 )Xi

α(sα
1 ) + θα

1 Xi+1
α (sα

1 ) + · · · + Xα(θr(α))︸ ︷︷ ︸
0

Xi
α(sα

r(α)) + θα
r(α)︸︷︷︸
1

Xi+1
α (sα

r(α)) = 0,

for all 0 ≤ i ≤ r(α) − 2. Subtracting (2.4) from Mα
i+1 we obtain

Xα(θα
1 )Xi

α(sα
1 ) + · · · + Xα(θα

r(α)−1)X
i
α(sr(α)−1) = 0, 0 ≤ i ≤ r(α) − 2.

By the minimality of r(α) we must have Xα(θα
1 ) = · · · = Xα(θα

r(α)−1) = 0 and hence,
provided these are not all constants, we have a first integral for Xα on Uα. This in
fact occurs because, since Mα

0 is

Mα
0 = θα

1 sα
1 + · · · + θα

r(α)−1s
α
r(α)−1 + sα

r(α) = 0,

we conclude that not all the θα’s could be constant since sα
1 , . . . , sα

r(α) ∈V are linearly
independent over C.

Now we will show that r = r(α) = r(β), for all α, β ∈ Λ. Suppose that r(α) <

r(β). In Uαβ 
= ∅ we have that sα
i = gαβsβ

i , i = 1, . . . , r(α), and Xα = fαβXβ ,
with fαβ , gαβ ∈ O∗(Uαβ). Using this we conclude that Xβ(θα

i ) = 0 on Uαβ , for all
i = 1, . . . , r(α) − 1, and

θα
1 sβ

1 + · · · + θα
r(α)−1s

β
r(α)−1 + θα

r(α)s
β
r(α) = 0.

Applying the derivation Xβ in this equation and using that Xβ(θα
i ) = 0, for all

i = 1, . . . , r(α), we obtain

r(α)<r(β)∑
j=1

θα
j Xi

β(sβ
j ) = 0, 0 ≤ i ≤ r(α) − 1,

by the minimality of r(β) we can conclude that θα
1 = · · · = θα

r(α) = 0, but this is a
contradiction, since θα

r(α) = 1. The case r(β) < r(α) is similar.
Consider the equations

θα
1 sα

1 + · · · + θα
r−1s

α
r−1 + sα

r = 0,

θβ
1 sα

1 + · · · + θβ
r−1s

α
r−1 + sα

r = 0.

Subtracting these equations we obtain

(θα
1 − θβ

1 )sα
1 + · · · + (θα

r−1 − θβ
r−1)s

α
r−1 = 0.
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Define hαβ
i = (θα

i − θβ
i ) ∈ M (Uαβ), i = 1, . . . , r − 1. Applying the derivation Xα to

the last equation and using Xα(θα
i ) = Xα(θβ

i ) = 0 we obtain

r−1∑
j=1

hαβ
j Xi

α(sα
j ) = 0, 0 ≤ i ≤ r − 2.

Again, by the minimality of r we have that hαβ
1 = · · · = hαβ

r−1 = 0, i.e, θα
i = θβ

i on
Uαβ , for all , i = 1, . . . , r − 1. Therefore, we obtain a meromorphic first integral Θi

locally given by Θi
|Uα

= θα
i , for some i = 1, . . . , r − 1. �

3. The degree of foliations with respect to a polarization

Let (M, L) be a n-dimensional polarized projective manifold, i.e., M is connected and
L is a very ample line bundle on M . The degree of a holomorphic vector bundle E
on M related to the polarization L is defined by

degL(E) =
∫

M

c1(E) · Ln−1,

where
∫

M
denote the degree of cycle of dimension n.

Let D be an analytic hypersurface on M defined locally by functions {sα ∈O(Uα)},
where {Uα} is an open covering of M . If Uα ∩Uβ 
= ∅, then there exist gαβ ∈ O∗(Uα),
such that sα = gαβsβ . Let F be a holomorphic foliation on M given by collections

({Xα}; {Uα}; {fαβ ∈ O∗(Uα)}),

where fαβ is the cocycle inducing KF . Consider the following functions:

ζ(F,D)
α = Xα(sα)|D ∈ O(Uα ∩ D).

If Uα ∩ Uβ ∩ D 
= ∅, using Leibniz’s rule we get ζ
(F,D)
α = fαβgαβζ

(F,D)
β . With this

we obtain a global section ζ(F,D) of the line bundle (KF ⊗ O(D))|D. The tangency
variety (see [2]) of F with D is given by

T (F , D) = {p ∈ D; ζ(F,D)(p) = 0}.

Since ζ(F,D) ∈ H0(D, (KF ⊗O(D))|D), we have the following adjunction formula:

(3.1) T (F , D) = (KF + D)|D.

Definition 3.1. Let (M, L) be a polarized variety and F a one-dimensional foliation
on M . The degree of F with respect to the polarization L is the intersection number

degL(F) :=
∫

L

T (F , L) · Ln−2.

Proposition 3.1. Let F be a foliation on a polarized variety (M, L). Then

degL(F) = degL(KF ) + degL(M),

where degL(M) = degL(L) is the degree of M with respect to L.
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Proof. It follows from Definition 3.1 and adjunction formula (3.1) that

degL(F) =
∫

L

T (F , L) · Ln−2 =
∫

L

(KF + L) · Ln−2

=
∫

M

KF · Ln−1 +
∫

M

Ln

= degL(KF ) + degL(M).

�

Throughout this paper we shall assume degL(KF ) = degL(F) − degL(M) ≥ 0.

Example 1. Let F be a foliation on a projective manifold M with Pic(M) � Z. We
can take a ample line bundle L to be a positive generator of Pic(M), so we denote
by OM (r) := L⊗r the rth tensor power of L. If we write KF =OM (dF − 1), then
degL(KF ) = (dF − 1) degL(M). Hence

degL(F) = degL(KF ) + degL(M) = dF · degL(M).

In the case where M = P
n we will have, as is known, that deg(F) = dF .

The unique projective manifold that admits a one-dimensional foliation of degree
zero is the projective space.

Proposition 3.2. Let F be a foliation on a polarized variety (M, L) of degL(F) = 0,
then M = P

n.

Proof. If follows Proposition 3.1 that degL(KF ⊗ L) = degL(F) = 0. This implies
that KF ⊗ L = O(M), i.e., KF = L−1 . Thus, the foliation is given by a non-
zero holomorphi section of TM ⊗ L−1. The result follows from Whal’s theorem of
characterization of projective spaces [24], since L is very ample. �

3.1. Proof of Theorem 1.3. It follows from Theorem 1.2 that if F does not have
a rational first integral, then ε(F , V ) 
= 0. Thus, the extactic section ε(F , V ) defines
an effective divisor E(F , V ) whose associated line bundle is

∧k
Jk−1
F O(D)⊗ (

∧k
V )∗,

where k = dimC V ≤ h0(D). Let N (F , V ) be the number of divisors of V ⊂
H0(M,O(D)) invariant by F . It follows from Proposition 2.1 that every divisor
C ∈ V invariant by F is contained in the extactic divisor E(F , V ). Using this fact we
can claim that

degL(D)N (F , V ) ≤ degL(E(F , V )).

Indeed, it is enough to group the F-invariant divisors of the following form:

E(F , V ) =
N (F,V )∑

j=1

Cj + R,

where Ci ∈ V is a divisor invariant by F and R is a divisor without F-invariant
divisor contained in V . Since degL(Cj) = degL(D), for all j = 1, . . . ,N (F , V ), we
obtain

degL(D)N (F , V ) =
N (F,V )∑

j=1

degL(Cj) ≤ degL(E(F , V )).
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This shows the claim above. However, the line bundle associated with the extactic
divisor E(F , V ) is given by

∧k
Jk−1
F O(D) ⊗ (

∧k
V )∗. This implies that

O(E(F , V )) =
k∧

Jk−1
F O(D) ⊗

(
k∧

V

)∗

.

It follows from Remark 2 that
∧k

Jk−1
F O(D) � O(D)⊗k ⊗ (KF )⊗(k

2), thus

O(E(F , V )) = O(D)⊗k ⊗ (KF )⊗(k
2) ⊗

(
k∧

V

)∗

.

Since
∧k

V ∗ is a trivial vector bundle, then degL

(∧k
V ∗

)
= 0. Now, calculating the

degree degL(E(F , V )), we obtain

degL(E(F , V )) = degL

(
O(D)⊗k ⊗ (KF )⊗(k

2)
)

+ degL

(
k∧

V ∗
)

︸ ︷︷ ︸
�

0

= k degL(D) + degL(KF )
(

k

2

)
.

Finally, the result follows from degL(D) · N (F , V ) ≤ degL(E(F , V )) and Proposi-
tion 3.1. This proves Theorem 1.3.

The irreducibility of extactic divisor E(F , V ) gives an obstruction for the existence
of F-invariant divisors contained on V .

Proposition 3.3. Let F be a foliation without rational first integral. If E(F , V ) is
irreducible then F does not admit invariant divisors contained in the linear system
V ⊂ |O(D)|.

Proof. Suppose that F possesses an invariant divisor C ∈ V . Since all divisors C ∈ V
invariant by F are contained in the extactic divisor (Proposition 3.1) and by hypoth-
esis E(F , V ) is irreducible, we have that C = E(F , V ). But

degL(C) = degL(D) < k · degL(D) + degL(KF )
(

k

2

)
= degL(E(F , V )),

which is absurd, since k > 1. �

4. Bounding invariant hyperplane sections

Let Mn be a projective manifold embedded on a projective space P
N . Let |OM (1)| be

the complete linear system of hyperplane sections of Mn on P
N . In the next result,

we will use the Zak’s number defined by

Zak(n, N) :=
[

(4n − N + 3)2

8(2n − N + 1)

]
,

where [x] denote the largest integer not exceeding x.
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Corollary 4.1. Let F be a one-dimensional foliation on a smooth algebraic variety
Mn ⊂ P

N . Suppose that F does not admit a rational first integral, then the number
of F-invariant hyperplane sections is at most(

deg(F)
deg(M)

− 1
)
·
(

Zak(n, N)
2

)
+ Zak(n, N).

Proof. It follows from Theorem 1.3, and the fact that degOM(1)(OM (1)) = deg(M),
that the number of F-invariant hyperplane sections is at most(

deg(F)
deg(M)

− 1
)
·
(

h0(M,OM (1))
2

)
+ h0(M,OM (1)).

Now, the result follows from

h0(M,O
M

(1)) ≤ Zak(n, N),

see [25, p. 117, Theorem 2.10]. �

Example 2. Let F be a one-dimensional foliation on a projective manifold Mn ⊂ P
N .

Suppose that F does not admit a rational first integral. Then, if N ≤ 2n, the number
of F-invariant hyperplane sections is at most(

deg(F)
deg(M)

− 1
)
·
((n+2

2

)
2

)
+
(

n + 2
2

)
.

This is a consequence of Corollary 4.1 and of the following result (see [25, Corol-
lary 2.9]): if N ≤ 2n, then h0(M,O

M
(1)) ≤

(
n+2

2

)
.

Example 3. We recall that a non-singular algebraic variety Mn ⊂ P
N is called

linearly normal if h0(M,OM (1)) = N + 1. Zak’s Linear Normality theorem say that
if N < 3

2n + 1 then Mn is linearly normal, see [26]. Let F be a one-dimensional
foliation on a linearly normal projective manifold M ⊂ P

N . Suppose that F does not
admit a rational first integral. Then it follows from Corollary 4.1 that the number of
F-invariant hyperplane sections is at most(

deg(F)
deg(M)

− 1
)
·
(

N + 1
2

)
+ N + 1.

In particular, if deg(F) = deg(M) the number of F-invariant hyperplane sections is
at most 3

2n + 1.

4.1. Optimal examples on projective spaces. In this section, we consider foli-
ations on P

n. We construct some examples of foliations with the maximum number
of invariant hyperplanes. Let F be a one-dimensional holomorphic foliation on P

n, of
degree d > 0, and suppose that F does not admit a rational first integral. It follows
from Example 3 that the number of F-invariant hyperplanes is bounded by(

n + 1
2

)
(d − 1) + n + 1.

The next result gives us the number of invariant hyperplanes by a foliation on
P

n which contain a fixed 	-plane, particularly the number of invariant hyperplanes
through a point and the number of invariant hyperplanes containing an invariant line.
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Proposition 4.1. Let F be a one-dimensional holomorphic foliation on P
n of degree

d > 0 and suppose that F does not admit a rational first integral. Then, the number
of F-invariant hyperplanes which contain a fixed 	-plane, 0 ≤ 	 ≤ n − 2, is bounded
by (

n − 	

2

)
(d − 1) + n − 	.

Proof. We may assume the 	-plane L
� is the base locus of the linear subsystem Vn−� ⊂

|OPn(1)| generated by z�+1, . . . , zn. Any hyperplane containing L
� belongs to Vn−�.

The result follows by observing that h0(Vn−�) = n − 	. �
The next result says us that all the F-invariant linear subspaces are contained in

the linear extactic E(|OPn(1)|,F).

Proposition 4.2. Let F be a foliation on P
n that does not admit a rational first

integral. Then all the F-invariant linear subspaces are contained in the linear extactic
E (|OPn(1)|,F), where X is a vector field that induces F in homogeneous coordinates.

Proof. In fact, if F admits no rational first integral then ε(F , |OPn(1)|) 
= 0. Every
linear k-codimensional subspace on P

n is the intersection of the zeros of k homoge-
neous polynomials of degree one, linearly independent, let us say f1, . . . , fk ∈ |OPn(1)|.
Then we can take

{f1, . . . , fk, hk+1, . . . , hn+1}
to form a basis for |OPn(1)|. Now, if the linear space W := {f1 = · · · = fk = 0} is
F-invariant, it follows that X(fi) ∈ I(f1, . . . , fk), for all i = 1, . . . , k, and so we
obtain Xj(fi) ∈ I(f1, . . . , fk). Expanding the determinant

ε(F , |OPn(1)|) = det

⎛
⎜⎜⎜⎜⎜⎝

f1 · · · fk · · · hn+1

X(f1) · · · X(fk) · · · X(hn+1)

...
...

...
. . .

...

Xn(f1) · · · Xn(fk) · · · Xn(hn+1)

⎞
⎟⎟⎟⎟⎟⎠

in any of the kth first columns we see that ε(F , |OPn(1)|) ∈ I(f1, . . . , fk). Therefore

E(F , |OPn(1)|) ⊃ W.

�
Consider the vector fields, defined in affine coordinates z0 = 1, by

X0
d =

n∑
i=1

(zd−1
i − 1)zi

∂

∂zi
,

X1
d =

∂

∂z1
+

n∑
i=2

(zd−1
i − 1)zi

∂

∂zi
,

X�
d =

�∑
i=1

(zd
1 + · · · + ẑd

i + · · · + zd
� )

∂

∂zi
+

n∑
i=�+1

(zd−1
i − 1)zi

∂

∂zi
, 2 ≤ 	 ≤ n − 2.

Remark that all the foliations FX�
d

on P
n induced by X�

d, 0 ≤ 	 ≤ n − 2, leave the
hyperplane at infinity invariant.
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X0
d is an n-dimensional version of a member of the so called “family of degree four”

in P
2, one of the examples given by Lins Neto in [18]. A straightforward calculation

shows that the
(
n+1

2

)
(d − 1) + n + 1 hyperplanes given by equation

(z0 . . . zn)
∏

0≤i,j≤n

(zd−1
i − zd−1

j ) = 0

are invariant by FX0
d
.

For each 	 = 1, . . . , n − 2 consider the 	-plane L� = {z�+1 = · · · = zn = 0}, which is
the base locus of the linear system

∑n
j=�+1 λizi. The foliation FX�

d
leaves invariant

the
(
n−�
2

)
(d − 1) + n − 	 hyperplanes, all containing L�, whose equation is

(z�+1 . . . zn)
∏

�+1≤i,j≤n

(zd−1
i − zd−1

j ) = 0.

Moreover, the (n − 	)-plane L
⊥
� = {z1 = · · · = z� = 0} is also FX�

d
-invariant, whereas

the hyperplane {zi = 0}, 1 ≤ i ≤ 	 are not.

Remark 3. The foliation FX0
d

on P
n induced by the vector field X0

d is the unique
foliation of degree d that leaves invariant the following arrangement of hyperplanes:

Ad =

⎧⎨
⎩(z0 . . . zn)

∏
0≤i,j≤n

(zd−1
i − zd−1

j ) = 0

⎫⎬
⎭ .

Indeed, the singular set Sing(F) of F is isolated and non-degenerated. On the other
hand, we can see that Sing(F) is determined by intersection of the hyperplanes of
Ad. It follows from [16] that F is unique.

5. Holomorphic foliation with all leaves compact

The results of this work give conditions for a one-dimensional holomorphic foliation
to be tangent to the fibers of a meromorphic function. In [15], Gomez–Mont provides
an extension of a theorem due to Edwards, Millett and Sullivan concerning foliations
with all leaves compact. He proved that if a singular holomorphic foliation F , of
codimension q, on a projective manifold have all leaves algebraic, then F is tangent
to the fibers if a rational map. Pereira proved in [21] the Gomez–Mont’s result using
extactic divisors.

See the following examples of one-dimensional holomorphic foliations with leaves
compact:

Example 4. Let E be an elliptic curve and M = (E × E) × E. Consider on M a
foliation F by lines on (E × E)z with a slop that depends holomorphicaly on z ∈ E.

Example 5. Consider a discrete subgroup Γ of SL(2, C) such that X = SL(2, C)/Γ
is compact. The action over X of the diagonal subgroup of SL(2, C) induces a one-
dimensional holomorphic foliation F on X with infinity leaves compact. Moreover,
the union these leaves compact is dense in X, see [13, Example 6; 14].
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Appendix A. Jouanolou–Ghys theorem for one-dimensional foliations

Let M be a compact complex manifold. Let Ω1
M (resp. M 1

M ) be the sheaf of holomor-
phic (resp. meromorphic) 1-forms on M ; we have a short exact sequence of sheaves

0 �� Ω1
M

�� M 1
M

�� Q1
M

�� 0 ,

where Q1
M denotes the quotient sheaf M 1

M/Ω1
M . Let {fα = 0} be an irreducible

analytic hypersurface of M . The meromorphic form

dfα

fα

is a well-defined global section of Q1
M . In fact, if fα = gαβfβ , with gαβ ∈ O∗(Uα∩Uα)

then
dfα

fα
− dfβ

fβ
=

dgαβ

gαβ
∈ Ω1

Uα∩Uβ
.

Denote by Div(M,F) the abelian group of divisors on M invariant by F . Now,
consider the following C-linear maps:

Div(M,F) ⊗ C −→ H1(M,O∗) −→ H1(M, Ω1
f )

(fα) �−→
[
fα

fβ
= gαβ

]
�−→

[
dgαβ

gαβ

]
,

where Ω1
f denotes the sheaf of closed holomorphic 1-forms on M . Since M is compact

dimC H1(M, Ω1
f ) < ∞, see [13]. We will denote the composed of these linear maps by

ζ : Div(M,F) ⊗ C −→ H1(M, Ω1
f ).

Let Div0(M,F) be the kernel of ζ. If (fα) ∈ Div0(M,F) then there are closed 1-forms
να on Uα such that

να − νβ =
dgαβ

gαβ
=

dfα

fα
− dfβ

fβ

on Uα ∩ Uα 
= ∅. Thus, we have a well-defined global closed meromorphic 1-form η
given on Uα by

η|Uα
=

dfα

fα
+ να.

Contacting by Xα we have a linear map iXF : H0(M, Ω1
f ) → H0(M, KF ). Finally,

we get the following C-linear map:

ξ : Div0(M,F) −→ H0(M, KF )/iXF (H0(M, Ω1
f ))

(fα) �−→ dfα

fα
(Xα) + να(Xα).

Theorem A.1. Let F be a one-dimensional foliation on a compact complex manifold
M. If F admits

dimC(H1(M, Ω1
f )) + dimC(H0(M, KF )/iXF (H0(M, Ω1

f ))) + dim(M)

invariants irreducible analytic hypersurfaces, then F admit a meromorphic first inte-
gral.
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Proof. Suppose that F admits at least

dimC(H1(M, Ω1
f )) + dimC(H0(M, KF )/iXF (H0(M, Ω1

f ))) + dim(M)

invariants irreducible analytic hypersurfaces. Under this assumption, we conclude
that

dimC Div0(M,F) ≥ dimC(H0(M, KF )/iXF (H0(M, Ω1
f ))) + dim(M)

and dimC ker(ξ)≥ dim(M). Therefore, we have closed meromorphic 1-forms η1, . . . ,
ηn, where n = dim(M), with different set of poles and such that ηi(Xα) ≡ 0, for all
α and i = 1, . . . , n.

We claim that η1, . . . , ηn are linearly dependent over the field of meromorphic
functions M (M). Otherwise, on the open Uα there exists a meromorphic function
Rα 
= 0 such that

η1 ∧ · · · ∧ ηn|Uα = Rαdzα
1 ∧ · · · ∧ dzα

n .

Contracting by Xα =
∑n

i=1 Pα
i

∂
∂zα

i
we have Rα · (dz1 ∧ · · · ∧ dzn)(Xα) = 0, since

ηi(Xα) = 0, for all i = 1, . . . , n. But Rα 
= 0, thus

0 = (dzα
1 ∧ · · · ∧ dzα

n )(Xα) =
n∑

i=1

(−1)i+1Pα
i dzα

1 ∧ · · · ∧ d̂zα
i ∧ · · · ∧ dzα

n .

This implies that Pα
1 = · · · = Pα

n = 0, i.e, Xα ≡ 0, an absurd. Let W be the
M (M)-linear space generated by {η1, . . . , ηn}, suppose that dimM (M) W = k and

W = 〈η1, . . . , ηk〉M (M).

There exist meromorphic functions R1, . . . , Rk,∈ M (M), such that

(A.1) ηk+1 = R1η1 + · · · + Rkηk.

Sine ηi is closed, i = 1, . . . , k, by differentiation we obtain

0 = dR1 ∧ η1 + · · · + dRk ∧ ηk.

Now, contracting by Xα results

0 = Xα(R1)η1 + · · · + Xα(Rk)ηk.

Thus Xα(R1) = · · · =Xα(Rk) = 0, for all α. That is, the meromorphic function Ri,
i = 1, . . . , k, is either a first integral for the foliation F or is constant. It remains to
observe that at least one rational function Ri is not constant. Indeed, this follows
from relation (A.1) and that the poles set of η1, . . . , ηk are different. �
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[13] É. Ghys, À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuil-
letages holomorphes. Rend. Circ. Mat. Palermo (2) 49(1) (2000), 175–180.
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[17] J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Math., 708, Springer, 1979,

(2001), 1385–1405.
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Mémoire sur les équations différentielles du premier ordre, Oeuvres de Paul Painlevé; Tome
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premier degré I Rend. Circ. Mat. Palermo, 11 (1897), 169–193–239.
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